Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Exploring the Role of Mentha in Gut Microbiota: A Modern Perspective of an Ancient Herb

Author(s): Swasti Arora and Alok Sharma*

Volume 14, Issue 2, 2023

Published on: 19 May, 2023

Page: [94 - 106] Pages: 13

DOI: 10.2174/2772574X14666230411101712

Price: $65

Abstract

Gut microbiota includes the microbes present in the gut; these microbes are an essential component in maintaining a healthy gut. Gut microbiota has a wide range of functions, including effects on colonization, pathogen resistance, intestinal epithelial maintenance, metabolizing food and pharmaceutical chemicals, and influencing immunological functions. Every disease associated with the gut starts due to a disbalance in the composition of the gut microorganisms and can be managed by balancing the composition of gut bacteria using various herbal remedies. Mentha herbs are a variety of perennial herbs that are grown commercially in various parts of the world. Mentha is a potent herb that shows anticholinergic action and can block PGE2 and GM1 receptors and interact with cholera toxins; it is used traditionally in different systems of medicines to treat various gastrointestinal diseases associated with the gut. Mentha herbs have potent bactericidal, viricidal, and fungicidal properties. Mentha has been used to cure stomach and digestion issues as well as to treat a variety of disorders. This review article summarizes diseases associated with the gut, the composition, and function of gut microbiota, and mentha's effectiveness along with its extraction methods and traditional uses. Research findings revealed that mentha could be an essential source against a wide range of diseases, especially gastrointestinal disorders. From its ayurvedic claims to its present use, various confirmed its clinically effective for human health. The present work also describes the mechanism of action along with the bioactives present in this well-known herb from Ayurveda.

Graphical Abstract

[1]
Hsiao, W.W.L.; Metz, C.; Singh, D.P.; Roth, J. The microbes of the intestine: An introduction to their metabolic and signaling capabilities. Endocrinol. Metab. Clin. North Am., 2008, 37(4), 857-871.
[http://dx.doi.org/10.1016/j.ecl.2008.08.006] [PMID: 19026936]
[2]
Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 2017, 279(1), 70-89.
[http://dx.doi.org/10.1111/imr.12567] [PMID: 28856738]
[3]
Stecher, B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol. Spectr., 2015, 3(3), 297-320.
[http://dx.doi.org/10.1128/microbiolspec.MBP-0008-2014] [PMID: 26185088]
[4]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[5]
Belizário, J.E.; Napolitano, M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front. Microbiol., 2015, 6, 1050.
[http://dx.doi.org/10.3389/fmicb.2015.01050] [PMID: 26500616]
[6]
Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet., 2012, 13(4), 260-270.
[http://dx.doi.org/10.1038/nrg3182] [PMID: 22411464]
[7]
Tasnim, N.; Abulizi, N.; Pither, J.; Hart, M.M.; Gibson, D.L. Linking the gut microbial ecosystem with the environment: does gut health depend on where we live? Front. Microbiol., 2017, 8, 1935.
[http://dx.doi.org/10.3389/fmicb.2017.01935] [PMID: 29056933]
[8]
Kay, A.B. Overview of ‘Allergy and allergic diseases: With a view to the future’. Br. Med. Bull., 2000, 56(4), 843-864.
[http://dx.doi.org/10.1258/0007142001903481] [PMID: 11359624]
[9]
Durack, J.; Lynch, S.V. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med., 2019, 216(1), 20-40.
[http://dx.doi.org/10.1084/jem.20180448] [PMID: 30322864]
[10]
Kokkini, S.; Karousou, R.; Hanlidou, E. Herbs of the Labiatae; Elsevier Science Ltd: Amsterdam, 2003, pp. 3082-3090.
[11]
Shrivastava, A. A review on peppermint oil. Asian J. Pharm. Clin. Res., 2009, 2(2), 27-33.
[12]
Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem., 2015, 8(3), 322-328.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.019]
[13]
Silva, H. A descriptive overview of the medical uses given to Mentha aromatic herbs throughout history. Biology, 2020, 9(12), 484.
[http://dx.doi.org/10.3390/biology9120484] [PMID: 33371310]
[14]
Liang, R.; Xu, S.; Shoemaker, C.F.; Li, Y.; Zhong, F.; Huang, Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J. Agric. Food Chem., 2012, 60(30), 7548-7555.
[http://dx.doi.org/10.1021/jf301129k] [PMID: 22746096]
[15]
Chambers, H.L.; Hummer, K.E. Chromosome counts in the Mentha collection at the USDA‐ARS national clonal germplasm repository. Taxon, 1994, 43(3), 423-432.
[http://dx.doi.org/10.2307/1222717]
[16]
Ahmad, R.S.; Imran, A.; Arshad, M.S.; Hussain, M.B.; Waheed, M.; Safdar, S.; Yasmin, Z. Introductory chapter: Mentha piperita (a valuable herb): Brief overview. Herbs and Spices; London: IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.93627]
[17]
Mamadalieva, N.; Akramov, D.; Ovidi, E.; Tiezzi, A.; Nahar, L.; Azimova, S.; Sarker, S. Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines, 2017, 4(1), 8.
[http://dx.doi.org/10.3390/medicines4010008] [PMID: 28930224]
[18]
Duriyaprapan, S.; Britten, E.J.; Basford, K.E. The effect of temperature on growth, oil yield and oil quality of Japanese mint. Ann. Bot., 1986, 58(5), 729-736.
[http://dx.doi.org/10.1093/oxfordjournals.aob.a087236]
[19]
Tucker, A.O.; Chambers, H.L. Mentha canadensis L. (Lamiaceae): A relict amphidiploid from the Lower Tertiary. Taxon, 2002, 51(4), 703-718.
[http://dx.doi.org/10.2307/3647334]
[20]
Shukla, P.K.; Haseeb, A.; Srivastava, N.K. Influence of pH on reproduction and damage potential of Pratylenchus thornei on Mentha piperita. Fundam. Appl. Nematol., 1998, 21(1), 103-105.
[21]
Ringuelet, J.A.; Cerimele, E.L.; Henning, C.P.; Rí, M.S.; Urrutia, M.I. Propagation methods and leaf yield in peppermint (Mentha× piperita L.). J. Herbs Spices Med. Plants, 2003, 10(3), 55-60.
[http://dx.doi.org/10.1300/J044v10n03_06]
[22]
Delfine, S.; Loreto, F.; Pinelli, P.; Tognetti, R.; Alvino, A. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric. Ecosyst. Environ., 2005, 106(2-3), 243-252.
[http://dx.doi.org/10.1016/j.agee.2004.10.012]
[23]
Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharopov, F.; Antolak, H.; Kręgiel, D.; Sen, S.; Sharifi-Rad, M.; Acharya, K.; Sharifi-Rad, R.; Martorell, M.; Sureda, A.; Martins, N.; Sharifi-Rad, J. Plants of genus Mentha: From farm to food factory. Plants, 2018, 7(3), 70.
[http://dx.doi.org/10.3390/plants7030070] [PMID: 30181483]
[24]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[25]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[26]
Arboleya, S.; Binetti, A.; Salazar, N.; Fernández, N.; Solís, G.; Hernández-Barranco, A.; Margolles, A.; los Reyes-Gavilán, C.G.; Gueimonde, M. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol., 2012, 79(3), 763-772.
[http://dx.doi.org/10.1111/j.1574-6941.2011.01261.x] [PMID: 22126419]
[27]
Ren, S.; Hui, Y.; Obelitz-Ryom, K.; Brandt, A.B.; Kot, W.; Nielsen, D.S.; Thymann, T.; Sangild, P.T.; Nguyen, D.N. Neonatal gut and immune maturation is determined more by postnatal age than by postconceptional age in moderately preterm pigs. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(5), G855-G867.
[http://dx.doi.org/10.1152/ajpgi.00169.2018] [PMID: 30118350]
[28]
Bai, J.; Hu, Y.; Bruner, D.W. Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7-18 years old children from the American Gut Project. Pediatr. Obes., 2019, 14(4)e12480
[http://dx.doi.org/10.1111/ijpo.12480] [PMID: 30417607]
[29]
Karlsson, C.L.J.; Önnerfält, J.; Xu, J.; Molin, G.; Ahrné, S.; Thorngren-Jerneck, K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity, 2012, 20(11), 2257-2261.
[http://dx.doi.org/10.1038/oby.2012.110] [PMID: 22546742]
[30]
Schloss, P.D.; Handelsman, J. Status of the microbial census. Microbiol. Mol. Biol. Rev., 2004, 68(4), 686-691.
[http://dx.doi.org/10.1128/MMBR.68.4.686-691.2004] [PMID: 15590780]
[31]
Xu, J.; Gordon, J.I. Honor thy symbionts. Proc. Natl. Acad. Sci., 2003, 100(18), 10452-10459.
[http://dx.doi.org/10.1073/pnas.1734063100] [PMID: 12923294]
[32]
Tidjani Alou, M.; Lagier, J.C.; Raoult, D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Hum. Microbiome J., 2016, 1, 3-11.
[http://dx.doi.org/10.1016/j.humic.2016.09.001]
[33]
Butel, M.J.; Suau, A.; Campeotto, F.; Magne, F.; Aires, J.; Ferraris, L.; Kalach, N.; Leroux, B.; Dupont, C. Conditions of bifidobacterial colonization in preterm infants: A prospective analysis. J. Pediatr. Gastroenterol. Nutr., 2007, 44(5), 577-582.
[http://dx.doi.org/10.1097/MPG.0b013e3180406b20] [PMID: 17460489]
[34]
Pédron, T.; Sansonetti, P. Commensals, bacterial pathogens and intestinal inflammation: An intriguing ménage à trois. Cell Host Microbe, 2008, 3(6), 344-347.
[http://dx.doi.org/10.1016/j.chom.2008.05.010] [PMID: 18541210]
[35]
Kurokawa, K.; Itoh, T.; Kuwahara, T.; Oshima, K.; Toh, H.; Toyoda, A.; Takami, H.; Morita, H.; Sharma, V.K.; Srivastava, T.P.; Taylor, T.D.; Noguchi, H.; Mori, H.; Ogura, Y.; Ehrlich, D.S.; Itoh, K.; Takagi, T.; Sakaki, Y.; Hayashi, T.; Hattori, M. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res., 2007, 14(4), 169-181.
[http://dx.doi.org/10.1093/dnares/dsm018] [PMID: 17916580]
[36]
Khosravi, A.; Mazmanian, S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol., 2013, 16(2), 221-227.
[http://dx.doi.org/10.1016/j.mib.2013.03.009] [PMID: 23597788]
[37]
Dewhirst, F.E.; Chien, C.C.; Paster, B.J.; Ericson, R.L.; Orcutt, R.P.; Schauer, D.B.; Fox, J.G. Phylogeny of the defined murine microbiota: Altered Schaedler flora. Appl. Environ. Microbiol., 1999, 65(8), 3287-3292.
[http://dx.doi.org/10.1128/AEM.65.8.3287-3292.1999] [PMID: 10427008]
[38]
Ivanov, I.I.; Frutos, R.L.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4), 337-349.
[http://dx.doi.org/10.1016/j.chom.2008.09.009] [PMID: 18854238]
[39]
Othman, M.; Agüero, R.; Lin, H.C. Alterations in intestinal microbial flora and human disease. Curr. Opin. Gastroenterol., 2008, 24(1), 11-16.
[http://dx.doi.org/10.1097/MOG.0b013e3282f2b0d7] [PMID: 18043226]
[40]
Walker, W.A.; Iyengar, R.S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res., 2015, 77(1-2), 220-228.
[http://dx.doi.org/10.1038/pr.2014.160] [PMID: 25310762]
[41]
Groer, M.W.; Luciano, A.A.; Dishaw, L.J.; Ashmeade, T.L.; Miller, E.; Gilbert, J.A. Development of the preterm infant gut microbiome: A research priority. Microbiome, 2014, 2(1), 38.
[http://dx.doi.org/10.1186/2049-2618-2-38] [PMID: 25332768]
[42]
David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[43]
Houghteling, P.D.; Walker, W.A. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J. Pediatr. Gastroenterol. Nutr., 2015, 60(3), 294-307.
[http://dx.doi.org/10.1097/MPG.0000000000000597] [PMID: 25313849]
[44]
Gross, L. Microbes colonize a baby’s gut with distinction. PLoS Biol., 2007, 5(7)e191
[http://dx.doi.org/10.1371/journal.pbio.0050191] [PMID: 20076678]
[45]
Windey, K.; De Preter, V.; Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res., 2012, 56(1), 184-196.
[http://dx.doi.org/10.1002/mnfr.201100542] [PMID: 22121108]
[46]
Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol., 2014, 28(8), 1221-1238.
[http://dx.doi.org/10.1210/me.2014-1108] [PMID: 24892638]
[47]
Ge, X.; Ding, C.; Zhao, W.; Xu, L.; Tian, H.; Gong, J.; Zhu, M.; Li, J.; Li, N. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med., 2017, 15(1), 13.
[http://dx.doi.org/10.1186/s12967-016-1105-4] [PMID: 28086815]
[48]
Kang, M.J.; Kim, H.G.; Kim, J.S.; Oh, D.G.; Um, Y.J.; Seo, C.S.; Han, J.W.; Cho, H.J.; Kim, G.H.; Jeong, T.C.; Jeong, H.G. The effect of gut microbiota on drug metabolism. Expert Opin. Drug Metab. Toxicol., 2013, 9(10), 1295-1308.
[http://dx.doi.org/10.1517/17425255.2013.807798] [PMID: 24033282]
[49]
Anwar, H.; Iftikhar, A.; Muzaffar, H.; Almatroudi, A.; Allemailem, K.S.; Navaid, S.; Saleem, S.; Khurshid, M. Biodiversity of gut microbiota: Impact of various host and environmental factors. BioMed Res. Int., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/5575245] [PMID: 34055983]
[50]
Reijnders, D.; Goossens, G.H.; Hermes, G.D.A.; Neis, E.P.J.G.; van der Beek, C.M.; Most, J.; Holst, J.J.; Lenaerts, K.; Kootte, R.S.; Nieuwdorp, M.; Groen, A.K.; Olde Damink, S.W.M.; Boekschoten, M.V.; Smidt, H.; Zoetendal, E.G.; Dejong, C.H.C.; Blaak, E.E. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: A randomized double-blind placebo-controlled trial. Cell Metab., 2016, 24(1), 63-74.
[http://dx.doi.org/10.1016/j.cmet.2016.06.016] [PMID: 27411009]
[51]
Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Krogh Pedersen, H.; Arumugam, M.; Kristiansen, K.; Yvonne Voigt, A.; Vestergaard, H.; Hercog, R.; Igor Costea, P.; Roat Kultima, J.; Li, J.; Jørgensen, T.; Levenez, F.; Dore, J.; Bjørn Nielsen, H.; Brunak, S.; Raes, J.; Hansen, T.; Wang, J.; Dusko Ehrlich, S.; Bork, P.; Pedersen, O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528(7581), 262-266.
[http://dx.doi.org/10.1038/nature15766] [PMID: 26633628]
[52]
Vandenplas, Y.; Carnielli, V.P.; Ksiazyk, J.; Luna, M.S.; Migacheva, N.; Mosselmans, J.M.; Picaud, J.C.; Possner, M.; Singhal, A.; Wabitsch, M. Factors affecting early-life intestinal microbiota development. Nutrition, 2020, 78110812
[http://dx.doi.org/10.1016/j.nut.2020.110812] [PMID: 32464473]
[53]
Madison, A.; Kiecolt-Glaser, J.K. Stress, depression, diet, and the gut microbiota: human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci., 2019, 28, 105-110.
[http://dx.doi.org/10.1016/j.cobeha.2019.01.011] [PMID: 32395568]
[54]
Sudo, N. Role of gut microbiota in brain function and stress-related pathology. Biosci. Microbiota Food Health, 2019, 38(3), 75-80.
[http://dx.doi.org/10.12938/bmfh.19-006] [PMID: 31384518]
[55]
Su, Q.; Liu, Q. Factors affecting gut microbiome in daily diet. Front. Nutr., 2021, 8644138
[http://dx.doi.org/10.3389/fnut.2021.644138] [PMID: 34041257]
[56]
Lutgendorff, F.; Akkermans, L.; Söderholm, J. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr. Mol. Med., 2008, 8(4), 282-298.
[http://dx.doi.org/10.2174/156652408784533779] [PMID: 18537636]
[57]
Stefanaki, A.; van Andel, T. Mediterranean aromatic herbs and their culinary use. Aromatic herbs in food bioactive compounds, processing, and applications; Elsevier: Amsterdam, 2021, pp. 93-121.
[http://dx.doi.org/10.1016/B978-0-12-822716-9.00003-2]
[58]
Vining, K.J.; Hummer, K.E.; Bassil, N.V.; Lange, B.M.; Khoury, C.K.; Carver, D. Crop wild relatives as germplasm resource for cultivar improvement in mint (Mentha L.). Front. Plant Sci., 2020, 11, 1217.
[http://dx.doi.org/10.3389/fpls.2020.01217] [PMID: 32973823]
[59]
Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical composition and biological activities of Mentha species. Arom. Med. Plants-Back Nat., 2017, 10, 47-79.
[60]
Shelepova, O.V.; Tkacheva, E.V.; Golosova, E.V. The history of the introduction of peppermint (Mentha× piperita L.) in Imperial Russia. BIO Web of Conferences, 2021, 38, 00115.
[61]
Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; Pezzani, R. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules, 2021, 26(4), 1118.
[http://dx.doi.org/10.3390/molecules26041118] [PMID: 33672486]
[62]
Saleem, M.N.; Idris, M. Podina (Mentha arvensis): Transformation from food additive to multifunctional medicine. ARC. J. Pharm. Sci., 2016, 2(2), 6-15.
[http://dx.doi.org/10.20431/2455-1538.0202002]
[63]
Kabir, H. Shamsher, M. Unani Formulations. J Homeop Ayurv Med, 2014, 3, 146.
[http://dx.doi.org/10.4172/2167-1206.1000146]
[64]
Habib, S.; Azeez, A.; Faisal, M.; Habib, S.; Azeez Faris, A. Pudina (mentha) in traditional medicine: A review. Int. J. Res. Analy. Rev., 2021, (8), 974-980.
[65]
Sharma, A.; Kumar, N.; Kumar, D.; Kumari, V.; Sarswati, S.; Chandel, K. A review paper on anti-microbial activity of medicinal plant tulsi (ocimum spp.) And pudina (mentha spp.). Int. J. Curr. Res., 2013, (5), 487-489.
[66]
Shah, P.P.; Mello, P.M. A review of medicinal uses and pharmacological effects of Mentha piperita. Medicine, 2004, 3(4), 214-221.
[67]
Information for ayurveda practitioners for prophylactic, symptomatic management of suspected and diagnosed cases of mucormycosis government of India ministry of ayush drug policy section. Available From: https://www.ayush.gov.in/docs/Mucormycosis-English-Hindi.pdf
[68]
Subroto, E.; Widjojokusumo, E.; Veriansyah, B.; Tjandrawinata, R.R. Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil. J. Food Sci. Technol., 2017, 54(5), 1286-1292.
[http://dx.doi.org/10.1007/s13197-017-2542-7] [PMID: 28416879]
[69]
Radwan, D.E.M.; Essa, A.; Ghozwany, S.; Hamzy, K.; Hefzy, M. Bioactive compounds, antioxidant and antimicrobial properties of wild plants seed extracts used in traditional medicine. Res. J. Med. Plant, 2019, 14(1), 15-23.
[http://dx.doi.org/10.3923/rjmp.2020.15.23]
[70]
Brahmi, F.; Adjaoud, A.; Marongiu, B.; Falconieri, D.; Yalaoui-Guellal, D.; Madani, K.; Chibane, M. Chemical and biological profiles of essential oils from Mentha spicata L. leaf from Bejaia in Algeria. J. Essent. Oil Res., 2016, 28(3), 211-220.
[http://dx.doi.org/10.1080/10412905.2015.1118411]
[71]
Aldamegh, M.A.; Abdallah, E.M.; Hsouna, A.B. Evaluation of antimicrobial and antioxidant properties of leaves of Emex spinosa and fruits of Citrillus colocynthis from Saudi Arabia. Afr. J. Biotechnol., 2013, 12(34), 5308-5313.
[http://dx.doi.org/10.5897/AJB2013.12987]
[72]
Shrigod, N.M.; Swami Hulle, N.R.; Prasad, R.V. Supercritical fluid extraction of essential oil from mint leaves (Mentha spicata): Process optimization and its quality evaluation. J. Food Process Eng., 2017, 40(3)e12488
[http://dx.doi.org/10.1111/jfpe.12488]
[73]
Pavlić, B.; Teslić, N.; Zengin, G.; Đurović, S.; Rakić, D.; Cvetanović, A.; Gunes, A.K.; Zeković, Z. Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chem., 2021, 338127724
[http://dx.doi.org/10.1016/j.foodchem.2020.127724] [PMID: 32795878]
[74]
Kohari, Y.; Yamashita, S.; Chiou, T.Y.; Shimotori, Y.; Ohtsu, N.; Nagata, Y.; Murata, M. Hydrodistillation by solvent-free microwave extraction of fresh Japanese peppermint (Mentha arvensis L.). J. Essent. Oil-Bear. Plants, 2020, 23(1), 77-84.
[http://dx.doi.org/10.1080/0972060X.2020.1726825]
[75]
Abdel-Hameed, E.S.S.; Salman, M.S.; Fadl, M.A.; Elkhateeb, A.; El-Awady, M.A. Chemical composition of hydrodistillation and solvent free microwave extraction of essential oils from Mentha piperita L. growing in Taif, Kingdom of Saudi Arabia, and their anticancer and antimicrobial activity. Orient. J. Chem., 2018, 34(1), 222.
[http://dx.doi.org/10.13005/ojc/340125]
[76]
Sevi̇ndi̇k, E.; Yamaner, Ç.; Kurtoğlu, C.; Ti̇n, B. Chemical Composition of Mentha spicata L. subsp. tomentosa and M. pulegium L., and their antimicrobial activity on strong pathogen microorganisms. Not. Sci. Biol., 2017, 9(1), 73-76.
[http://dx.doi.org/10.15835/nsb919923]
[77]
Chauhan, S.S.; Prakash, O.; Padalia, RC. Chemical diversity in Mentha spicata: Antioxidant and potato sprout inhibition activity of its essential oils. Natural Product Communications, 2011, 6(9), 1373-1378.
[http://dx.doi.org/10.1177/1934578X1100600938]
[78]
Farzaei, M.H.; Bahramsoltani, R.; Ghobadi, A.; Farzaei, F.; Najafi, F. Pharmacological activity of Mentha longifolia and its phytoconstituents. J. Tradit. Chin. Med., 2017, 37(5), 710-720.
[http://dx.doi.org/10.1016/S0254-6272(17)30327-8] [PMID: 32188234]
[79]
Gracindo, LA; Grisi, MC; Silva, DB; Alves, RB; Bizzo, HR; Vieira, RF Chemical characterization of mint (Mentha spp.) germplasm at Federal District, Brazil. Revista Brasileira de Plantas Medicinais, 2006, 8(esp), 005-009.
[80]
Benabdallah, A.; Boumendjel, M.; Aissi, O.; Rahmoune, C.; Boussaid, M.; Messaoud, C. Chemical composition, antioxidant activity and acetylcholinesterase inhibitory of wild Mentha species from northeastern Algeria. S. Afr. J. Bot., 2018, 116, 131-139.
[http://dx.doi.org/10.1016/j.sajb.2018.03.002]
[81]
Beigi, M.; Torki-Harchegani, M.; Ghasemi Pirbalouti, A. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop., 2018, 21(1), 267-276.
[http://dx.doi.org/10.1080/10942912.2018.1453839]
[82]
Fialová, S.; Tekeľová, D.; Rendeková, K.; Klinčok, J.; Kolárik, M.; Kurucová, K.; Grančai, D. Phenolic compounds variation in Mentha L. species in the course of a four-years period. Eur. J. Pharm. Sci., 2015, 62(s9), 2-7.
[83]
Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic compounds and biological activity of selected Mentha species. Plants, 2021, 10(3), 550.
[http://dx.doi.org/10.3390/plants10030550] [PMID: 33804017]
[84]
Benabdallah, A.; Rahmoune, C.; Boumendjel, M.; Aissi, O.; Messaoud, C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac. J. Trop. Biomed., 2016, 6(9), 760-766.
[http://dx.doi.org/10.1016/j.apjtb.2016.06.016]
[85]
Erenler, R.; Telci, I.; Elmastaş, M.; Akşit, H.; Gül, F. TÜFEKÇİ, A.R.; Demirtaş, İ.; KAYIR, Ö. Quantification of flavonoids isolated from\textit {Mentha spicata} in selected clones of Turkish mint landraces. Turk. J. Chem., 2018, 42(6), 1695-1705.
[http://dx.doi.org/10.3906/kim-1712-3]
[86]
Gubdon’it, D.J.; Pasquiert, B.P. Analysis and distribution of flavonoid glycosides and rosmarinic acid in 40 Mentha x piperita clones. J. Agric. Food Chem., 1994, 42(3), 679-684.
[87]
Mahboubi, M. Mentha spicata L. essential oil, phytochemistry and its effectiveness in flatulence. J. Tradit. Complement. Med., 2021, 11(2), 75-81.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.011] [PMID: 33728265]
[88]
Shams, R.; Oldfield, E.C.; Copare, J.; Johnson, D.A. Peppermint oil: clinical uses in the treatment of gastrointestinal diseases. JSM Gastroenterol Hepatol., 2015, 3(1), 1035.
[89]
Khonche, A.; Fallah Huseini, H. abdi, H.; Mohtashami, R.; Nabati, F.; Kianbakht, S. Efficacy of Mentha pulegium extract in the treatment of functional dyspepsia: A randomized double-blind placebo-controlled clinical trial. J. Ethnopharmacol., 2017, 206, 267-273.
[http://dx.doi.org/10.1016/j.jep.2017.05.026] [PMID: 28571727]
[90]
Babaeian, M; Naseri, M; Kamalinejad, M; Ghaffari, F; Emadi, F; Feizi, A; Rafiei, R; Mazaheri, M; Hasheminejad, SA; Park, JW; Adibi, P The efficacy of Mentha longifolia in the treatment of patients with postprandial distress syndrome: A double-blind, randomized clinical trial. Scientific Information Database, 2017, 19(2), [e34538].
[http://dx.doi.org/10.5812/ircmj.34538]
[91]
Mazur, K.; Machaj, D.; Mazur, D.; Baran, M.; Płaczek, A. The use of peppermint oil in the treatment of irritable bowel syndrome. J. Educ. Health Sport, 2020, 10(6), 28-32.
[http://dx.doi.org/10.12775/JEHS.2020.10.06.003]
[92]
Khanna, R.; MacDonald, J.K.; Levesque, B.G. Peppermint oil for the treatment of irritable bowel syndrome: A systematic review and meta-analysis. J. Clin. Gastroenterol., 2014, 48(6), 505-512.
[http://dx.doi.org/10.1097/MCG.0b013e3182a88357] [PMID: 24100754]
[93]
Cash, B.D.; Epstein, M.S.; Shah, S.M. A novel delivery system of peppermint oil is an effective therapy for irritable bowel syndrome symptoms. Dig. Dis. Sci., 2016, 61(2), 560-571.
[http://dx.doi.org/10.1007/s10620-015-3858-7] [PMID: 26319955]
[94]
Madisch, A.; Miehlke, S.; Labenz, J.; Stracke, B.; Köhler, S. Effectiveness of Menthacarin on symptoms of irritable bowel syndrome. Wien. Med. Wochenschr., 2019, 169(5-6), 149-155.
[http://dx.doi.org/10.1007/s10354-018-0635-1] [PMID: 29728848]
[95]
Alammar, N.; Wang, L.; Saberi, B.; Nanavati, J.; Holtmann, G.; Shinohara, R.T.; Mullin, G.E. The impact of peppermint oil on the irritable bowel syndrome: A meta-analysis of the pooled clinical data. BMC Complement. Altern. Med., 2019, 19(1), 21.
[http://dx.doi.org/10.1186/s12906-018-2409-0] [PMID: 30654773]
[96]
Estrada-Soto, S.; González-Maldonado, D.; Castillo-España, P.; Aguirre-Crespo, F.; Sánchez-Salgado, J.C. Spasmolytic effect of Mentha pulegium L. involves ionic flux regulation in rat ileum strips. J. Smooth Muscle Res., 2010, 46(2), 107-117.
[http://dx.doi.org/10.1540/jsmr.46.107] [PMID: 20551591]
[97]
Heghes, S.C.; Vostinaru, O.; Rus, L.M.; Mogosan, C.; Iuga, C.A.; Filip, L. Antispasmodic effect of essential oils and their constituents: A review. Molecules, 2019, 24(9), 1675.
[http://dx.doi.org/10.3390/molecules24091675] [PMID: 31035694]
[98]
de Sousa, A.A.S.; Soares, P.M.G.; de Almeida, A.N.S.; Maia, A.R.; de Souza, E.P.; Assreuy, A.M.S. Antispasmodic effect of Mentha piperita essential oil on tracheal smooth muscle of rats. J. Ethnopharmacol., 2010, 130(2), 433-436.
[http://dx.doi.org/10.1016/j.jep.2010.05.012] [PMID: 20488237]
[99]
Moutinho, C.; Matos, C.; Neves, J.M.; Teixeira, D.M.; Cunha, S.; Gomes, L.R. Antispasmodic activity of aqueous extracts from Mentha x piperita native from Trás-osMontes region (Portugal). 2013, (29), 1167-1174.
[100]
dos Santos Negreiros, P.; da Costa, D.S.; da Silva, V.G.; de Carvalho Lima, I.B.; Nunes, D.B.; de Melo Sousa, F.B.; de Souza Lopes Araújo, T.; Medeiros, J.V.R.; dos Santos, R.F.; de Cássia Meneses Oliveira, R. Antidiarrheal activity of α-terpineol in mice. Biomed. Pharmacother., 2019, 110, 631-640.
[http://dx.doi.org/10.1016/j.biopha.2018.11.131] [PMID: 30540974]
[101]
Jalilzadeh-Amin, G.; Maham, M. Antidiarrheal activity and acute oral toxicity of Mentha longifolia L. essential oil. Avicenna J. Phytomed., 2015, 5(2), 128-137.
[PMID: 25949954]
[102]
Malekmohammad, K.; Rafieian-Kopaei, M.; Sardari, S.; Sewell, R.D.E. Toxicological effects of Mentha x piperita (peppermint): A review. Toxin Rev., 2021, 40(4), 445-459.
[http://dx.doi.org/10.1080/15569543.2019.1647545]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy