Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Biomimetic Synthesis of Biologically Active Natural Products: An Updated Review

Author(s): Neda Shakour, Manijeh Mohadeszadeh and Mehrdad Iranshahi*

Volume 24, Issue 1, 2024

Published on: 26 June, 2023

Page: [3 - 25] Pages: 23

DOI: 10.2174/1389557523666230417083143

Price: $65

Abstract

Background: Natural products have optical activities with unusual structural characteristics or specific stereoselectivity, mostly including spiro-ring systems or quaternary carbon atoms. Expensive and time-consuming methods for natural product purification, especially natural products with bioactive properties, have encouraged chemists to synthesize those compounds in laboratories. Due to their significant role in drug discovery and chemical biology, natural products have become a major area of synthetic organic chemistry. Most medicinal ingredients available today are healing agents derived from natural resources, such as plants, herbs, and other natural products.

Methods: Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts.

Results: Developing bioactive compounds and drugs from natural products has remained challenging despite recent advances. A major challenge is not whether a target can be synthesized but how to do so efficiently and practically. Nature has the ability to create molecules in a delicate but effective manner. A convenient method is to imitate the biogenesis of natural products from microbes, plants, or animals for synthesizing natural products. Inspired by the mechanisms occurring in the nature, synthetic strategies facilitate laboratory synthesis of natural compounds with complicated structures.

Conclusion: In this review, we have elaborated on the recent syntheses of natural products conducted since 2008 and provided an updated outline of this area of research (Covering 2008-2022) using bioinspired methods, including Diels-Alder dimerization, photocycloaddition, cyclization, and oxidative and radical reactions, which will provide an easy access to precursors for biomimetic reactions. This study presents a unified method for synthesizing bioactive skeletal products.

Graphical Abstract

[1]
Lu, Y.; Khoo, T.; Wiart, C. The genus Melodinus (Apocynaceae): Chemical and pharmacological perspectives. J. Pharm. Pharmacol., 2014, 2014, 540-550.
[2]
Hetzler, B.E.; Trauner, D.; Lawrence, A.L. Natural product anticipation through synthesis. Nat. Rev. Chem., 2022, 6(3), 170-181.
[http://dx.doi.org/10.1038/s41570-021-00345-7]
[3]
Nicolaou, K.C.; Snyder, S.A. Chasing molecules that were never there: Misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed., 2005, 44(7), 1012-1044.
[http://dx.doi.org/10.1002/anie.200460864] [PMID: 15688428]
[4]
Robinson, R. LXIII. A synthesis of tropinone. J. Chem. Soc. Trans., 1917, 111(0), 762-768.
[http://dx.doi.org/10.1039/CT9171100762]
[5]
Boyd, E. Total syntheses of (-)-Aspergilazine a and dendridine A. PhD degree; The University of Auckland, 2015.
[6]
Lancefield, C.S.; Zhou, L.; Lébl, T.; Slawin, A.M.Z.; Westwood, N.J. The synthesis of melohenine B and a related natural product. Org. Lett., 2012, 14(24), 6166-6169.
[http://dx.doi.org/10.1021/ol302859j] [PMID: 23214465]
[7]
Boyd, E.M.; Sperry, J. Synthetic studies towards dendridine A: Synthesis of hemi-dendridine A acetate by Fischer indolization. Tetrahedron Lett., 2012, 53(28), 3623-3626.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.029]
[8]
Luo, S.H.; Luo, Q.; Niu, X.M.; Xie, M.J.; Zhao, X.; Schneider, B.; Gershenzon, J.; Li, S.H. Glandular trichomes of Leucosceptrum canum harbor defensive sesterterpenoids. Angew. Chem. Int. Ed., 2010, 49(26), 4471-4475.
[http://dx.doi.org/10.1002/anie.201000449] [PMID: 20458721]
[9]
Kitajima, M. Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza. J. Nat. Med., 2006, 61(1), 14-23.
[http://dx.doi.org/10.1007/s11418-006-0101-z]
[10]
Luo, S.H.; Hugelshofer, C.L.; Hua, J.; Jing, S.X.; Li, C.H.; Liu, Y.; Li, X.N.; Zhao, X.; Magauer, T.; Li, S.H. Unraveling the metabolic pathway in Leucosceptrum canum by isolation of new defensive leucosceptroid degradation products and biomimetic model synthesis. Org. Lett., 2014, 16(24), 6416-6419.
[http://dx.doi.org/10.1021/ol503230s] [PMID: 25474304]
[11]
Bulger, P.G.; Bagal, S.K.; Marquez, R. Recent advances in biomimetic natural product synthesis. Nat. Prod. Rep., 2008, 25(2), 254-297.
[http://dx.doi.org/10.1039/b705909b] [PMID: 18389138]
[12]
Mohadeszadeh, M.; Iranshahi, M. Recent advances in the catalytic one-pot synthesis of flavonoids and chromones. Mini Rev. Med. Chem., 2017, 17(14), 1377-1397.
[PMID: 28302037]
[13]
David, B; Sévenet, T; Morgat, M; Guénard, D; Moisand, A; Tollon, Y Rhazinilam mimics the cellular effects of taxol by different mechanisms of action. . Cell motil cytoskelet, 28(4), 317-26.1994,
[http://dx.doi.org/ 10.1002/cm.970280405]
[14]
Feng, T.; Cai, X.H.; Li, Y.; Wang, Y.Y.; Liu, Y.P.; Xie, M.J.; Luo, X.D. Melohenines A and B, two unprecedented alkaloids from Melodinus henryi. Org. Lett., 2009, 11(21), 4834-4837.
[http://dx.doi.org/10.1021/ol9018826] [PMID: 19863145]
[15]
Huang, X.; Song, L.; Xu, J.; Zhu, G.; Liu, B. Asymmetric total synthesis of leucosceptroid B. Angew. Chem. Int. Ed., 2013, 52(3), 952-955.
[http://dx.doi.org/10.1002/anie.201208687] [PMID: 23233248]
[16]
Xie, J.; Ma, Y.; Horne, D.A. Asymmetric synthesis of the core structure of leucosceptroids A-D. J. Org. Chem., 2011, 76(15), 6169-6176.
[http://dx.doi.org/10.1021/jo200899v] [PMID: 21644513]
[17]
Guo, S.; Liu, J.; Ma, D. Total synthesis of leucosceptroids A and B. Angew. Chem. Int. Ed., 2015, 54(4), 1298-1301.
[http://dx.doi.org/10.1002/anie.201410134] [PMID: 25470240]
[18]
Hugelshofer, C.L.; Magauer, T. Total synthesis of the leucosceptroid family of natural products. J. Am. Chem. Soc., 2015, 137(11), 3807-3810.
[http://dx.doi.org/10.1021/jacs.5b02021] [PMID: 25768917]
[19]
Luo, S.H.; Weng, L.H.; Xie, M.J.; Li, X.N.; Hua, J.; Zhao, X.; Li, S.H. Defensive sesterterpenoids with unusual antipodal cyclopentenones from the leaves of Leucosceptrum canum. Org. Lett., 2011, 13(7), 1864-1867.
[http://dx.doi.org/10.1021/ol200380v] [PMID: 21391556]
[20]
Xu, J.; Liu, B. Total synthesis of norleucosceptroids F and G. Chin. Chem. Lett., 2015, 26(11), 1341-1344.
[http://dx.doi.org/10.1016/j.cclet.2015.07.004]
[21]
Tsuda, M.; Takahashi, Y.; Fromont, J.; Mikami, Y.; Kobayashi, J.; Dendridine, A. A bis-indole alkaloid from a marine sponge Dictyodendrilla Species. J. Nat. Prod., 2005, 68(8), 1277-1278.
[http://dx.doi.org/10.1021/np050076e] [PMID: 16124778]
[22]
Boyd, E.M.; Sperry, J. Biomimetic synthesis of dendridine A. Org. Lett., 2015, 17(5), 1344-1346.
[http://dx.doi.org/10.1021/acs.orglett.5b00300] [PMID: 25699647]
[23]
Gromadzka, K.; Waskiewicz, A.; Chelkowski, J.; Golinski, P. Zearalenone and its metabolites: Occurrence, detection, toxicity and guidelines. World Mycotoxin J., 2008, 1(2), 209-220.
[http://dx.doi.org/10.3920/WMJ2008.x015]
[24]
Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Moltَ, J.C.; Maٌes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol., 2007, 45(1), 1-18.
[http://dx.doi.org/10.1016/j.fct.2006.07.030] [PMID: 17045381]
[25]
Navarro, I.; Basset, J.F.; Hebbe, S.; Major, S.M.; Werner, T.; Howsham, C.; Bräckow, J.; Barrett, A.G.M. Biomimetic synthesis of resorcylate natural products utilizing late stage aromatization: Concise total syntheses of the marine antifungal agents 15G256ι and 15G256 β. J. Am. Chem. Soc., 2008, 130(31), 10293-10298.
[http://dx.doi.org/10.1021/ja803445u] [PMID: 18611011]
[26]
Miyatake-Ondozabal, H.; Barrett, A.G.M. A novel biomimetic synthesis of (S)-(−)-zearalenone: via macrocyclization and transannular aromatization. Tetrahedron, 2010, 66(33), 6331-6334.
[http://dx.doi.org/10.1016/j.tet.2010.05.084]
[27]
Mortier, J. Arene chemistry: Reaction mechanisms and methods for aromatic compounds; John Wiley & Sons, 2015.
[http://dx.doi.org/10.1002/9781118754887]
[28]
Pepper, H.P.; Tulip, S.J.; Nakano, Y.; George, J.H. Biomimetic total synthesis of (±)-doitunggarcinone A and (+)-garcibracteatone. J. Org. Chem., 2014, 79(6), 2564-2573.
[http://dx.doi.org/10.1021/jo500027k] [PMID: 24575789]
[29]
Pepper, H.P.; Lam, H.C.; Bloch, W.M.; George, J.H. Biomimetic total synthesis of (±)-garcibracteatone. Org. Lett., 2012, 14(19), 5162-5164.
[http://dx.doi.org/10.1021/ol302524q] [PMID: 23013382]
[30]
Liu, X.Y.; Lv, T.H.; Xie, X.D.; Li, J.; Su, G.; Wu, H. Antitumour effect of sesquiterpene (+)-chabranol on four human cancer cell lines by inducing apoptosis and autophagy. J. Int. Med. Res., 2012, 40(5), 1644-1653.
[http://dx.doi.org/10.1177/030006051204000503] [PMID: 23206446]
[31]
Wang, X.; Zheng, J.; Chen, Q.; Zheng, H.; He, Y.; Yang, J.; She, X. Biomimetic total synthesis of (+)-chabranol. J. Org. Chem., 2010, 75(15), 5392-5394.
[http://dx.doi.org/10.1021/jo101016g] [PMID: 20670039]
[32]
Aramaki, Y.; Chiba, K.; Tada, M. Spiro-lactones, hyperolactone A-D from Hypericum chinense. Phytochemistry, 1995, 38(6), 1419-1421.
[http://dx.doi.org/10.1016/0031-9422(94)00862-N]
[33]
Tada, M.; Nagai, M.; Okumura, C.; Osano, Y.; Matsuzaki, T. Novel spiro-compound, hyperolactone from Hypericum chinense L. Chem. Lett., 1989, 18(4), 683-686.
[http://dx.doi.org/10.1246/cl.1989.683]
[34]
Kraus, G.A.; Wei, J. A direct synthesis of hyperolactone C. J. Nat. Prod., 2004, 67(6), 1039-1040.
[http://dx.doi.org/10.1021/np0498962] [PMID: 15217291]
[35]
Sarlah, D. Adventurous total synthesis: Part I. The chemistry and biology of biyouyanagins part ii. total synthesis of hirsutellones A, B and C. PhD degree; The Scripps Research Institute, 2011.
[36]
Wu, Y.; Du, C.; Hu, C.; Li, Y.; Xie, Z. Biomimetic synthesis of hyperolactones. J. Org. Chem., 2011, 76(10), 4075-4081.
[http://dx.doi.org/10.1021/jo102511x] [PMID: 21456531]
[37]
Roll, D.M.; Ireland, C.M.; Lu, H.S.M.; Clardy, J. Fascaplysin, an unusual antimicrobial pigment from the marine sponge Fascaplysinopsis sp. J. Org. Chem., 1988, 53(14), 3276-3278.
[http://dx.doi.org/10.1021/jo00249a025]
[38]
Segraves, N.L.; Lopez, S.; Johnson, T.A.; Said, S.A.; Fu, X.; Schmitz, F.J.; Pietraszkiewicz, H.; Valeriote, F.A.; Crews, P. Structures and cytotoxicities of fascaplysin and related alkaloids from two marine phyla—Fascaplysinopsis sponges and Didemnum tunicates. Tetrahedron Lett., 2003, 44(17), 3471-3475.
[http://dx.doi.org/10.1016/S0040-4039(03)00671-3]
[39]
Xu, M.; An, R.; Huang, T.; Hao, X.; Liu, S. A biomimetic synthesis of homofascaplysin C from ditryptophans. Tetrahedron Lett., 2016, 57(11), 1247-1249.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.014]
[40]
Winkelmann, K.; Heilmann, J.; Zerbe, O.; Rali, T.; Sticher, O. New phloroglucinol derivatives from Hypericum papuanum. J. Nat. Prod., 2000, 63(1), 104-108.
[http://dx.doi.org/10.1021/np990417m] [PMID: 10650088]
[41]
Simpkins, N.S.; Weller, M.D. Expedient synthesis of ialibinones A and B by manganese(III)-mediated oxidative free radical cyclisation. Tetrahedron Lett., 2010, 51(37), 4823-4826.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.025]
[42]
Yoshihara, T.; Yamaguchi, K.; Takamatsu, S.; Sakamura, S. A new lignan amide, grossamide, from bell pepper (Capsicum annuum var. grossurri). Agric. Biol. Chem., 1981, 45(11), 2593-2598.
[43]
Singh, I.P.; Sidana, J.; Bharate, S.B.; Foley, W.J. Phloroglucinol compounds of natural origin: Synthetic aspects. Nat. Prod. Rep., 2010, 27(3), 393-416.
[http://dx.doi.org/10.1039/b914364p] [PMID: 20179878]
[44]
George, J.H.; Hesse, M.D.; Baldwin, J.E.; Adlington, R.M. Biomimetic synthesis of polycyclic polyprenylated acylphloroglucinol natural products isolated from Hypericum papuanum. Org. Lett., 2010, 12(15), 3532-3535.
[http://dx.doi.org/10.1021/ol101380a] [PMID: 20590087]
[45]
Richard, M.N.; Ganguly, R.; Steigerwald, S.N.; Al-Khalifa, A.; Pierce, G.N. Dietary hempseed reduces platelet aggregation. J. Thromb. Haemost., 2007, 5(2), 424-425.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02327.x] [PMID: 17155962]
[46]
Chen, T.; He, J.; Zhang, J.; Li, X.; Zhang, H.; Hao, J.; Li, L. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem., 2012, 134(2), 1030-1037.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.009] [PMID: 23107724]
[47]
Hong, S.; Sowndhararajan, K.; Joo, T.; Lim, C.; Cho, H.; Kim, S.; Kim, G-Y.; Jhoo, J-W. Ethanol and supercritical fluid extracts of hemp seed (Cannabis sativa L.) increase gene expression of antioxidant enzymes in HepG2 cells. Asian Pac. J. Reprod., 2015, 4(2), 147-152.
[http://dx.doi.org/10.1016/S2305-0500(15)30012-9]
[48]
Li, G.; Cao, Y.; Wu, S.; Zhang, Z.; Zhang, Y.; Yang, Y. Influence of semen cannabis iol on liqid levels, inflammmatory cytokines and anti-oxidant of aging model mice. Pharmacol. Clin. Chin. Mater Med., 2015, 31, 109-111.
[49]
Luo, Q.; Yan, X.; Bobrovskaya, L.; Ji, M.; Yuan, H.; Lou, H.; Fan, P. Anti-neuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. Mol. Cell. Biochem., 2017, 428(1-2), 129-137.
[http://dx.doi.org/10.1007/s11010-016-2923-7] [PMID: 28224333]
[50]
Yan, X.; Tang, J.; dos Santos Passos, C.; Nurisso, A.; Simões- Pires, C.A.; Ji, M.; Lou, H.; Fan, P. Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. J. Agric. Food Chem., 2015, 63(49), 10611-10619.
[http://dx.doi.org/10.1021/acs.jafc.5b05282] [PMID: 26585089]
[51]
Girgih, A.T.; Alashi, A.; He, R.; Malomo, S.; Aluko, R.E. Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur. J. Nutr., 2014, 53(5), 1237-1246.
[http://dx.doi.org/10.1007/s00394-013-0625-4] [PMID: 24292743]
[52]
Sun, J.; Gu, Y.F.; Su, X.Q.; Li, M.M.; Huo, H.X.; Zhang, J.; Zeng, K.W.; Zhang, Q.; Zhao, Y.F.; Li, J.; Tu, P.F. Anti-inflammatory lignanamides from the roots of Solanum melongena L. Fitoterapia, 2014, 98, 110-116.
[http://dx.doi.org/10.1016/j.fitote.2014.07.012] [PMID: 25068200]
[53]
McCredie, R.S.; Ritchie, E.; Taylor, W.C. Constituents of Eupomatia species. The structure and synthesis of eupomatene, a lignan of novel type from Eupomatia laurina R. Br. Aust. J. Chem., 1969, 22(5), 1011-1032.
[http://dx.doi.org/10.1071/CH9691011]
[54]
Stoessl, A. The antifungal factors in barley. IV. Isolation, structure, and synthesis of the hordatines. Cancer J. Chem., 1967, 45(15), 1745-1760.
[http://dx.doi.org/10.1139/v67-283]
[55]
Webb, D.; Jamison, T.F. Continuous flow multi-step organic synthesis. Chem. Sci. , 2010, 1(6), 675-680.
[http://dx.doi.org/10.1039/c0sc00381f]
[56]
Baxendale, IR; Griffiths-Jones, CM; Ley, SV; Tranmer, GK Preparation of the neolignan natural product grossamide by a continuous-flow process. Synlett, 2006, 2006(03), 0427-0430.
[http://dx.doi.org/10.1002/chin.200626178]
[57]
Zhang, D.; Ge, H.; Xie, D.; Chen, R.; Zou, J.; Tao, X.; Dai, J. Periconiasins A-C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp. Org. Lett., 2013, 15(7), 1674-1677.
[http://dx.doi.org/10.1021/ol400458n] [PMID: 23506233]
[58]
Tian, C.; Lei, X.; Wang, Y.; Dong, Z.; Liu, G.; Tang, Y. Total syntheses of periconiasins A–E. Angew. Chem. Int. Ed., 2016, 55(24), 6992-6996.
[http://dx.doi.org/10.1002/anie.201602439] [PMID: 27121397]
[59]
Zeng, Z.; Chen, C.; Zhang, Y. Enantioselective total synthesis of periconiasin A. Org. Chem. Front., 2018, 5(5), 838-840.
[http://dx.doi.org/10.1039/C7QO00952F]
[60]
Rahm, F.; Hayes, P.Y.; Kitching, W. Metabolites from marine sponges of the genus Plakortis. Heterocycles, 2004, 64(1), 523-575.
[http://dx.doi.org/10.3987/REV-04-SR(P)1]
[61]
HE, C.; LIU, Y.; XIAO, P. New Progress in modern research on chinese herbal medicines published in chinese traditional and herbal drugs in 2010: Annual highlights and comments. Chin. Herb. Med., 2011, 253-261.
[62]
Festa, C.; Lauro, G.; De Marino, S.; D’Auria, M.V.; Monti, M.C.; Casapullo, A.; D’Amore, C.; Renga, B.; Mencarelli, A.; Petek, S.; Bifulco, G.; Fiorucci, S.; Zampella, A. Plakilactones from the marine sponge Plakinastrella mamillaris. Discovery of a new class of marine ligands of peroxisome proliferator-activated receptor γ. J. Med. Chem., 2012, 55(19), 8303-8317.
[http://dx.doi.org/10.1021/jm300911g] [PMID: 22934537]
[63]
Norris, M.D.; Perkins, M.V. Structural diversity and chemical synthesis of peroxide and peroxide-derived polyketide metabolites from marine sponges. Nat. Prod. Rep., 2016, 33(7), 861-880.
[http://dx.doi.org/10.1039/C5NP00142K] [PMID: 27163115]
[64]
Piao, S.J.; Song, Y.L.; Jiao, W.H.; Yang, F.; Liu, X.F.; Chen, W.S.; Han, B.N.; Lin, H.W. Hippolachnin A, a new antifungal polyketide from the South China Sea sponge Hippospongia lachne. Org. Lett., 2013, 15(14), 3526-3529.
[http://dx.doi.org/10.1021/ol400933x] [PMID: 23829334]
[65]
Li, Q.; Zhao, K.; Peuronen, A.; Rissanen, K.; Enders, D.; Tang, Y. Enantioselective total syntheses of (+)-hippolachnin A,(+)-gracilioether A,(−)-gracilioether E, and (−)-gracilioether F. J. Am. Chem. Soc., 2018, 140(5), 1937-1944.
[http://dx.doi.org/10.1021/jacs.7b12903] [PMID: 29314833]
[66]
Winter, N.; Rupcic, Z.; Stadler, M.; Trauner, D. Synthesis and biological evaluation of (±)-hippolachnin and analogs. J. Antibiot. , 2019, 72(6), 375-383.
[http://dx.doi.org/10.1038/s41429-019-0176-x] [PMID: 30979942]
[67]
Zhou, Y.; Debbab, A.; Wray, V.; Lin, W.; Schulz, B.; Trepos, R.; Pile, C.; Hellio, C.; Proksch, P.; Aly, A.H. Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp. Tetrahedron Lett., 2014, 55(17), 2789-2792.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.062]
[68]
Ruider, S.A.; Sandmeier, T.; Carreira, E.M. Total synthesis of (±)-hippolachnin A. Angew. Chem. Int. Ed., 2015, 54(8), 2378-2382.
[http://dx.doi.org/10.1002/anie.201410419] [PMID: 25476132]
[69]
Zhuravleva, O.I.; Sobolevskaya, M.P.; Leshchenko, E.V.; Kirichuk, N.N.; Denisenko, V.A.; Dmitrenok, P.S.; Dyshlovoy, S.A.; Zakharenko, A.M.; Kim, N.Y.; Afiyatullov, S.S. Meroterpenoids from the alga-derived fungi Penicillium thomii Maire and Penicillium lividum Westling. J. Nat. Prod., 2014, 77(6), 1390-1395.
[http://dx.doi.org/10.1021/np500151b] [PMID: 24852445]
[70]
Zhou, Y.; Mándi, A.; Debbab, A.; Wray, V.; Schulz, B.; Müller, W.E.G.; Lin, W.H.; Proksch, P.; Kurtán, T.; Aly, A.H. New austalides from the sponge-associated fungus Aspergillus sp. Eur. J. Org. Chem., 2011, 2011(30), 6009-6019.
[http://dx.doi.org/10.1002/ejoc.201100670]
[71]
Paquette, L.A.; Wang, T.Z.; Sivik, M.R. Total synthesis of (-)-austalide B. A generic solution to elaboration of the pyran/p-cresol/butenolide triad. J. Am. Chem. Soc., 1994, 116(25), 11323-11334.
[http://dx.doi.org/10.1021/ja00104a012]
[72]
Ma, T.K.; Parsons, P.J.; Barrett, A.G.M. Meroterpenoid synthesis via sequential polyketide aromatization and radical anion cascade triene cyclization: Biomimetic total syntheses of austalide natural products. J. Org. Chem., 2019, 84(9), 4961-4970.
[http://dx.doi.org/10.1021/acs.joc.9b00142] [PMID: 30938997]
[73]
Abe, H; Itaya, S; Sasaki, K; Kobayashi, T; Ito, H Total synthesis of the proposed structure of a polyketide from Phialomyces macrosporus. Chem comm.,, 2015, 51(17), 3586-3589.
[http://dx.doi.org/10.1039/C5CC00129C]
[74]
Wu, Q.; Li, S.W.; Xu, H.; Wang, H.; Hu, P.; Zhang, H.; Luo, C.; Chen, K.X.; Nay, B.; Guo, Y.W.; Li, X.W. Complex polypropionates from a South China Sea photosynthetic mollusk: Isolation and biomimetic synthesis highlighting novel rearrangements. Angew. Chem. Int. Ed., 2020, 59(29), 12105-12112.
[http://dx.doi.org/10.1002/anie.202003643] [PMID: 32277730]
[75]
Laakmann, G.; Schüle, C.; Baghai, T.; Kieser, M.St.St. John’s wort in mild to moderate depression: The relevance of hyperforin for the clinical efficacy. Pharmacopsychiatry, 1998, 31(S1), 54-59.
[http://dx.doi.org/10.1055/s-2007-979346]
[76]
Ji, Y.; Hong, B.; Franzoni, I.; Wang, M.; Guan, W.; Jia, H.; Li, H. Enantioselective total synthesis of hyperforin and pyrohyperforin. Angew. Chem. Int. Ed., 2022, 61(16), e202116136.
[http://dx.doi.org/10.1002/anie.202116136] [PMID: 35129850]
[77]
Medina, M.A.; Martínez-Poveda, B.; Amores-Sánchez, M.I.; Quesada, A.R. Hyperforin: More than an antidepressant bioactive compound? Life Sci., 2006, 79(2), 105-111.
[http://dx.doi.org/10.1016/j.lfs.2005.12.027] [PMID: 16438991]
[78]
Ren, J.; Zhang, Y.; Jin, H.; Yu, J.; Zhou, Y.; Wu, F.; Zhang, W. Novel inhibitors of human DOPA decarboxylase extracted from Euonymus glabra Roxb. ACS Chem. Biol., 2014, 9(4), 897-903.
[http://dx.doi.org/10.1021/cb500009r] [PMID: 24471650]
[79]
Ma, Q; Min, K; Li, H-L; Jiang, J-H; Liu, Y; Zhan, R Horsfiequinones A–F, Dimeric Diarylpropanoids from Horsfieldia tetratepala. . Planta Med, 2014, 80(08/09), 688-694.
[http://dx.doi.org/10.1055/s-0034-1368456] [PMID: 24853763]
[80]
Moosophon, P.; Kanokmedhakul, S.; Kanokmedhakul, K. Diarylpropanes and an arylpropyl quinone from Combretum griffithii. J. Nat. Prod., 2011, 74(10), 2216-2218.
[http://dx.doi.org/10.1021/np200593d] [PMID: 21919533]
[81]
Teo, L.E.; Pachiaper, G.; Chan, K.C.; Hadi, H.A.; Weber, J.F.; Deverre, J.R.; David, B.; Sévenet, T. A new phytochemical survey of Malaysia V. Preliminary screening and plant chemical studies. J. Ethnopharmacol., 1990, 28(1), 63-101.
[http://dx.doi.org/10.1016/0378-8741(90)90066-3] [PMID: 2314111]
[82]
Zhan, R.; Du, S.Z.; Kuang, F.; Chen, Y.G. Scalable total synthesis of horsfiequinone A. Tetrahedron Lett., 2018, 59(15), 1451-1453.
[http://dx.doi.org/10.1016/j.tetlet.2018.02.082]
[83]
Wang, M.; Liu, Y.L.; Li, D.; Xiao, W.W.; Chen, Y.; Zhang, H.L.; Zhan, R.; Shao, L-D. Biomimetic synthesis and anti-inflammatory effects of horsfiequinone A. Tetrahedron Lett., 2021, 65, 152756.
[http://dx.doi.org/10.1016/j.tetlet.2020.152756]
[84]
Ghogare, A.A.; Greer, A. Using singlet oxygen to synthesize natural products and drugs. Chem. Rev., 2016, 116(17), 9994-10034.
[http://dx.doi.org/10.1021/acs.chemrev.5b00726] [PMID: 27128098]
[85]
Liu, J.; Zhang, D.; Zhang, M.; Liu, X.; Chen, R.; Zhao, J.; Li, L.; Wang, N.; Dai, J. Periconiasins I and J, two new cytochalasans from an endophytic fungus Periconia sp. Tetrahedron Lett., 2016, 57(51), 5794-5797.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.038]
[86]
Akagawa, K; Kudo, K Biomimetic iterative method for polyketide synthesis. Chem comm.,, 2017, 53(62), 8645-8645.
[http://dx.doi.org/10.1039/C7CC04033D]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy