Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

A Comprehensive Review on the Importance of MiRNA-206 in the Animal Model and Human Diseases

Author(s): Wang Qi and Wei Guan*

Volume 22, Issue 6, 2024

Published on: 03 May, 2023

Page: [1064 - 1079] Pages: 16

DOI: 10.2174/1570159X21666230407124146

Price: $65

Abstract

MicroRNA-206 (miR-206) is a microRNA that is involved in many human diseases, such as myasthenia gravis, osteoarthritis, depression, cancers, etc. Both inhibition effects and progression roles of miR-206 have been reported for the past few years. High expression of miR-206 was observed in patients with osteoarthritis, gastric cancer and epithelial ovarian cancer compared to normal people. The study also showed that miR-206 promotes cancer progression in breast cancer patients and avascular necrosis of the femoral head. Meanwhile, several studies have shown that expression levels of miR-206 were down-regulated in laryngeal carcinoma cell multiplication, as well as in hepatocellular carcinoma, non-small lung cancer and infantile hemangioma. Moreover, miR-206 was up-regulated in the mild stage of amyotrophic lateral sclerosis patients and then down-regulated in the moderate and severe stages, indicating that miR-206 has the double effects of starting and aggravating the disease. In neuropsychiatric disorders, such as depression, miR-206 also plays an important role in the progression of the disease; the level of miR-206 is most highly expressed in the brains of patients with depression. In the current review, we summarize the role of miR-206 in various diseases, and miR-206 may be developed as a new biomarker for diagnosing diseases in the near future.

Graphical Abstract

[1]
Bartel, D.P. Metazoan microRNAs. Cell, 2018, 173(1), 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[2]
Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5), 855-862.
[http://dx.doi.org/10.1016/0092-8674(93)90530-4] [PMID: 8252622]
[3]
Axtell, M.J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol., 2013, 64(1), 137-159.
[http://dx.doi.org/10.1146/annurev-arplant-050312-120043] [PMID: 23330790]
[4]
Keam, S.; Hutvagner, G. tRNA-derived fragments (tRFs): Emerging new roles for an ancient RNA in the regulation of gene expression. Life, 2015, 5(4), 1638-1651.
[http://dx.doi.org/10.3390/life5041638] [PMID: 26703738]
[5]
Czech, B.; Munafò, M.; Ciabrelli, F.; Eastwood, E.L.; Fabry, M.H.; Kneuss, E.; Hannon, G.J. piRNA-guided genome defense: From biogenesis to silencing. Annu. Rev. Genet., 2018, 52(1), 131-157.
[http://dx.doi.org/10.1146/annurev-genet-120417-031441] [PMID: 30476449]
[6]
Borges, F.; Martienssen, R.A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol., 2015, 16(12), 727-741.
[http://dx.doi.org/10.1038/nrm4085] [PMID: 26530390]
[7]
Kim, K.; Nguyen, T.D.; Li, S.; Nguyen, T.A. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA, 2018, 24(7), 892-898.
[http://dx.doi.org/10.1261/rna.065862.118] [PMID: 29615481]
[8]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[9]
He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; Wang, X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci., 2020, 16(14), 2628-2647.
[http://dx.doi.org/10.7150/ijbs.47203] [PMID: 32792861]
[10]
Norouzi, M.; Yasamineh, S.; Montazeri, M.; Dadashpour, M.; Sheervalilou, R.; Abasi, M.; Pilehvar-Soltanahmadi, Y. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater. Sci. Eng. C, 2019, 104, 110007.
[http://dx.doi.org/10.1016/j.msec.2019.110007] [PMID: 31500008]
[11]
Huntzinger, E.; Izaurralde, E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet., 2011, 12(2), 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[12]
Liu, W.; Wang, X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol., 2019, 20(1), 18.
[http://dx.doi.org/10.1186/s13059-019-1629-z] [PMID: 30670076]
[13]
Salant, G.M.; Tat, K.L.; Goodrich, J.A.; Kugel, J.F. miR-206 knockout shows it is critical for myogenesis and directly regulates newly identified target mRNAs. RNA Biol., 2020, 17(7), 956-965.
[http://dx.doi.org/10.1080/15476286.2020.1737443] [PMID: 32129700]
[14]
Ma, G.; Wang, Y.; Li, Y.; Cui, L.; Zhao, Y.; Zhao, B.; Li, K. MiR-206, a key modulator of skeletal muscle development and disease. Int. J. Biol. Sci., 2015, 11(3), 345-352.
[http://dx.doi.org/10.7150/ijbs.10921] [PMID: 25678853]
[15]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[16]
Cai, X.; Hagedorn, C.H.; Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004, 10(12), 1957-1966.
[http://dx.doi.org/10.1261/rna.7135204] [PMID: 15525708]
[17]
Nguyen, T.A.; Jo, M.H.; Choi, Y.G.; Park, J.; Kwon, S.C.; Hohng, S.; Kim, V.N.; Woo, J.S. Functional anatomy of the human microprocessor. Cell, 2015, 161(6), 1374-1387.
[http://dx.doi.org/10.1016/j.cell.2015.05.010] [PMID: 26027739]
[18]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[19]
Bohnsack, M.T.; Czaplinski, K.; Görlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004, 10(2), 185-191.
[http://dx.doi.org/10.1261/rna.5167604] [PMID: 14730017]
[20]
Park, J.E.; Heo, I.; Tian, Y.; Simanshu, D.K.; Chang, H.; Jee, D.; Patel, D.J.; Kim, V.N. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature, 2011, 475(7355), 201-205.
[http://dx.doi.org/10.1038/nature10198] [PMID: 21753850]
[21]
Zhang, H.; Kolb, F.A.; Jaskiewicz, L.; Westhof, E.; Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell, 2004, 118(1), 57-68.
[http://dx.doi.org/10.1016/j.cell.2004.06.017] [PMID: 15242644]
[22]
Pan, J.Y.; Sun, C.C.; Bi, Z.Y.; Chen, Z.L.; Li, S.J.; Li, Q.Q.; Wang, Y.X.; Bi, Y.Y.; Li, D.J. miR-206/133b Cluster: A Weapon against Lung Cancer? Mol. Ther. Nucleic Acids, 2017, 8, 442-449.
[http://dx.doi.org/10.1016/j.omtn.2017.06.002] [PMID: 28918043]
[23]
McCarthy, J. MicroRNA-206: The skeletal muscle-specific myomiR. Biochim. Biophys. Acta. Gene Regul. Mech., 2008, 1779(11), 682-691.
[http://dx.doi.org/10.1016/j.bbagrm.2008.03.001] [PMID: 18381085]
[24]
Lagos-Quintana, M.; Rauhut, R.; Meyer, J.; Borkhardt, A.; Tuschl, T. New microRNAs from mouse and human. RNA, 2003, 9(2), 175-179.
[http://dx.doi.org/10.1261/rna.2146903] [PMID: 12554859]
[25]
Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; Lin, C.; Socci, N.D.; Hermida, L.; Fulci, V.; Chiaretti, S.; Foà, R.; Schliwka, J.; Fuchs, U.; Novosel, A.; Müller, R.U.; Schermer, B.; Bissels, U.; Inman, J.; Phan, Q.; Chien, M.; Weir, D.B.; Choksi, R.; De Vita, G.; Frezzetti, D.; Trompeter, H.I.; Hornung, V.; Teng, G.; Hartmann, G.; Palkovits, M.; Di Lauro, R.; Wernet, P.; Macino, G.; Rogler, C.E.; Nagle, J.W.; Ju, J.; Papavasiliou, F.N.; Benzing, T.; Lichter, P.; Tam, W.; Brownstein, M.J.; Bosio, A.; Borkhardt, A.; Russo, J.J.; Sander, C.; Zavolan, M.; Tuschl, T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007, 129(7), 1401-1414.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[26]
Vienberg, S.; Geiger, J.; Madsen, S.; Dalgaard, L.T. MicroRNAs in metabolism. Acta Physiol. , 2017, 219(2), 346-361.
[http://dx.doi.org/10.1111/apha.12681] [PMID: 27009502]
[27]
Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 2011, 39(Database), D152-D157.
[http://dx.doi.org/10.1093/nar/gkq1027] [PMID: 21037258]
[28]
Guan, W.; Xu, D.W.; Ji, C.H.; Wang, C.N.; Liu, Y.; Tang, W.Q.; Gu, J.H.; Chen, Y.M.; Huang, J.; Liu, J.F.; Jiang, B. Hippocampal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF. Pharmacol. Res., 2021, 174, 105932.
[http://dx.doi.org/10.1016/j.phrs.2021.105932] [PMID: 34628001]
[29]
Wang, A.; Chen, B.; Jian, S.; Cai, W.; Xiao, M.; Du, G. miR-206-G6PD axis regulates lipogenesis and cell growth in hepatocellular carcinoma cell. Anticancer Drugs, 2021, 32(5), 508-516.
[http://dx.doi.org/10.1097/CAD.0000000000001069] [PMID: 33735119]
[30]
Guo, S.; Gu, J.; Ma, J.; Xu, R.; Wu, Q.; Meng, L.; Liu, H.; Li, L.; Xu, Y. GATA4-driven miR-206-3p signatures control orofacial bone development by regulating osteogenic and osteoclastic activity. Theranostics, 2021, 11(17), 8379-8395.
[http://dx.doi.org/10.7150/thno.58052] [PMID: 34373748]
[31]
Lu, Z.; Wang, D.; Wang, X.; Zou, J.; Sun, J.; Bi, Z. MiR-206 regulates the progression of osteoporosis via targeting HDAC4. Eur. J. Med. Res., 2021, 26(1), 8.
[http://dx.doi.org/10.1186/s40001-021-00480-3] [PMID: 33461610]
[32]
Mytidou, C.; Koutsoulidou, A.; Zachariou, M.; Prokopi, M.; Kapnisis, K.; Spyrou, G.M.; Anayiotos, A.; Phylactou, L.A. Age-related exosomal and endogenous expression patterns of miR-1, miR-133a, miR-133b, and miR-206 in skeletal muscles. Front. Physiol., 2021, 12, 708278.
[http://dx.doi.org/10.3389/fphys.2021.708278] [PMID: 34867435]
[33]
Horak, M.; Novak, J.; Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol., 2016, 410(1), 1-13.
[http://dx.doi.org/10.1016/j.ydbio.2015.12.013] [PMID: 26708096]
[34]
Townley-Tilson, W.H.D.; Callis, T.E.; Wang, D. MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol., 2010, 42(8), 1252-1255.
[http://dx.doi.org/10.1016/j.biocel.2009.03.002] [PMID: 20619221]
[35]
Yamaura, Y.; Kanki, M.; Sasaki, D.; Nakajima, M.; Unami, A. Serum miR-206 as a biomarker for drug-induced skeletal muscle injury in rats. J. Toxicol. Sci., 2020, 45(8), 503-513.
[http://dx.doi.org/10.2131/jts.45.503] [PMID: 32741900]
[36]
Przanowska, R.K.; Sobierajska, E.; Su, Z.; Jensen, K.; Przanowski, P.; Nagdas, S.; Kashatus, J.A.; Kashatus, D.F.; Bhatnagar, S.; Lukens, J.R.; Dutta, A. miR-206 family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro. FASEB J., 2020, 34(6), 7687-7702.
[http://dx.doi.org/10.1096/fj.201902855RR] [PMID: 32277852]
[37]
Naseri, Z.; Kazemi Oskuee, R.; Jaafari, M.R.; Forouzandeh, M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int. J. Nanomedicine, 2018, 13, 7727-7747.
[http://dx.doi.org/10.2147/IJN.S182384] [PMID: 30538455]
[38]
Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.Á.; Bernad, A.; Sánchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun., 2011, 2(1), 282.
[http://dx.doi.org/10.1038/ncomms1285] [PMID: 21505438]
[39]
Mytidou, C.; Koutsoulidou, A.; Katsioloudi, A.; Prokopi, M.; Kapnisis, K.; Michailidou, K.; Anayiotos, A.; Phylactou, L.A. Muscle-derived exosomes encapsulate myomiRs and are involved in local skeletal muscle tissue communication. FASEB J., 2021, 35(2), e21279.
[http://dx.doi.org/10.1096/fj.201902468RR] [PMID: 33484211]
[40]
Ge, Y.; Chen, J. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J. Biol. Chem., 2012, 287(52), 43928-43935.
[http://dx.doi.org/10.1074/jbc.R112.406942] [PMID: 23115234]
[41]
Zhang, Y.; Yu, B.; He, J.; Chen, D. From nutrient to microRNA: A novel insight into cell signaling involved in skeletal muscle development and disease. Int. J. Biol. Sci., 2016, 12(10), 1247-1261.
[http://dx.doi.org/10.7150/ijbs.16463] [PMID: 27766039]
[42]
Mueller; Charles, inflammation and malnutrition. Topics Clin. Nutr., 2010, 26(1), 3-9.
[43]
Dalle, S.; Rossmeislova, L.; Koppo, K. The role of inflammation in age-related sarcopenia. Front. Physiol., 2017, 8, 1045.
[http://dx.doi.org/10.3389/fphys.2017.01045] [PMID: 29311975]
[44]
Aly, G.S.; Shaalan, A.H.; Mattar, M.K.; Ahmed, H.H.; Zaki, M.E.; Abdallah, H.R. Oxidative stress status in nutritionally stunted children. Gaz. Egypt. Paediatr. Assoc., 2014, 62(1), 28-33.
[http://dx.doi.org/10.1016/j.epag.2014.02.003]
[45]
Georgantas, R.W.; Streicher, K.; Greenberg, S.A.; Greenlees, L.M.; Zhu, W.; Brohawn, P.Z.; Higgs, B.W.; Czapiga, M.; Morehouse, C.A.; Amato, A.; Richman, L.; Jallal, B.; Yao, Y.; Ranade, K. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol., 2014, 66(4), 1022-1033.
[http://dx.doi.org/10.1002/art.38292] [PMID: 24757153]
[46]
Mitchelson, K.R.; Qin, W.Y. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J. Biol. Chem., 2015, 6(3), 162-208.
[http://dx.doi.org/10.4331/wjbc.v6.i3.162] [PMID: 26322174]
[47]
Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol., 2014, 88(4), 640-651.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[48]
Prince, M.J.; Wu, F.; Guo, Y.; Gutierrez Robledo, L.M.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The burden of disease in older people and implications for health policy and practice. Lancet, 2015, 385(9967), 549-562.
[http://dx.doi.org/10.1016/S0140-6736(14)61347-7] [PMID: 25468153]
[49]
Lee, S.T.; Chu, K.; Jung, K.H.; Kim, J.H.; Huh, J.Y.; Yoon, H.; Park, D.K.; Lim, J.Y.; Kim, J.M.; Jeon, D.; Ryu, H.; Lee, S.K.; Kim, M.; Roh, J.K. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann. Neurol., 2012, 72(2), 269-277.
[http://dx.doi.org/10.1002/ana.23588] [PMID: 22926857]
[50]
Tian, N.; Cao, Z.; Zhang, Y. MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 191-197.
[http://dx.doi.org/10.1007/s12264-013-1419-7] [PMID: 24604632]
[51]
Wang, C.N.; Wang, Y.J.; Wang, H.; Song, L.; Chen, Y.; Wang, J.L.; Ye, Y.; Jiang, B. The anti-dementia effects of donepezil involve miR-206-3p in the hippocampus and cortex. Biol. Pharm. Bull., 2017, 40(4), 465-472.
[http://dx.doi.org/10.1248/bpb.b16-00898] [PMID: 28123152]
[52]
Ghidoni, R.; Benussi, L.; Paterlini, A.; Albertini, V.; Binetti, G.; Emanuele, E. Cerebrospinal fluid biomarkers for Alzheimer’s disease: The present and the future. Neurodegener. Dis., 2011, 8(6), 413-420.
[http://dx.doi.org/10.1159/000327756] [PMID: 21709402]
[53]
Sala Frigerio, C.; Lau, P.; Salta, E.; Tournoy, J.; Bossers, K.; Vandenberghe, R.; Wallin, A.; Bjerke, M.; Zetterberg, H.; Blennow, K.; De Strooper, B. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology, 2013, 81(24), 2103-2106.
[http://dx.doi.org/10.1212/01.wnl.0000437306.37850.22] [PMID: 24212398]
[54]
Dangla-Valls, A.; Molinuevo, J.L.; Altirriba, J.; Sánchez-Valle, R.; Alcolea, D.; Fortea, J.; Rami, L.; Balasa, M.; Muñoz-García, C.; Ezquerra, M.; Fernández-Santiago, R.; Lleó, A.; Lladó, A.; Antonell, A. CSF microRNA profiling in Alzheimer’s disease: A screening and validation study. Mol. Neurobiol., 2017, 54(9), 6647-6654.
[http://dx.doi.org/10.1007/s12035-016-0106-x] [PMID: 27738874]
[55]
Sørensen, S.S.; Nygaard, A.B.; Christensen, T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia – an exploratory study. Transl. Neurodegener., 2016, 5(1), 6.
[http://dx.doi.org/10.1186/s40035-016-0053-5] [PMID: 26981236]
[56]
Müller, M.; Jäkel, L.; Bruinsma, I.B.; Claassen, J.A.; Kuiperij, H.B.; Verbeek, M.M. MicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluid. Mol. Neurobiol., 2016, 53(5), 2894-2899.
[http://dx.doi.org/10.1007/s12035-015-9156-8] [PMID: 25895659]
[57]
Zhang, Y.; Li, Q.; Liu, C.; Gao, S.; Ping, H.; Wang, J.; Wang, P. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology, 2016, 56, 139-149.
[http://dx.doi.org/10.1016/j.neuro.2016.07.004] [PMID: 27397902]
[58]
Zhu, Y.; Li, C.; Sun, A.; Wang, Y.; Zhou, S. Quantification of microRNA-210 in the cerebrospinal fluid and serum: Implications for Alzheimer’s disease. Exp. Ther. Med., 2015, 9(3), 1013-1017.
[http://dx.doi.org/10.3892/etm.2015.2179] [PMID: 25667669]
[59]
Liu, C.G.; Wang, J.L.; Li, L.; Wang, P.C. MicroRNA-384 regulates both amyloid precursor protein and β-secretase expression and is a potential biomarker for Alzheimer’s disease. Int. J. Mol. Med., 2014, 34(1), 160-166.
[http://dx.doi.org/10.3892/ijmm.2014.1780] [PMID: 24827165]
[60]
Shao, Y.; Xu, T. A study on the neuroprotective effect of miR-206-3p on Alzheimer’s disease mice by regulating brain-derived neurotrophic factor. Ann. Transl. Med., 2022, 10(2), 85.
[http://dx.doi.org/10.21037/atm-21-6601] [PMID: 35282109]
[61]
Fox, M.E.; Lobo, M.K. The molecular and cellular mechanisms of depression: A focus on reward circuitry. Mol. Psychiatry, 2019, 24(12), 1798-1815.
[http://dx.doi.org/10.1038/s41380-019-0415-3] [PMID: 30967681]
[62]
Blumberg, M.J.; Vaccarino, S.R.; McInerney, S.J. Procognitive effects of antidepressants and other therapeutic agents in major depressive disorder. J. Clin. Psychiatry, 2020, 81(4), 19r13200.
[http://dx.doi.org/10.4088/JCP.19r13200] [PMID: 32726521]
[63]
Li, Y.; Fan, C.; Wang, L.; Lan, T.; Gao, R.; Wang, W.; Yu, S.Y. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J. Clin. Invest., 2021, 131(16), e148853.
[http://dx.doi.org/10.1172/JCI148853] [PMID: 34228643]
[64]
O’Connor, R.M.; Grenham, S.; Dinan, T.G.; Cryan, J.F. microRNAs as novel antidepressant targets: Converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int. J. Neuropsychopharmacol., 2013, 16(8), 1885-1892.
[http://dx.doi.org/10.1017/S1461145713000448] [PMID: 23684180]
[65]
Yang, W.; Liu, M.; Zhang, Q.; Zhang, J.; Chen, J.; Chen, Q.; Suo, L. Knockdown of miR-124 reduces depression-like behavior by targeting CREB1 and BDNF. Curr. Neurovasc. Res., 2020, 17(2), 196-203.
[http://dx.doi.org/10.2174/1567202617666200319141755] [PMID: 32189593]
[66]
Chang, C.H.; Kuek, E.J.W.; Su, C.L.; Gean, P.W. MicroRNA-206 regulates stress-provoked aggressive behaviors in post-weaning social isolation mice. Mol. Ther. Nucleic Acids, 2020, 20, 812-822.
[http://dx.doi.org/10.1016/j.omtn.2020.05.001] [PMID: 32464545]
[67]
Hetman, M.; Kanning, K.; Cavanaugh, J.E.; Xia, Z. Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem., 1999, 274(32), 22569-22580.
[http://dx.doi.org/10.1074/jbc.274.32.22569] [PMID: 10428835]
[68]
Pang, P.T.; Teng, H.K.; Zaitsev, E.; Woo, N.T.; Sakata, K.; Zhen, S.; Teng, K.K.; Yung, W.H.; Hempstead, B.L.; Lu, B. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 2004, 306(5695), 487-491.
[http://dx.doi.org/10.1126/science.1100135] [PMID: 15486301]
[69]
Battle, D.E. Diagnostic and statistical manual of mental disorders (DSM). CoDAS, 2013, 25(2), 191-192.
[PMID: 24413388]
[70]
Marquesim, N.A.Q.; Cavassini, A.C.M.; Morceli, G.; Magalhães, C.G.; Rudge, M.V.C.; Calderon, I.M.P.; Kron, M.R.; Lima, S.A.M. Depression and anxiety in pregnant women with diabetes or mild hyperglycemia. Arch. Gynecol. Obstet., 2016, 293(4), 833-837.
[http://dx.doi.org/10.1007/s00404-015-3838-3] [PMID: 26408004]
[71]
Miao, Z.; Mao, F.; Liang, J.; Szyf, M.; Wang, Y.; Sun, Z.S. Anxiety-related behaviours associated with microRNA-206-3p and BDNF expression in pregnant female mice following psychological social stress. Mol. Neurobiol., 2018, 55(2), 1097-1111.
[http://dx.doi.org/10.1007/s12035-016-0378-1] [PMID: 28092086]
[72]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[73]
El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(12), 1118-1127.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[74]
Lian, Q.; Wang, S.; Zhang, G.; Wang, D.; Luo, G.; Tang, J.; Chen, L.; Gu, J. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteomics Bioinformatics, 2018, 16(4), 269-275.
[http://dx.doi.org/10.1016/j.gpb.2018.07.003] [PMID: 30266410]
[75]
Yang, Q.; Zhang, L.; Zhong, Y.; Lai, L.; Li, X. miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci. Rep., 2019, 39(5), BSR20181823.
[http://dx.doi.org/10.1042/BSR20181823] [PMID: 31048362]
[76]
Wang, Y.; Tai, Q.; Zhang, J.; Kang, J.; Gao, F.; Zhong, F.; Cai, L.; Fang, F.; Gao, Y. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression. Acta Biochim. Biophys. Sin., 2019, 51(3), 243-253.
[http://dx.doi.org/10.1093/abbs/gmy119] [PMID: 30805592]
[77]
Wu, X.; Wan, R.; Ren, L.; Yang, Y.; Ding, Y.; Wang, W. Circulating MicroRNA Panel as a Diagnostic Marker for Hepatocellular Carcinoma. Turk. J. Gastroenterol., 2022, 33(10), 844-851.
[http://dx.doi.org/10.5152/tjg.2022.21183] [PMID: 35943150]
[78]
Chen, J.; Aronowitz, P. Congestive heart failure. Med. Clin. North Am., 2022, 106(3), 447-458.
[http://dx.doi.org/10.1016/j.mcna.2021.12.002] [PMID: 35491065]
[79]
Kapiloff, M.S.; Emter, C.A. The cardiac enigma: Current conundrums in heart failure research. F1000 Res., 2016, 5, 72.
[http://dx.doi.org/10.12688/f1000research.7278.1] [PMID: 26918161]
[80]
Oliveira-Carvalho, V.; Silva, M.M.F.; Guimarães, G.V.; Bacal, F.; Bocchi, E.A. MicroRNAs: new players in heart failure. Mol. Biol. Rep., 2013, 40(3), 2663-2670.
[http://dx.doi.org/10.1007/s11033-012-2352-y] [PMID: 23242657]
[81]
Beuvink, I.; Kolb, F.A.; Budach, W.; Garnier, A.; Lange, J.; Natt, F.; Dengler, U.; Hall, J.; Filipowicz, W.; Weiler, J. A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res., 2007, 35(7), e52.
[http://dx.doi.org/10.1093/nar/gkl1118] [PMID: 17355992]
[82]
Limana, F.; Esposito, G.; D’Arcangelo, D.; Di Carlo, A.; Romani, S.; Melillo, G.; Mangoni, A.; Bertolami, C.; Pompilio, G.; Germani, A.; Capogrossi, M.C. HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3. PLoS One, 2011, 6(6), e19845.
[http://dx.doi.org/10.1371/journal.pone.0019845] [PMID: 21731608]
[83]
Yang, Y.; Del Re, D.P.; Nakano, N.; Sciarretta, S.; Zhai, P.; Park, J.; Sayed, D.; Shirakabe, A.; Matsushima, S.; Park, Y.; Tian, B.; Abdellatif, M.; Sadoshima, J. miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ. Res., 2015, 117(10), 891-904.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306624] [PMID: 26333362]
[84]
Liu, S.; Tang, L.; Zhao, X.; Nguyen, B.; Heallen, T.R.; Li, M.; Wang, J.; Wang, J.; Martin, J.F. Yap promotes noncanonical Wnt signals from cardiomyocytes for heart regeneration. Circ. Res., 2021, 129(8), 782-797.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318966] [PMID: 34424032]
[85]
Yan, Y.; Dang, H.; Zhang, X.; Wang, X.; Liu, X. The protective role of MiR-206 in regulating cardiomyocytes apoptosis induced by ischemic injury by targeting PTP1B. Biosci. Rep., 2020, 40(1), BSR20191000.
[http://dx.doi.org/10.1042/BSR20191000] [PMID: 31894853]
[86]
Reck, M.; Heigener, D.F.; Mok, T.; Soria, J.C.; Rabe, K.F. Management of non-small-cell lung cancer: recent developments. Lancet, 2013, 382(9893), 709-719.
[http://dx.doi.org/10.1016/S0140-6736(13)61502-0] [PMID: 23972814]
[87]
Reungwetwattana, T.; Weroha, S.J.; Molina, J.R. Oncogenic pathways, molecularly targeted therapies, and highlighted clinical trials in non-small-cell lung cancer (NSCLC). Clin. Lung Cancer, 2012, 13(4), 252-266.
[http://dx.doi.org/10.1016/j.cllc.2011.09.004] [PMID: 22154278]
[88]
Shi, L.; Zhang, B.; Sun, X.; Lu, S.; Liu, Z.; Liu, Y.; Li, H.; Wang, L.; Wang, X.; Zhao, C. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br. J. Cancer, 2014, 111(12), 2316-2327.
[http://dx.doi.org/10.1038/bjc.2014.580] [PMID: 25412236]
[89]
Kawami, M.; Takenaka, S.; Akai, M.; Yumoto, R.; Takano, M. Characterization of miR-34a-induced epithelial-mesenchymal transition in non-small lung cancer cells focusing on p53. Biomolecules, 2021, 11(12), 1853.
[http://dx.doi.org/10.3390/biom11121853] [PMID: 34944497]
[90]
Jia, K.G.; Feng, G.; Tong, Y.S.; Tao, G.Z.; Xu, L. miR-206 regulates non-small-cell lung cancer cell aerobic glycolysis by targeting hexokinase 2. J. Biochem., 2020, 167(4), 365-370.
[http://dx.doi.org/10.1093/jb/mvz099] [PMID: 31742336]
[91]
Chen, Z.; Gao, Y.J.; Hou, R.Z.; Ding, D.Y.; Song, D.F.; Wang, D.Y.; Feng, Y. MicroRNA-206 facilitates gastric cancer cell apoptosis and suppresses cisplatin resistance by targeting MAPK2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(1), 171-180.
[PMID: 30657558]
[92]
Xu, Z.; Zhu, C.; Chen, C.; Zong, Y.; Feng, H.; Liu, D.; Feng, W.; Zhao, J.; Lu, A. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1α/VEGF-A pathway in colorectal cancer. Cell Death Dis., 2018, 9(10), 974.
[http://dx.doi.org/10.1038/s41419-018-1010-2] [PMID: 30250188]
[93]
Guo, Z.; Jia, H.; Ge, J. MiR-206 suppresses proliferation and epithelial-mesenchymal transition of renal cell carcinoma by inhibiting CDK6 expression. Hum. Cell, 2020, 33(3), 750-758.
[http://dx.doi.org/10.1007/s13577-020-00355-5] [PMID: 32277426]
[94]
Liao, M.; Peng, L. MiR-206 may suppress non-small lung cancer metastasis by targeting CORO1C. Cell. Mol. Biol. Lett., 2020, 25(1), 22.
[http://dx.doi.org/10.1186/s11658-020-00216-x] [PMID: 32206066]
[95]
Wu, J.; Yang, T.; Li, X.; Yang, Q.; Liu, R.; Huang, J.; Li, Y.; Yang, C.; Jiang, Y. Alteration of serum miR-206 and miR-133b is associated with lung carcinogenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Toxicol. Appl. Pharmacol., 2013, 267(3), 238-246.
[http://dx.doi.org/10.1016/j.taap.2013.01.002] [PMID: 23337359]
[96]
Liu, Y.; Hua, Q.; Li, M.; Li, X.; Chen, W.; Zeng, H.; Diao, Q.; Shi, C.; Ling, Y.; Jiang, Y. Circular RNA circNIPBL promotes NNK-induced DNA damage in bronchial epithelial cells via the base excision repair pathway. Arch. Toxicol., 2022, 96(7), 2049-2065.
[http://dx.doi.org/10.1007/s00204-022-03297-z] [PMID: 35435490]
[97]
Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014, 513(7517), 202-209.
[http://dx.doi.org/10.1038/nature13480] [PMID: 25079317]
[98]
Ye, Y.W.; Dong, R.Z.; Zhou, Y.; Du, C.Y.; Wang, C.M.; Fu, H.; Shi, Y.Q. Prognostic analysis of familial gastric cancer in Chinese population. J. Surg. Oncol., 2011, 104(1), 76-82.
[http://dx.doi.org/10.1002/jso.21896] [PMID: 21400534]
[99]
Gupta, G.P.; Massagué, J. Cancer metastasis: Building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[100]
Zhang, Y.Z.; Zhang, L.H.; Gao, Y.; Li, C.H.; Jia, S.Q.; Liu, N.; Cheng, F.; Niu, D.Y.; Cho, W.C.; Ji, J.F.; Zeng, C.Q. Discovery and validation of prognostic markers in gastric cancer by genome-wide expression profiling. World J. Gastroenterol., 2011, 17(13), 1710-1717.
[http://dx.doi.org/10.3748/wjg.v17.i13.1710] [PMID: 21483631]
[101]
Yang, Q.; Zhang, C.; Huang, B.; Li, H.; Zhang, R.; Huang, Y.; Wang, J. Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur. J. Gastroenterol. Hepatol., 2013, 25(8), 953-957.
[http://dx.doi.org/10.1097/MEG.0b013e32835ed691] [PMID: 23751352]
[102]
Meyer, A.R.; Carducci, M.A.; Denmeade, S.R.; Markowski, M.C.; Pomper, M.G.; Pierorazio, P.M.; Allaf, M.E.; Rowe, S.P.; Gorin, M.A. Improved identification of patients with oligometastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann. Nucl. Med., 2019, 33(8), 617-623.
[http://dx.doi.org/10.1007/s12149-019-01371-8] [PMID: 31147927]
[103]
Kapoor, A. What's new in renal cell cancer research?, Can. Urol. Assoc. J., 2015, 9(5-6Suppl3), S154-S15.
[104]
White, N.M.A.; Yousef, G.M. MicroRNAs: Exploring a new dimension in the pathogenesis of kidney cancer. BMC Med., 2010, 8(1), 65.
[http://dx.doi.org/10.1186/1741-7015-8-65] [PMID: 20964839]
[105]
Pantuck, A.J.; Zisman, A.; Belldegrun, A.S. The changing natural history of renal cell carcinoma. J. Urol., 2001, 166(5), 1611-1623.
[http://dx.doi.org/10.1016/S0022-5347(05)65640-6] [PMID: 11586189]
[106]
Wei, C.; Wang, S.; Ye, Z.; Chen, Z. miR-206 inhibits renal cell cancer growth by targeting GAK. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2016, 36(6), 852-858.
[http://dx.doi.org/10.1007/s11596-016-1674-8] [PMID: 27924503]
[107]
Tenesa, A.; Dunlop, M.G. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat. Rev. Genet., 2009, 10(6), 353-358.
[http://dx.doi.org/10.1038/nrg2574] [PMID: 19434079]
[108]
Lin, T.Y.; Fan, C.W.; Maa, M.C.; Leu, T.H. Lipopolysaccharide-promoted proliferation of Caco-2 cells is mediated by c-Src induction and ERK activation. Biomedicine, 2015, 5(1), 5.
[http://dx.doi.org/10.7603/s40681-015-0005-x] [PMID: 25705585]
[109]
Park, Y.R.; Seo, S.Y.; Kim, S.L.; Zhu, S.M.; Chun, S.; Oh, J.M.; Lee, M.R.; Kim, S.H.; Kim, I.H.; Lee, S.O.; Lee, S.T.; Kim, S.W. MiRNA-206 suppresses PGE2-induced colorectal cancer cell proliferation, migration, and invasion by targetting TM4SF1. Biosci. Rep., 2018, 38(5), BSR20180664.
[http://dx.doi.org/10.1042/BSR20180664] [PMID: 30135139]
[110]
Bizhani, F.; Hashemi, M.; Danesh, H.; Nouralizadeh, A.; Narouie, B.; Bahari, G.; Ghavami, S. Association between single nucleotide polymorphisms in the PI3K/AKT/mTOR pathway and bladder cancer risk in a sample of Iranian population. EXCLI J., 2018, 17, 3-13.
[PMID: 29383014]
[111]
Tan, Y.G.; Eu, E.; Lau Kam On, W.; Huang, H.H. Pretreatment neutrophil-to-lymphocyte ratio predicts worse survival outcomes and advanced tumor staging in patients undergoing radical cystectomy for bladder cancer. Asian J. Urol., 2017, 4(4), 239-246.
[http://dx.doi.org/10.1016/j.ajur.2017.01.004] [PMID: 29387556]
[112]
Cao, H.L.; Liu, Z.J.; Huang, P.L.; Yue, Y.L.; Xi, J.N. lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3), 1012-1021.
[PMID: 30779067]
[113]
Zhang, G.; Zheng, D.; Yu, H.; Luo, X.; Wu, W. Ginkgo biloba extract ameliorates scopolamine-induced memory deficits via rescuing synaptic damage. Curr. Med. Sci., 2022, 42(3), 474-482.
[http://dx.doi.org/10.1007/s11596-022-2582-8] [PMID: 35678907]
[114]
Sambaiah, K.; Srinivasan, K. Influence of spices and spice principles on hepatic mixed function oxygenase system in rats. Indian J. Biochem. Biophys., 1989, 26(4), 254-258.
[PMID: 2628260]
[115]
Aqil, F.; Jeyabalan, J.; Munagala, R.; Ahmad, I.; Schultz, D.J.; Gupta, R.C. Cumin prevents 17β-estradiol-associated breast cancer in ACI rats. Int. J. Mol. Sci., 2021, 22(12), 6194.
[http://dx.doi.org/10.3390/ijms22126194] [PMID: 34201250]
[116]
Chen, Z.; Liu, L.; Gao, C.; Chen, W.; Vong, C.T.; Yao, P.; Yang, Y.; Li, X.; Tang, X.; Wang, S.; Wang, Y. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol., 2020, 258, 112895.
[http://dx.doi.org/10.1016/j.jep.2020.112895] [PMID: 32330511]
[117]
Zhang, S.Y.; Wang, F.; Zeng, X.J.; Huang, Z.; Dong, K.F. Astragalus polysaccharide ameliorates steroid-induced osteonecrosis of femoral head through MIR -206/HIF -1α/BNIP3 axis. Kaohsiung J. Med. Sci., 2021, 37(12), 1089-1100.
[http://dx.doi.org/10.1002/kjm2.12426] [PMID: 34338434]
[118]
White, M.C.; Holman, D.M.; Boehm, J.E.; Peipins, L.A.; Grossman, M.; Jane Henley, S. Age and cancer risk: A potentially modifiable relationship. Am. J. Prev. Med., 2014, 46(3)(Suppl. 1), S7-S15.
[http://dx.doi.org/10.1016/j.amepre.2013.10.029] [PMID: 24512933]
[119]
United Nations, Department of Economic and Social Affairs, Population Division United Nations (Ed.). World Population Ageing 2019 (ST/ESA/SER.A/444); United Nations, (2020).
[120]
Kilikevicius, A.; Meister, G.; Corey, D.R. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res., 2022, 50(2), 617-634.
[http://dx.doi.org/10.1093/nar/gkab1256] [PMID: 34967419]
[121]
Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet., 2022, 38(6), 613-626.
[http://dx.doi.org/10.1016/j.tig.2022.02.006] [PMID: 35303998]
[122]
Katoh, S.; Yoshioka, H.; Senthilkumar, R.; Preethy, S.; Abraham, S.J.K. Enhanced miRNA-140 expression of osteoarthritis-affected human chondrocytes cultured in a polymer based three-dimensional (3D) matrix. Life Sci., 2021, 278, 119553.
[http://dx.doi.org/10.1016/j.lfs.2021.119553] [PMID: 33932445]
[123]
Chow, M.Y.T.; Qiu, Y.; Lam, J.K.W.; Inhaled, R.N.A. Inhaled RNA therapy: From promise to reality. Trends Pharmacol. Sci., 2020, 41(10), 715-729.
[http://dx.doi.org/10.1016/j.tips.2020.08.002] [PMID: 32893004]
[124]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[125]
Narayan, N.; Morenos, L.; Phipson, B.; Willis, S.N.; Brumatti, G.; Eggers, S.; Lalaoui, N.; Brown, L.M.; Kosasih, H.J.; Bartolo, R.C.; Zhou, L.; Catchpoole, D.; Saffery, R.; Oshlack, A.; Goodall, G.J.; Ekert, P.G. Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia. Leukemia, 2017, 31(4), 808-820.
[http://dx.doi.org/10.1038/leu.2016.279] [PMID: 27740637]
[126]
Wang, D.; Sun, X.; Wei, Y.; Liang, H.; Yuan, M.; Jin, F.; Chen, X.; Liu, Y.; Zhang, C.Y.; Li, L.; Zen, K. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res., 2018, 46(4), 2012-2029.
[http://dx.doi.org/10.1093/nar/gkx1254] [PMID: 29253196]
[127]
Lu, Z.; Liu, M.; Stribinskis, V.; Klinge, C.M.; Ramos, K.S.; Colburn, N.H.; Li, Y. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 2008, 27(31), 4373-4379.
[http://dx.doi.org/10.1038/onc.2008.72] [PMID: 18372920]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy