Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Oncology

Construction and Clinical Application of Digital Intelligent Diagnosis and Treatment System for Hepatocellular Carcinoma

Author(s): Xiaojun Zeng, Haisu Tao, Wan Yee Lau* and Chihua Fang*

Volume 3, Issue 6, 2023

Published on: 05 May, 2023

Page: [452 - 466] Pages: 15

DOI: 10.2174/2210298103666230412082214

Price: $65

Abstract

In the past 20 years, with the emergence and update of digital intelligent technology, the diagnosis and treatment of hepatocellular carcinoma (HCC) have undergone profound changes. Three-dimensional visualization technology has revolutionized the traditional two-dimensional diagnosis and treatment model of HCC and realized preoperative visualization of tumors and complex liver anatomy. The emergence of ICG fluorescence imaging has realized intraoperative tumor boundary visualization from the molecular and cellular levels. Augmented reality (AR) and mixed reality (MR) technology can realize the three-dimensional visualization of anatomical structures in surgical navigation. Traditional experiential surgery has been transformed into modern intelligent navigation surgery, and surgery has stepped into a new era of digital intelligent technology. In addition, artificial intelligence, molecular imaging and nanoprobes are also expected to achieve early diagnosis and treatment of HCC and improve the prognosis of patients. This article reviews the latest application of digital intelligent diagnosis and treatment technology related to diagnosing and treating HCC, hoping to help achieve accurate diagnosis and treatment of HCC.

Graphical Abstract

[1]
Fang, C.; Zhang, P.; Qi, X. Digital and intelligent liver surgery in the new era: Prospects and dilemmas. EBio Medic., 2019, 41, 693-701.
[http://dx.doi.org/10.1016/j.ebiom.2019.02.017] [PMID: 30773479]
[2]
Fang, C.H.; Tian, J.; Zhang, P.; Yee, Y.Y.; Zhong, S.Z. Application of digital medical technology in hepatopancreatobiliary surgery: 20 years’ retrospective review and prospect. Zhonghua Wai Ke Za Zhi, 2021, 59(10), 807-811.
[PMID: 34619904]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Zheng, R.; Qu, C.; Zhang, S.; Zeng, H.; Sun, K.; Gu, X.; Xia, C.; Yang, Z.; Li, H.; Wei, W.; Chen, W.; He, J. Liver cancer incidence and mortality in China: Temporal trends and projections to 2030. Chin. J. Cancer Res., 2018, 30(6), 571-579.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2018.06.01] [PMID: 30700925]
[5]
Fang, C.; An, J.; Bruno, A.; Cai, X.; Fan, J.; Fujimoto, J.; Golfieri, R.; Hao, X.; Jiang, H.; Jiao, L.R.; Kulkarni, A.V.; Lang, H.; Lesmana, C.R.A.; Li, Q.; Liu, L.; Liu, Y.; Lau, W.; Lu, Q.; Man, K.; Maruyama, H.; Mosconi, C.; Örmeci, N.; Pavlides, M.; Rezende, G.; Sohn, J.H.; Treeprasertsuk, S.; Vilgrain, V.; Wen, H.; Wen, S.; Quan, X.; Ximenes, R.; Yang, Y.; Zhang, B.; Zhang, W.; Zhang, P.; Zhang, S.; Qi, X. Consensus recommendations of threedimensional visualization for diagnosis and management of liver diseases. Hepatol. Int., 2020, 14(4), 437-453.
[http://dx.doi.org/10.1007/s12072-020-10052-y] [PMID: 32638296]
[6]
Selle, D.; Preim, B.; Schenk, A.; Peitgen, H.O. Analysis of vasculature for liver surgical planning. IEEE Trans. Med. Imaging, 2002, 21(11), 1344-1357.
[http://dx.doi.org/10.1109/TMI.2002.801166] [PMID: 12575871]
[7]
Yang, M.; Zeng, C.; Guo, S.; Pan, J.; Han, Y.; Li, Z.; Li, L.; Tan, J. Digitalized design of extraforaminal lumbar interbody fusion: A com-puter-based simulation and cadaveric study. PLoS One, 2014, 9(8), e105646.
[http://dx.doi.org/10.1371/journal.pone.0105646] [PMID: 25157907]
[8]
Fang, C.; Tao, H.; Yang, J.; Fang, Z.; Cai, W.; Liu, J.; Fan, Y. Impact of threedimensional reconstruction technique in the operation plan-ning of centrally located hepatocellular carcinoma. J. Am. Coll. Surg., 2015, 220(1), 28-37.
[http://dx.doi.org/10.1016/j.jamcollsurg.2014.09.023] [PMID: 25456781]
[9]
Fang, C.H.; Zhang, P.; Lau, Y.Y.; Zhong, S.Z. From digital virtual human, threedimensional visualization to digital intelligence in liver surgery. Zhonghua Wai Ke Za Zhi, 2020, 58(1), 17-21.
[PMID: 31902164]
[10]
Fang, C.H.; Huang, Y.P.; Chen, M.L.; Lu, C.M.; Li, X.F.; Qiu, W.F. Digital medical technology based on 64-slice computed tomography in hepatic surgery. Chin. Med. J., 2010, 123(9), 1149-1153.
[PMID: 20529554]
[11]
Fang, C.H.; Zhong, S.Z.; Yuan, L.; Tang, L.; Wang, B.L.; Wang, X.H.; Wu, K.C.; Huang, W.H.; Zhang, G.Q. Study of threedimensional reconstruction of digitized virtual hepatic images. Zhonghua Wai Ke Za Zhi, 2004, 42(2), 94-96.
[PMID: 15009990]
[12]
Fang, C.H.; Zhou, W.Y.; Huang, L.W.; Wang, B.L.; Zhong, S.Z. Studies on the hepatic threedimensional reconstruction and virtual sur-gery using the hepatic images of the digitized virtual Chinese human female number 1 database. Zhonghua Wai Ke Za Zhi, 2005, 43(11), 748-752.
[PMID: 16008967]
[13]
Zhou, Z.M.; Fang, C.H.; Huang, L.W.; Zhong, S.Z.; Wang, B.L.; Zhou, W.Y. Three dimensional reconstruction of the pancreas based on the virtual Chinese human-female number 1. Postgrad. Med. J., 2006, 82(968), 392-396.
[http://dx.doi.org/10.1136/pgmj.2005.039230] [PMID: 16754708]
[14]
Mise, Y.; Hasegawa, K.; Satou, S.; Shindoh, J.; Miki, K.; Akamatsu, N.; Arita, J.; Kaneko, J.; Sakamoto, Y.; Kokudo, N. How has virtual hepatectomy changed the practice of liver surgery? Ann. Surg., 2018, 268(1), 127-133.
[http://dx.doi.org/10.1097/SLA.0000000000002213] [PMID: 28288065]
[15]
Mise, Y.; Tani, K.; Aoki, T.; Sakamoto, Y.; Hasegawa, K.; Sugawara, Y.; Kokudo, N. Virtual liver resection: Computer-assisted operation planning using a three-dimensional liver representation. J. Hepatobiliary Pancreat. Sci., 2013, 20(2), 157-164.
[http://dx.doi.org/10.1007/s00534-012-0574-y] [PMID: 23135735]
[16]
Fang, C.H.; You, J.H.; Lau, W.Y.; Lai, E.C.H.; Fan, Y.F.; Zhong, S.Z.; Li, K.X.; Chen, Z.X.; Su, Z.H.; Bao, S.S. Anatomical variations of hepatic veins: Threedimensional computed tomography scans of 200 subjects. World J. Surg., 2012, 36(1), 120-124.
[http://dx.doi.org/10.1007/s00268-011-1297-y] [PMID: 21976007]
[17]
Xu, W.; Li, C.; Duan, W.; Dong, J. Three-dimensional computed tomography scan analysis of anatomical variations in the hepatic veins. Int. Surg., 2021, 105(1-3), 2-9.
[http://dx.doi.org/10.9738/INTSURG-D-16-00077.1]
[18]
Yan, J.; Feng, H.; Wang, H.; Yuan, F.; Yang, C.; Liang, X.; Chen, W.; Wang, J. Hepatic artery classification based on three-dimensional CT. Br. J. Surg., 2020, 107(7), 906-916.
[http://dx.doi.org/10.1002/bjs.11458] [PMID: 32057096]
[19]
Ichida, H.; Imamura, H.; Yoshioka, R.; Mizuno, T.; Mise, Y.; Kuwatsuru, R.; Kawasaki, S.; Saiura, A. Re-evaluation of the Couinaud classification for segmental anatomy of the right liver, with particular attention to the relevance of cranio-caudal boundaries. Surgery, 2021, 169(2), 333-340.
[http://dx.doi.org/10.1016/j.surg.2020.08.029] [PMID: 33077202]
[20]
Kobayashi, T.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Mizuno, T.; Yamaguchi, J.; Nagino, M. Study on the segmentation of the right anterior sector of the liver. Surgery, 2017, 161(6), 1536-1542.
[http://dx.doi.org/10.1016/j.surg.2016.12.020] [PMID: 28126253]
[21]
Watanabe, A.; Yoshizumi, T.; Harimoto, N.; Kogure, K.; Ikegami, T.; Harada, N.; Itoh, S.; Takeishi, K.; Mano, Y.; Yoshiya, S.; Morinaga, A.; Araki, K.; Kubo, N.; Mori, M.; Shirabe, K. Right hepatic venous system variation in living donors: A three-dimensional CT analysis. Br. J. Surg., 2020, 107(9), 1192-1198.
[http://dx.doi.org/10.1002/bjs.11602] [PMID: 32335898]
[22]
Fasel, J.H.D.; Majno, P.E.; Peitgen, H.O. Liver segments: An anatomical rationale for explaining inconsistencies with Couinaud’s eight-segment concept. Surg. Radiol. Anat., 2010, 32(8), 761-765.
[http://dx.doi.org/10.1007/s00276-010-0626-4] [PMID: 20111966]
[23]
Sato, T.J.; Nakajima, Y.; Ko, S.; Murakami, G.; Kanamura, T. Cantlie’s plane in major variations of the primary portal vein ramification at the porta hepatis: Cutting experiment using cadaveric livers. World J. Surg., 2004, 28(1), 13-18.
[http://dx.doi.org/10.1007/s00268-003-7294-z] [PMID: 14639496]
[24]
Kogure, K.; Kuwano, H.; Fujimaki, N.; Ishikawa, H.; Takada, K. Reproposal for Hjortsjo’s segmental anatomy on the anterior segment in human liver. Arch. Surg., 2002, 137(10), 1118-1124.
[http://dx.doi.org/10.1001/archsurg.137.10.1118] [PMID: 12361415]
[25]
Medicine, C.S.O.D.; Association, L.C.C.O.; Association, C.P.M.C.; Association, D.I.S.C. Specification for technical operation and clinical application of three-dimensional visualization technology for primary liver cancer (2020 edition). Zhonghua Xiaohua Waike Zazhi, 2020, 19(09), 897-918.
[26]
Yang, J.; Tao, H.S.; Cai, W.; Zhu, W.; Zhao, D.; Hu, H.Y.; Liu, J.; Fang, C.H. Accuracy of actual resected liver volume in anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. J. Surg. Oncol., 2018, 118(7), 1081-1087.
[http://dx.doi.org/10.1002/jso.25258] [PMID: 30293249]
[27]
Cai, W.; Fan, Y.; Hu, H.; Xiang, N.; Fang, C.; Jia, F. Postoperative liver volume was accurately predicted by a medical image three dimen-sional visualization system in hepatectomy for liver cancer. Surg. Oncol., 2017, 26(2), 188-194.
[http://dx.doi.org/10.1016/j.suronc.2017.03.006] [PMID: 28577725]
[28]
Marescaux, J.; Rubino, F.; Arenas, M.; Mutter, D.; Soler, L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA, 2004, 292(18), 2214-2215.
[PMID: 15536106]
[29]
Yamanaka, J.; Okada, T.; Saito, S.; Kondo, Y.; Yoshida, Y.; Suzumura, K.; Hirano, T.; Iimuro, Y.; Fujimoto, J. Minimally invasive laparo-scopic liver resection: 3D MDCT simulation for preoperative planning. J. Hepatobil. Pancreat. Surg., 2009, 16(6), 808-815.
[http://dx.doi.org/10.1007/s00534-009-0112-8] [PMID: 19466379]
[30]
Takamoto, T.; Hashimoto, T.; Ogata, S.; Inoue, K.; Maruyama, Y.; Miyazaki, A.; Makuuchi, M. Planning of anatomical liver segmentecto-my and subsegmentectomy with 3-dimensional simulation software. Am. J. Surg., 2013, 206(4), 530-538.
[http://dx.doi.org/10.1016/j.amjsurg.2013.01.041] [PMID: 23809675]
[31]
Ariizumi, S.; Takahashi, Y.; Kotera, Y.; Omori, A.; Yoneda, G.; Mu, H.; Katagiri, S.; Egawa, H.; Yamamoto, M. Novel virtual hepatectomy is useful for evaluation of the portal territory for anatomical sectionectomy, segmentectomy, and hemihepatectomy. J. Hepatobil. Pancre-at. Sci., 2013, 20(3), 396-402.
[http://dx.doi.org/10.1007/s00534-012-0573-z] [PMID: 23179558]
[32]
Huang, M.; Shen, S.; Cai, H.; Peng, Z.; Chiu, W.H.K.; Li, Z.P.; Peng, B.; Feng, S.T. Regional liver function analysis with gadoxetic acid–enhanced MRI and virtual hepatectomy: Prediction of postoperative short-term outcomes for HCC. Eur. Radiol., 2021, 31(7), 4720-4730.
[http://dx.doi.org/10.1007/s00330-020-07606-x] [PMID: 33449173]
[33]
Li, X.L.; Xu, B.; Zhu, X.D.; Huang, C.; Shi, G.M.; Shen, Y.H.; Wu, D.; Tang, M.; Tang, Z.Y.; Zhou, J.; Fan, J.; Sun, H.C. Simulation of portal/hepatic vein associated remnant liver ischemia/congestion by three-dimensional visualization technology based on preoperative CT scan. Ann. Transl. Med., 2021, 9(9), 756.
[http://dx.doi.org/10.21037/atm-20-7920] [PMID: 34268369]
[34]
Zhao, D.; Lau, W.Y.; Zhou, W.; Yang, J.; Xiang, N.; Zeng, N.; Liu, J.; Zhu, W.; Fang, C. Impact of three-dimensional visualization tech-nology on surgical strategies in complex hepatic cancer. Biosci. Trends, 2018, 12(5), 476-483.
[http://dx.doi.org/10.5582/bst.2018.01194] [PMID: 30473555]
[35]
Fang, C.; Zhang, P.; Zhou, W.; Zhou, J.; Dai, C.; Liu, J.; Jia, W.; Liang, X.; Zeng, S.; Wen, S. Efficacy of three-dimensional visualization technology in the precision diagnosis and treatment for primary liver cancer: A retrospective multicenter study of 1665 cases in China. Zhonghua Wai Ke Za Zhi, 2020, 58(05), E011-E011.
[36]
Sheng, W.; Yuan, C.; Wu, L.; Yan, J.; Ge, J.; Lei, J. Clinical application of a three-dimensional reconstruction technique for complex liver cancer resection. Surg. Endosc., 2022, 36(5), 3246-3253.
[http://dx.doi.org/10.1007/s00464-021-08636-2] [PMID: 34524533]
[37]
Li, P.; Wang, M.; Yang, Y.; Liu, H.; Pan, Z.; Jiang, B.; Lau, W.Y.; Huang, G.; Zhou, W. Preoperative three-dimensional versus two-dimensional evaluation in assessment of patients undergoing major liver resection for hepatocellular carcinoma: A propensity score matching study. Ann. Transl. Med., 2020, 8(5), 182.
[http://dx.doi.org/10.21037/atm.2020.01.106] [PMID: 32309329]
[38]
Zhang, W.; Fang, C. Three- dimensional visualization technology for precise diagnosis and treatment of primary liver cancer: A Meta-analysis. Chin. J. Pract. Surg., 2019, 39(08), 854-860.
[39]
Zhang, S.; Huang, Z.; Cai, L.; Zhang, W.; Ding, H.; Zhang, L.; Chen, Y. Three-dimensional versus two-dimensional video-assisted hepatec-tomy for liver disease: A meta-analysis of clinical data. Wideochir. Inne Tech. Malo Inwazyjne, 2021, 16(1), 1-9.
[http://dx.doi.org/10.5114/wiitm.2020.100678] [PMID: 33786111]
[40]
Jiang, J.; Pei, L.; Jiang, R. Clinical efficacy and safety of 3D vascular reconstruction combined with 3D navigation in laparoscopic hepatectomy: Systematic review and meta-analysis. J. Gastrointest. Oncol., 2022, 13(3), 1215-1223.
[http://dx.doi.org/10.21037/jgo-22-198] [PMID: 35837151]
[41]
Liu, Y.; Wang, Q.; Du, B.; Wang, X.; Xue, Q.; Gao, W. A meta-analysis of the three-dimensional reconstruction visualization technology technique for hepatectomy. Asian J. Surg., 2022, 46(2), 669-676.
[http://dx.doi.org/10.1016/j.asjsur.2022.07.006] [PMID: 35843827]
[42]
Wang, Z.; Peng, Y.; Hu, J.; Wang, X.; Sun, H.; Sun, J.; Shi, Y.; Xiao, Y.; Ding, Z.; Yang, X.; Tang, M.; Tang, Z.; Wang, J.; Lau, W.Y.; Fan, J.; Zhou, J. Associating liver partition and portal vein ligation for staged hepatectomy for unresectable hepatitis b virus-related hepatocellu-lar carcinoma. Ann. Surg., 2020, 271(3), 534-541.
[http://dx.doi.org/10.1097/SLA.0000000000002942] [PMID: 29995681]
[43]
Huber, T.; Huettl, F.; Tripke, V.; Baumgart, J.; Lang, H. Experiences with three-dimensional printing in complex liver surgery. Ann. Surg., 2021, 273(1), e26-e27.
[http://dx.doi.org/10.1097/SLA.0000000000004348] [PMID: 33074891]
[44]
Paschold, M.; Huettl, F.; Kneist, W.; Boedecker, C.; Poplawski, A.; Huber, T.; Lang, H. Local, semi-automatic, three-dimensional liver reconstruction or external provider? An analysis of performance and time expense. Langenbecks Arch. Surg., 2020, 405(2), 173-179.
[http://dx.doi.org/10.1007/s00423-020-01862-7] [PMID: 32215728]
[45]
Zhu, W.; Zeng, X.J.; Xiang, N.; Zeng, N.; Liu, Z.H.; Fang, X.Q.; Jia, F.C.; Yang, J.; Wanyee, Y.Y.; Fang, C.H. Application of augmented reality and mixed reality navigation technology in laparoscopic limited right hepatectomy. Zhonghua Wai Ke Za Zhi, 2022, 60(3), 249-256.
[PMID: 35078301]
[46]
Oshiro, Y.; Yano, H.; Mitani, J.; Kim, S.; Kim, J.; Fukunaga, K.; Ohkohchi, N. Novel 3-dimensional virtual hepatectomy simulation com-bined with real-time deformation. World J. Gastroenterol., 2015, 21(34), 9982-9992.
[http://dx.doi.org/10.3748/wjg.v21.i34.9982] [PMID: 26379403]
[47]
Kazami, Y.; Kaneko, J.; Keshwani, D.; Takahashi, R.; Kawaguchi, Y.; Ichida, A.; Ishizawa, T.; Akamatsu, N.; Arita, J.; Hasegawa, K. Arti-ficial intelligence enhances the accuracy of portal and hepatic vein extraction in computed tomography for virtual hepatectomy. J. Hepato-bil. Pancreat. Sci., 2022, 29(3), 359-368.
[http://dx.doi.org/10.1002/jhbp.1080] [PMID: 34779139]
[48]
Takamoto, T.; Ban, D.; Nara, S.; Mizui, T.; Nagashima, D.; Esaki, M.; Shimada, K. Automated three-dimensional liver reconstruction with artificial intelligence for virtual hepatectomy. J. Gastrointest. Surg., 2022, 26(10), 2119-2127.
[http://dx.doi.org/10.1007/s11605-022-05415-9] [PMID: 35941495]
[49]
Fang, C.; Lu, C.; Cai, W. Chinese expert consensus on Three-dimensional visual assessment and virtual reality study of centrally located hepatocellular carcinom (2020 edition). Chin. J. Pract. Surg., 2020, 40(04), 361-368.
[50]
Fang, C.; Liu, Y.; Zeng, N.; Lu, Q. Chinese expert consensus of precise diagnosis and treatment for hilar cholangiocarcinoma using three-dimensional visualization technology (2019 edition). Chin. J. Pract. Surg., 2020, 40(03), 260-266.
[51]
Wang, J.; Yan, J. Expert consensus on three-dimensional visualization diagnosis and treatment of stenosis after iatrogenic bile duct injury (2019 edition). Chin. J. Pract. Surg., 2019, 39(08), 775-781.
[52]
Fang, C.; Lu, C.; Cai, W. Expert Consensus on three-dimensional visualization for accurate Diagnosis and treatment of Hepatolithiasis (2019 edition). Chin. J. Pract. Surg., 2019, 39(10), 1001-1009.
[53]
Wang, J.; Yan, J.; Fang, C. Expert consensus on three-dimensional visualization diagnosis and treatment of gallbladder cancer. Chin. J. Pract. Surg., 2018, 38(12), 1339-1346.
[54]
Li, W.; Su, Z.; Lu, C.; Fang, C. Expert consensus on accurate diagnosis and treatment of retroperitoneal tumors guided by threedimensional visualization. Chin. J. Pract. Surg., 2018, 38(12), 1347-1353.
[55]
Study Group of Pancreatic Surgery,. C.-M.-A.; Pancreatic Committee, C.-R.-H.-A.; Digital Medicine Branch, C.-M.-A.; Digital Medicine Committee, C.-R.-H.-A. Expert consensus of precise diagnosis and treatment for pancreatic head cancer using three-dimensional visualiza-tion technology. Zhonghua Wai Ke Za Zhi, 2017, 55(12), 881-886.
[56]
Fang, C.; Lu, Q.; Lau, W. Guidelines for accurate diagnosis and treatment of complex liver tumors with three-dimensional visualization (2019 edition). Chin. J. Pract. Surg., 2019, 39(08), 766-774.
[57]
Ishizawa, T.; Fukushima, N.; Shibahara, J.; Masuda, K.; Tamura, S.; Aoki, T.; Hasegawa, K.; Beck, Y.; Fukayama, M.; Kokudo, N. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, 2009, 115(11), 2491-2504.
[http://dx.doi.org/10.1002/cncr.24291] [PMID: 19326450]
[58]
Ishizawa, T.; Zuker, N.B.; Kokudo, N.; Gayet, B. Positive and negative staining of hepatic segments by use of fluorescent imaging tech-niques during laparoscopic hepatectomy. Arch. Surg., 2012, 147(4), 393-394.
[http://dx.doi.org/10.1001/archsurg.2012.59] [PMID: 22508790]
[59]
He, K.; Hong, X.; Chi, C.; Cai, C.; An, Y.; Li, P.; Liu, X.; Shan, H.; Tian, J.; Li, J. Efficacy of near-infrared fluorescence-guided hepatec-tomy for the detection of colorectal liver metastases: A randomized controlled trial. J. Am. Coll. Surg., 2022, 234(2), 130-137.
[http://dx.doi.org/10.1097/XCS.0000000000000029] [PMID: 35213433]
[60]
Zeng, S.; Zeng, N.; Zhu, W.; Xiang, N.; Yang, J.; Wen, S.; Fang, C. Three-dimensional visualization combined with indocyanine green fluorescence imaging in diagnosis and treatment of primary hepatocellular carcinoma. Nan Fang Yi Ke Da Xue Xue Bao, 2019, 39(12), 1402-1408.
[http://dx.doi.org/10.12122/j.issn.1673-4254.2019.12.03] [PMID: 31907149]
[61]
Liao, K.; Yang, K.; Cao, L.; Lu, Y.; Zheng, B.; Li, X.; Wang, X.; Li, J.; Chen, J.; Zheng, S. Laparoscopic Anatomical versus non-anatomical hepatectomy in the treatment of hepatocellular carcinoma: A randomised controlled trial. Int. J. Surg., 2022, 102, 106652.
[http://dx.doi.org/10.1016/j.ijsu.2022.106652] [PMID: 35525414]
[62]
Aoki, T.; Yasuda, D.; Shimizu, Y.; Odaira, M.; Niiya, T.; Kusano, T.; Mitamura, K.; Hayashi, K.; Murai, N.; Koizumi, T.; Kato, H.; Enami, Y.; Miwa, M.; Kusano, M. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepat-ic resection. World J. Surg., 2008, 32(8), 1763-1767.
[http://dx.doi.org/10.1007/s00268-008-9620-y] [PMID: 18543027]
[63]
Shindoh, J.; Mise, Y.; Satou, S.; Sugawara, Y.; Kokudo, N. The intersegmental plane of the liver is not always flat--tricks for anatomical liver resection. Ann. Surg., 2010, 251(5), 917-922.
[http://dx.doi.org/10.1097/SLA.0b013e3181d773ae] [PMID: 20395853]
[64]
Nishino, H.; Seo, S.; Hatano, E.; Nitta, T.; Morino, K.; Toda, R.; Fukumitsu, K.; Ishii, T.; Taura, K.; Uemoto, S. What is a precise anatomic resection of the liver? Proposal of a new evaluation method in the era of fluorescence navigation surgery. J. Hepatobil. Pancreat. Sci., 2021, 28(6), 479-488.
[http://dx.doi.org/10.1002/jhbp.824] [PMID: 32896953]
[65]
Felli, E.; Ishizawa, T.; Cherkaoui, Z.; Diana, M.; Tripon, S.; Baumert, T.F.; Schuster, C.; Pessaux, P. Laparoscopic anatomical liver resec-tion for malignancies using positive or negative staining technique with intraoperative indocyanine green-fluorescence imaging. HPB, 2021, 23(11), 1647-1655.
[http://dx.doi.org/10.1016/j.hpb.2021.05.006] [PMID: 34289953]
[66]
Tashiro, Y.; Aoki, T.; Hirai, T.; Koizumi, T.; Mansou, D.A.; Kusano, T.; Matsuda, K.; Yamada, K.; Nogaki, K.; Hakozaki, T.; Wada, Y.; Shibata, H.; Tomioka, K.; Yamazaki, T.; Saito, K.; Fujimori, A.; Enami, Y.; Hoffman, R.M.; Murakami, M. Pathological validity of using near-infrared fluorescence imaging for securing surgical margins during liver resection. Anticancer Res., 2020, 40(7), 3873-3882.
[http://dx.doi.org/10.21873/anticanres.14377] [PMID: 32620627]
[67]
Zhang, Y.M.; Shi, R.; Hou, J.C.; Liu, Z.R.; Cui, Z.L.; Li, Y.; Wu, D.; Shi, Y.; Shen, Z.Y. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J. Cancer Res. Clin. Oncol., 2017, 143(1), 51-58.
[http://dx.doi.org/10.1007/s00432-016-2267-4] [PMID: 27629877]
[68]
Zhou, Y.; Lin, Y.; Jin, H.; Hou, B.; Yu, M.; Yin, Z.; Jian, Z. Real-time navigation guidance using fusion indocyanine green fluorescence imaging in laparoscopic non-anatomical hepatectomy of hepatocellular carcinomas at segments 6, 7, or 8. Med. Sci. Monit., 2019, 25, 1512-1517.
[http://dx.doi.org/10.12659/MSM.914070] [PMID: 30806378]
[69]
Tummers, Q.R.J.G.; Verbeek, F.P.R.; Prevoo, H.A.J.M.; Braat, A.E.; Baeten, C.I.M.; Frangioni, J.V.; van de Velde, C.J.H.; Vahrmeijer, A.L. First experience on laparoscopic near-infrared fluorescence imaging of hepatic uveal melanoma metastases using indocyanine green. Surg. Innov., 2015, 22(1), 20-25.
[http://dx.doi.org/10.1177/1553350614535857] [PMID: 24902685]
[70]
Kaibori, M.; Ishizaki, M.; Matsui, K.; Hon Kwon, A. Intraoperative indocyanine green fluorescent imaging for prevention of bile leakage after hepatic resection. Surgery, 2011, 150(1), 91-98.
[http://dx.doi.org/10.1016/j.surg.2011.02.011] [PMID: 21514613]
[71]
Satou, S.; Ishizawa, T.; Masuda, K.; Kaneko, J.; Aoki, T.; Sakamoto, Y.; Hasegawa, K.; Sugawara, Y.; Kokudo, N. Indocyanine green fluo-rescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma. J. Gastroenterol., 2013, 48(10), 1136-1143.
[http://dx.doi.org/10.1007/s00535-012-0709-6] [PMID: 23179608]
[72]
Inagaki, F.F.; Takemura, N.; Ito, K.; Mihara, F.; Kurokawa, T.; Kokudo, N. Intraoperative indocyanine green fluorescence navigation facil-itated complete removal of lymph node metastases from hepatocellular carcinoma. Global Health Med., 2021, 3(6), 406-408.
[http://dx.doi.org/10.35772/ghm.2020.01097] [PMID: 35036623]
[73]
Lu, H.; Gu, J.; Qian, X.; Dai, X. Indocyanine green fluorescence navigation in laparoscopic hepatectomy: A retrospective single-center study of 120 cases. Surg. Today, 2021, 51(5), 695-702.
[http://dx.doi.org/10.1007/s00595-020-02163-8] [PMID: 33128594]
[74]
Chen, H.; Wang, Y.; Xie, Z.; Zhang, L.; Ge, Y.; Yu, J.; Zhang, C.; Jia, W.; Ma, J.; Liu, W. Application effect of ICG fluorescence real-time imaging technology in laparoscopic hepatectomy. Front. Oncol., 2022, 12, 819960.
[http://dx.doi.org/10.3389/fonc.2022.819960] [PMID: 35463377]
[75]
Jianxi, W.; Xiongfeng, Z.; Zehao, Z.; Zhen, Z.; Tianyi, P.; Ye, L.; Haosheng, J.; Zhixiang, J.; Huiling, W. Indocyanine green fluorescence-guided laparoscopic hepatectomy versus conventional laparoscopic hepatectomy for hepatocellular carcinoma: A single-center propensity score matching study. Front. Oncol., 2022, 12, 930065.
[http://dx.doi.org/10.3389/fonc.2022.930065] [PMID: 35928871]
[76]
Zhang, W.; Zhuo, J.; Fang, C. Indocyanine green fluorescence imaging for precise diagnosis and treatment of liver neoplasms: A Meta analysis. Chin. J. Pract. Surg., 2019, 39(07), 729-734.
[77]
Hu, Y.; Fu, T.; Zhang, Z.; Hua, L.; Zhao, Q.; Zhang, W. Does application of indocyanine green fluorescence imaging enhance clinical out-comes in liver resection? A meta-analysis. Photodiagn. Photodyn. Ther., 2021, 36, 102554.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102554] [PMID: 34597831]
[78]
Liu, Y.; Wang, Q.; Du, B.; Wang, X.Z.; Xue, Q.; Gao, W.F. Meta-analysis of indocyanine green fluorescence imaging-guided laparoscopic hepatectomy. Photodiagn. Photodyn. Ther., 2021, 35, 102354.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102354] [PMID: 34052422]
[79]
Xue, Q.; Wu, J.; Lei, Z.; Wang, Q.; Gao, W.; Fu, J. Application value of fluorescence visualization-assisted technology in the resection of liver cancer: A systematic review and meta-analysis. Photodiagn. Photodyn. Ther., 2022, 39, 102940.
[http://dx.doi.org/10.1016/j.pdpdt.2022.102940] [PMID: 35640833]
[80]
Jia, W.; Han, Y.; Mao, X.; Xu, W.; Zhang, Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Advances, 2022, 12(48), 31068-31082.
[http://dx.doi.org/10.1039/D2RA05127C] [PMID: 36349046]
[81]
Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; Zhou, T.; Zhang, Y.; Chi, C.; He, P.; Xia, X.; Chen, Y.; Gambhir, S.S.; Cheng, Z.; Tian, J. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng., 2019, 4(3), 259-271.
[http://dx.doi.org/10.1038/s41551-019-0494-0] [PMID: 31873212]
[82]
Qian, X.; Hu, W.; Gao, L.; Xu, J.; Wang, B.; Song, J.; Yang, S.; Lu, Q.; Zhang, L.; Yan, J.; Dong, J. Trans-arterial positive ICG staining-guided laparoscopic liver watershed resection for hepatocellular carcinoma. Front. Oncol., 2022, 12, 966626.
[http://dx.doi.org/10.3389/fonc.2022.966626] [PMID: 35936704]
[83]
Li, W.F.; Al-Taher, M.; Yu, C.Y.; Liu, Y.W.; Liu, Y.Y.; Marescaux, J.; Cheng, Y.F.; Diana, M.; Wang, C.C. Super-selective intra-arterial indocyanine green administration for near-infrared fluorescence-based positive staining of hepatic segmentation: A feasibility study. Surg. Innov., 2021, 28(6), 669-678.
[http://dx.doi.org/10.1177/1553350621996972] [PMID: 33787401]
[84]
Kokudo, N. Indocyanine green fluorescence imaging as an indispensable tool for modern liver surgery. Ann. Surg., 2022, 275(6), 1035-1036.
[http://dx.doi.org/10.1097/SLA.0000000000005425] [PMID: 35185123]
[85]
Association, D.M.A.O.; Association, D.I.S.P.; Society, M.I. Equipment; Society, M. P. C. O., Expert consensus for application of comput-er-assisted indocyanine green molecular fluorescence imaging in diagnosis and surgical navigation of liver tumors. Chin. J. Pract. Surg., 2017, 37(5), 531-538.
[86]
Fang, C.; Wang, X.; Liu, Y. Guidelines for application of computer-assisted indocyanine green molecular fluorescence imaging in diagno-sis and surgical navigation of liver tumors (2019). Chin. J. Pract. Surg., 2019, 39(07) ,641-650+654.
[87]
Liu, Y.; Fang, C.; Wang, X.; Zeng, S. Specifications for the clinical application of indocyanine green fluorescence imaging in the diagnosis and intraoperative navigation of primary liver cancer(2021 edition). Chin. J. Pract. Surg., 2021, 41(09), 1002-1013+1032.
[88]
Wang, X.; Teh, C.S.C.; Ishizawa, T.; Aoki, T.; Cavallucci, D.; Lee, S.Y.; Panganiban, K.M.; Perini, M.V.; Shah, S.R.; Wang, H.; Xu, Y.; Suh, K.S.; Kokudo, N. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery. Ann. Surg., 2021, 274(1), 97-106.
[http://dx.doi.org/10.1097/SLA.0000000000004718] [PMID: 33351457]
[89]
Buchs, N.C.; Volonte, F.; Pugin, F.; Toso, C.; Morel, P. Three-dimensional laparoscopy: A step toward advanced surgical navigation. Surg. Endosc., 2013, 27(2), 692-693.
[http://dx.doi.org/10.1007/s00464-012-2481-3] [PMID: 22806536]
[90]
Azagury, D.E.; Dua, M.M.; Barrese, J.C.; Henderson, J.M.; Buchs, N.C.; Ris, F.; Cloyd, J.M.; Martinie, J.B.; Razzaque, S.; Nicolau, S.; Soler, L.; Marescaux, J.; Visser, B.C. Image-guided surgery. Curr. Probl. Surg., 2015, 52(12), 476-520.
[http://dx.doi.org/10.1067/j.cpsurg.2015.10.001] [PMID: 26683419]
[91]
Wang, Y.; Cao, D.; Chen, S.L.; Li, Y.M.; Zheng, Y.W.; Ohkohchi, N. Current trends in three-dimensional visualization and real-time navi-gation as well as robot-assisted technologies in hepatobiliary surgery. World J. Gastrointest. Surg., 2021, 13(9), 904-922.
[http://dx.doi.org/10.4240/wjgs.v13.i9.904] [PMID: 34621469]
[92]
Cong, X.; Li, T. Design and development of virtual medical system interface based on VR-AR hybrid technology. Comput. Math. Methods Med., 2020, 2020, 7108147.
[http://dx.doi.org/10.1155/2020/7108147] [PMID: 32908580]
[93]
Schneider, C.; Thompson, S.; Totz, J.; Song, Y.; Allam, M.; Sodergren, M.H.; Desjardins, A.E.; Barratt, D.; Ourselin, S.; Gurusamy, K.; Stoyanov, D.; Clarkson, M.J.; Hawkes, D.J.; Davidson, B.R. Comparison of manual and semi-automatic registration in augmented reality image-guided liver surgery: A clinical feasibility study. Surg. Endosc., 2020, 34(10), 4702-4711.
[http://dx.doi.org/10.1007/s00464-020-07807-x] [PMID: 32780240]
[94]
Prevost, G.A.; Eigl, B.; Paolucci, I.; Rudolph, T.; Peterhans, M.; Weber, S.; Beldi, G.; Candinas, D.; Lachenmayer, A. Efficiency, accuracy and clinical applicability of a new image-guided surgery system in 3D laparoscopic liver surgery. J. Gastrointest. Surg., 2020, 24(10), 2251-2258.
[http://dx.doi.org/10.1007/s11605-019-04395-7] [PMID: 31621024]
[95]
Bertrand, L.R.; Abdallah, M.; Espinel, Y.; Calvet, L.; Pereira, B.; Ozgur, E.; Pezet, D.; Buc, E.; Bartoli, A. A case series study of augmented reality in laparoscopic liver resection with a deformable preoperative model. Surg. Endosc., 2020, 34(12), 5642-5648.
[http://dx.doi.org/10.1007/s00464-020-07815-x] [PMID: 32691206]
[96]
Le Roy, B.; Ozgur, E.; Koo, B.; Buc, E.; Bartoli, A. Augmented reality guidance in laparoscopic hepatectomy with deformable semi-automatic computed tomography alignment. J. Visc. Surg., 2019, 156(3), 261-262.
[http://dx.doi.org/10.1016/j.jviscsurg.2019.01.009] [PMID: 30765233]
[97]
Espinel, Y.; Özgür, E.; Calvet, L.; Le, R.B.; Buc, E.; Bartoli, A. Combining visual cues with interactions for 3D–2D registration in liver laparoscopy. Ann. Biomed. Eng., 2020, 48(6), 1712-1727.
[http://dx.doi.org/10.1007/s10439-020-02479-z] [PMID: 32112344]
[98]
Aoki, T.; Koizumi, T.; Sugimoto, M.; Murakami, M. Holography-guided percutaneous puncture technique for selective near-infrared fluo-rescence-guided laparoscopic liver resection using mixed-reality wearable spatial computer. Surg. Oncol., 2020, 35, 476-477.
[http://dx.doi.org/10.1016/j.suronc.2020.10.013] [PMID: 33113479]
[99]
Saito, Y.; Sugimoto, M.; Imura, S.; Morine, Y.; Ikemoto, T.; Iwahashi, S.; Yamada, S.; Shimada, M. Intraoperative 3D hologram support with mixed reality techniques in liver surgery. Ann. Surg., 2020, 271(1), e4-e7.
[http://dx.doi.org/10.1097/SLA.0000000000003552] [PMID: 31425293]
[100]
Zhang, P.; Luo, H.; Zhu, W.; Yang, J.; Zeng, N.; Fan, Y.; Wen, S.; Xiang, N.; Jia, F.; Fang, C. Real-time navigation for laparoscopic hepa-tectomy using image fusion of preoperative 3D surgical plan and intraoperative indocyanine green fluorescence imaging. Surg. Endosc., 2020, 34(8), 3449-3459.
[http://dx.doi.org/10.1007/s00464-019-07121-1] [PMID: 31705286]
[101]
Conrad, C.; Fusaglia, M.; Peterhans, M.; Lu, H.; Weber, S.; Gayet, B. Augmented reality navigation surgery facilitates laparoscopic rescue of failed portal vein embolization. J. Am. Coll. Surg., 2016, 223(4), e31-e34.
[http://dx.doi.org/10.1016/j.jamcollsurg.2016.06.392] [PMID: 27450989]
[102]
Chen, R.; Wang, Z.; Zhu, W.; Luo, W.; Lin, J.; Chen, Y.; Fang, C.; Yang, J. Laparoscopic in situ anatomical mesohepatectomy for solitary massive hcc using combined intrafascial and extrafascial approaches with indocyanine green navigation. Ann. Surg. Oncol., 2022, 29(3), 2034-2040.
[http://dx.doi.org/10.1245/s10434-021-10886-2] [PMID: 34647203]
[103]
Yang, J.; Chen, R.; Zhu, W.; Fang, C. Digital intelligent technology assisted three-dimensional laparoscopic extended left hepatectomy with resection of the middle hepatic vein. Surg. Oncol., 2020, 35, 426-427.
[http://dx.doi.org/10.1016/j.suronc.2020.09.006] [PMID: 33038848]
[104]
Lin, J.; Luo, W.; Fang, C.; Yang, J. Laparoscopic anatomic combined subsegmentectomy of segment 8 via the tailored strategy using digital intelligent technology. Surg. Oncol., 2021, 38, 101622.
[http://dx.doi.org/10.1016/j.suronc.2021.101622] [PMID: 34146767]
[105]
Zhang, W.; Zhu, W.; Yang, J.; Xiang, N.; Zeng, N.; Hu, H.; Jia, F.; Fang, C. Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer: Preliminary experience. Front. Oncol., 2021, 11, 663236.
[http://dx.doi.org/10.3389/fonc.2021.663236] [PMID: 33842378]
[106]
Hepatic Surgery Branch, C.M.A. Digital Medical Association, C.M.A.; Liver Cancer Surgeons Committee, C.M.D.A.; Digital Intelligent Surgery Committee, C.R.H.A.; Minimally Invasive Surgeons Committee, C.M.D.A. Chinese expert consensus on the application of aug-mented and mixed reality navigation in laparoscopic complex hepatectomy. Zhonghua Wai Ke Za Zhi, 2022, 60(6), 517-523.
[107]
Fang, C.H.; Zhu, W.; Wanyee, Y.Y. [How to change from traditional surgery to intelligent navigation surgery? Zhonghua Wai Ke Za Zhi, 2022, 60(1), 1-3.
[PMID: 34954939]
[108]
Pérez, M.J.; Grande, R.G. Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review. World J. Gastroenterol., 2020, 26(37), 5617-5628.
[http://dx.doi.org/10.3748/wjg.v26.i37.5617] [PMID: 33088156]
[109]
Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Reports, 2022, 4(4), 100443.
[http://dx.doi.org/10.1016/j.jhepr.2022.100443] [PMID: 35243281]
[110]
Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; Aerts, H.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer, 2012, 48(4), 441-446.
[http://dx.doi.org/10.1016/j.ejca.2011.11.036] [PMID: 22257792]
[111]
Mokrane, F.Z.; Lu, L.; Vavasseur, A.; Otal, P.; Peron, J.M.; Luk, L.; Yang, H.; Ammari, S.; Saenger, Y.; Rousseau, H.; Zhao, B.; Schwartz, L.H.; Dercle, L. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur. Radiol., 2020, 30(1), 558-570.
[http://dx.doi.org/10.1007/s00330-019-06347-w] [PMID: 31444598]
[112]
Zhen, S.; Cheng, M.; Tao, Y.; Wang, Y.; Juengpanich, S.; Jiang, Z.; Jiang, Y.; Yan, Y.; Lu, W.; Lue, J.; Qian, J.; Wu, Z.; Sun, J.; Lin, H.; Cai, X. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front. Oncol., 2020, 10, 680.
[http://dx.doi.org/10.3389/fonc.2020.00680] [PMID: 32547939]
[113]
Shi, W.; Kuang, S.; Cao, S.; Hu, B.; Xie, S.; Chen, S.; Chen, Y.; Gao, D.; Chen, Y.; Zhu, Y.; Zhang, H.; Liu, H.; Ye, M.; Sirlin, C.B.; Wang, J. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of four-phase and three-phase CT im-aging protocol. Abdom. Radiol., 2020, 45(9), 2688-2697.
[http://dx.doi.org/10.1007/s00261-020-02485-8] [PMID: 32232524]
[114]
Ponnoprat, D.; Inkeaw, P.; Chaijaruwanich, J.; Traisathit, P.; Sripan, P.; Inmutto, N.; Na Chiangmai, W.; Pongnikorn, D.; Chitapanarux, I. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on multi-phase CT scans. Med. Biol. Eng. Comput., 2020, 58(10), 2497-2515.
[http://dx.doi.org/10.1007/s11517-020-02229-2] [PMID: 32794015]
[115]
Erstad, D.J.; Tanabe, K.K. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma. Ann. Surg. Oncol., 2019, 26(5), 1474-1493.
[http://dx.doi.org/10.1245/s10434-019-07227-9] [PMID: 30788629]
[116]
Xu, X.; Zhang, H.L.; Liu, Q.P.; Sun, S.W.; Zhang, J.; Zhu, F.P.; Yang, G.; Yan, X.; Zhang, Y.D.; Liu, X.S. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J. Hepatol., 2019, 70(6), 1133-1144.
[http://dx.doi.org/10.1016/j.jhep.2019.02.023] [PMID: 30876945]
[117]
Ma, X.; Wei, J.; Gu, D.; Zhu, Y.; Feng, B.; Liang, M.; Wang, S.; Zhao, X.; Tian, J. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur. Radiol., 2019, 29(7), 3595-3605.
[http://dx.doi.org/10.1007/s00330-018-5985-y] [PMID: 30770969]
[118]
He, M.; Zhang, P.; Ma, X.; He, B.; Fang, C.; Jia, F. Radiomic feature-based predictive model for microvascular invasion in patients with hepatocellular carcinoma. Front. Oncol., 2020, 10, 574228.
[http://dx.doi.org/10.3389/fonc.2020.574228] [PMID: 33251138]
[119]
Zhou, W.; Zhang, L.; Wang, K.; Chen, S.; Wang, G.; Liu, Z.; Liang, C. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast‐enhanced MR images. J. Magn. Reson. Imaging, 2017, 45(5), 1476-1484.
[http://dx.doi.org/10.1002/jmri.25454] [PMID: 27626270]
[120]
Shan, Q.; Hu, H.; Feng, S.; Peng, Z.; Chen, S.; Zhou, Q.; Li, X.; Xie, X.; Lu, M.; Wang, W.; Kuang, M. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. Cancer Imaging, 2019, 19(1), 11.
[http://dx.doi.org/10.1186/s40644-019-0197-5] [PMID: 30813956]
[121]
Zheng, B.H.; Liu, L.Z.; Zhang, Z.Z.; Shi, J.Y.; Dong, L.Q.; Tian, L.Y.; Ding, Z.; Ji, Y.; Rao, S.X.; Zhou, J.; Fan, J.; Wang, X.Y.; Gao, Q. Radiomics score: A potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer, 2018, 18(1), 1148.
[http://dx.doi.org/10.1186/s12885-018-5024-z] [PMID: 30463529]
[122]
Zhou, Y.; He, L.; Huang, Y.; Chen, S.; Wu, P.; Ye, W.; Liu, Z.; Liang, C. CT-based radiomics signature: A potential biomarker for pre-operative prediction of early recurrence in hepatocellular carcinoma. Abdom. Radiol., 2017, 42(6), 1695-1704.
[http://dx.doi.org/10.1007/s00261-017-1072-0] [PMID: 28180924]
[123]
Forner, A.; Gilabert, M.; Bruix, J.; Raoul, J.L. Treatment of intermediate-stage hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2014, 11(9), 525-535.
[http://dx.doi.org/10.1038/nrclinonc.2014.122] [PMID: 25091611]
[124]
Cai, W.; He, B.; Hu, M.; Zhang, W.; Xiao, D.; Yu, H.; Song, Q.; Xiang, N.; Yang, J.; He, S.; Huang, Y.; Huang, W.; Jia, F.; Fang, C. A radi-omics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma. Surg. Oncol., 2019, 28, 78-85.
[http://dx.doi.org/10.1016/j.suronc.2018.11.013] [PMID: 30851917]
[125]
Liang, J.D.; Ping, X.O.; Tseng, Y.J.; Huang, G.T.; Lai, F.; Yang, P.M. Recurrence predictive models for patients with hepatocellular carci-noma after radiofrequency ablation using support vector machines with feature selection methods. Comput. Methods Prog. Biomed., 2014, 117(3), 425-434.
[http://dx.doi.org/10.1016/j.cmpb.2014.09.001] [PMID: 25278224]
[126]
Peng, J.; Kang, S.; Ning, Z.; Deng, H.; Shen, J.; Xu, Y.; Zhang, J.; Zhao, W.; Li, X.; Gong, W.; Huang, J.; Liu, L. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. Eur. Radiol., 2020, 30(1), 413-424.
[http://dx.doi.org/10.1007/s00330-019-06318-1] [PMID: 31332558]
[127]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[128]
Yuan, G.; Song, Y.; Li, Q.; Hu, X.; Zang, M.; Dai, W.; Cheng, X.; Huang, W.; Yu, W.; Chen, M.; Guo, Y.; Zhang, Q.; Chen, J. Development and validation of a contrast-enhanced ct-based radiomics nomogram for prediction of therapeutic efficacy of anti-PD-1 antibodies in advanced HCC patients. Front. Immunol., 2021, 11, 613946.
[http://dx.doi.org/10.3389/fimmu.2020.613946] [PMID: 33488622]
[129]
Hsu, P.Y.; Liang, P.C.; Chang, W.T.; Lu, M.Y.; Wang, W.H.; Chuang, S.C.; Wei, Y.J.; Jang, T.Y.; Yeh, M.L.; Huang, C.I.; Lin, Y.H.; Wang, C.W.; Hsieh, M.Y.; Hou, N.J.; Hsieh, M.H.; Tsai, Y.S.; Ko, Y.M.; Lin, C.C.; Chen, K.Y.; Dai, C.Y.; Lin, Z.Y.; Chen, S.C.; Chuang, W.L.; Huang, C.F.; Huang, J.F.; Yu, M.L. Artificial intelligence based on serum biomarkers predicts the efficacy of lenvatinib for unresectable hepatocellular carcinoma. Am. J. Cancer Res., 2022, 12(12), 5576-5588.
[PMID: 36628276]
[130]
Jia, J.; Tang, J. A molecular hepatocellular carcinoma prognostic score system precisely predicts overall survival of hepatocellular carci-noma patients. J. Clin. Transl. Hepatol., 2022, 10(2), 273-283.
[http://dx.doi.org/10.14218/JCTH.2021.00010] [PMID: 35528976]
[131]
Lui, T.K.L.; Cheung, K.S.; Leung, W.K. Machine learning models in the prediction of 1-year mortality in patients with advanced hepatocellular cancer on immunotherapy: A proof-of-concept study. Hepatol. Int., 2022, 16(4), 879-891.
[http://dx.doi.org/10.1007/s12072-022-10370-3] [PMID: 35779202]
[132]
Graur, F.; Puia, A.; Mois, E.I.; Moldovan, S.; Pusta, A.; Cristea, C.; Cavalu, S.; Puia, C.; Al Hajjar, N. Nanotechnology in the diagnostic and therapy of hepatocellular carcinoma. Materials, 2022, 15(11), 3893.
[http://dx.doi.org/10.3390/ma15113893] [PMID: 35683190]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy