Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Abstract

Introduction: Despite numerous scientific advances, cancer continues to be one of the main causes of death in the world. This situation has driven the search for promising molecules. Lichen substances have been widely described for their pharmacological potential.

Objective: The present study evaluated the antitumour potential of a depsidone isolated from Parmotrema concurrens– salazinic acid (SAL) – through in vitro, in vivo and in silico studies.

Methods: The molecule was isolated from the acetonic extract of the lichen and recrystallized in acetone. The macrophage J774, sarcoma-180 and MDA-MB-231 cell lines were used for the MTT cytotoxicity assay. The antitumor assay used a murine model (Swiss albino mice) with sarcoma-180. The animals were treated for seven consecutive days with doses of SAL (25 and 50 mg/kg) and 5-fluorouracil (20 mg/kg).

Results: Its purity was determined using high-performance liquid chromatography (94%), and its structure was confirmed by H1 and C13 nuclear magnetic resonance. SAL was not considered toxic to cancer cell lines, showing cell viability rates of 79.49 ± 4.15% and 86.88 ± 1.02% for sarcoma-180 and MDA-MB-231, respectively. The tumour inhibition rate was greater than 80% in the animals treated with SAL and 65% for those that received 5-fluorouracil. Simulations of molecular dynamics to estimate the flexibility of the interactions between human thymidylate synthase and derivatives of SAL and 5-fluorouracil revealed that SAL exhibited greater enzymatic interaction capacity, with highly favourable energy, compared to 5-fluorouracil.

Conclusion: The present results demonstrate the potential of salazinic acid as a tumour inhibition agent.

« Previous
Graphical Abstract

[1]
Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res., 2018, 24(2), 266-275.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1117] [PMID: 28765323]
[2]
Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3855-3864.
[http://dx.doi.org/10.26355/eurrev201806-15270] [PMID: 29949179]
[3]
Abotaleb, M.; Kubatka, P.; Caprnda, M.; Varghese, E.; Zolakova, B.; Zubor, P.; Opatrilova, R.; Kruzliak, P.; Stefanicka, P.; Büsselberg, D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed. Pharmacother., 2018, 101, 458-477.
[http://dx.doi.org/10.1016/j.biopha.2018.02.108] [PMID: 29501768]
[4]
Kapinova, A.; Kubatka, P.; Golubnitschaja, O.; Kello, M.; Zubor, P.; Solar, P.; Pec, M. Dietary phytochemicals in breast cancer research: Anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med., 2018, 23(1), 36.
[http://dx.doi.org/10.1186/s12199-018-0724-1] [PMID: 30092754]
[5]
Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15(3), 421-432.
[http://dx.doi.org/10.1007/s10456-012-9270-4] [PMID: 22669534]
[6]
Barroso, M.M.C.; Alves, R.T.; Santos, S.T.D.; Pacífico Cavalcanti-Neto, M.; Pereira da Silva Santos, N.; Gonçalves da Silva, T.; Amanajás Aguiar-Junior, F.C.; da Silva Falcão, E.P.; Pereira, E.C.; da Silva, N.H. In vitro and in vivo antineoplastic activity of barbatic acid. Int. Arch. Med., 2016, 1-9.
[http://dx.doi.org/10.3823/1934]
[7]
Santos, G.J.L.; Oliveira, E.S.; Pinheiro, A.D.N.; da Costa, P.M.; de Freitas, J.C.C.; de Araújo, S.F.G.; Maia, F.M.M.; de Morais, S.M.; Nunes-Pinheiro, D.C.S. Himatanthus drasticus (Apocynaceae) latex reduces oxidative stress and modulates CD4+, CD8+, FoxP3+ and HSP-60+ expressions in Sarcoma 180-bearing mice. J. Ethnopharmacol., 2018, 220, 159-168.
[http://dx.doi.org/10.1016/j.jep.2017.09.043] [PMID: 29079220]
[8]
Alexandrino, C.A.F.; Honda, N.K.; Matos, M.F.C.; Portugal, L.C.; Souza, P.R.B.; Perdomo, R.T.; Guimarães, R.C.A.; Kadri, M.C.T.; Silva, M.C.B.L.; Bogo, D. Antitumor effect of depsidones from lichens on tumor cell lines and experimental murine melanoma. Rev. Bras. Farmacogn., 2019, 29(4), 449-456.
[http://dx.doi.org/10.1016/j.bjp.2019.04.005]
[9]
Souza, M.V.N.; Pinheiro, A.C.; Ferreira, M.L.; Gonçalves, R.S.B. Lima, CHC natural products in advance clinical trials applied to cancer. Rev Fit., 2007, 3, 25-42.
[http://dx.doi.org/10.32712/2446-4775.2007.72]
[10]
Hale- JR. M.E The Biology of Lichens, 3rd ed; Edward Arnold Pub.: London, 1983.
[11]
Ebrahim, H.Y.; Elsayed, H.E.; Mohyeldin, M.M.; Akl, M.R.; Bhattacharjee, J.; Egbert, S.; El Sayed, K.A. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting C-Met. Phytother. Res., 2016, 30(4), 557-566.
[http://dx.doi.org/10.1002/ptr.5551] [PMID: 26744260]
[12]
Zuo, S.; Wang, L.; Zhang, Y.; Zhao, D.; Li, Q.; Shao, D.; Fang, X. Usnic acid induces apoptosis via an ROS-dependent mitochondrial pathway in human breast cancer cells in vitro and in vivo. RSC Advances, 2015, 5(1), 153-162.
[http://dx.doi.org/10.1039/C4RA12340A]
[13]
Solár, P.; Hrčková, G.; Koptašíková, V.; Velebný, S.; Solárová, Z.; Bačkor, M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem. Biol. Interact., 2016, 250, 27-37.
[http://dx.doi.org/10.1016/j.cbi.2016.03.012] [PMID: 26969521]
[14]
Zhou, R.; Yang, Y.; Park, S.Y.; Nguyen, T.T.; Seo, Y.W.; Lee, K.H.; Lee, J.H.; Kim, K.K.; Hur, J.S.; Kim, H. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci. Rep., 2017, 7(1), 8136.
[http://dx.doi.org/10.1038/s41598-017-08225-1] [PMID: 28811522]
[15]
Geng, X.; Zhang, X.; Zhou, B.; Zhang, C.; Tu, J.; Chen, X.; Wang, J.; Gao, H.; Qin, G.; Pan, W. Usnic acid induces cycle arrest, apoptosis, and autophagy in gastric cancer cells in vitro and in vivo. Med. Sci. Monit., 2018, 24, 556-566.
[http://dx.doi.org/10.12659/MSM.908568] [PMID: 29374767]
[16]
Jain, A.P.; Bhearkar, S.; Rai, G.; Yadav, A.K. Evaluation of Parmotrema reticulatum taylor for antibacterial and antiinflammatory activities. Ind J. Pharm. Sci., 2016, 7, 94-102.
[17]
Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.; Altucci, L.; Bontempo, P. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int. J. Mol. Sci., 2015, 16(12), 7861-7875.
[http://dx.doi.org/10.3390/ijms16047861] [PMID: 25860944]
[18]
da Luz, J.S.B.; de Oliveira, E.B.; Martins, M.C.B.; Silva, N.H.; Alves, L.C.; dos Santos, F.A.B.; da Silva, L.L.S.; Silva, E.C.; de Medeiros, P.L. Ultrastructural analysis of Leishmania infantum chagasi promastigotes forms treated in vitro with usnic acid. Scien. W. J., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/617401] [PMID: 25767824]
[19]
Moreira, A.S.N.; Fernandes, R.O.S.; Lemos, F.J.A.; Braz-Filho, R.; Vieira, I.J.C. Larvicidal activity of Ramalina usnea lichen against Aedes aegypti. Rev. Bras. Farmacogn., 2016, 26(4), 530-532.
[http://dx.doi.org/10.1016/j.bjp.2016.03.006]
[20]
Khader, S.Z.A.; Ahmed, S.S.Z.; Venkatesh, K.P.; Chinnaperumal, K.; Nayaka, S. Larvicidal potential of selected indigenous lichens against three mosquito species–Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. Chin. Herb. Med., 2018, 10(2), 152-156.
[http://dx.doi.org/10.1016/j.chmed.2018.03.002]
[21]
Jain, P.K. Jain, A.P. Effect of Parmotrema reticulatum lichens on dermal wound healing with possible antioxidant and antibacterial mechanism. Asian J. Pharm. Pharmacol., 2016, 10-14.
[22]
Micheletti, A.C.; Beatriz, A.; Lima, D.P.; Honda, N.K.; Pessoa, C.Ó.; Moraes, M.O.; Lotufo, L.V.; Magalhães, H.I.F.; Carvalho, N.C.P. Chemical constituents of Parmotrema lichexanthonicum Eliasaro & Adler: Isolation, structural modifications and evaluation of antibiotic and cytotoxic activities. Quim. Nova, 2009, 32(1), 12-20.
[http://dx.doi.org/10.1590/S0100-40422009000100003]
[23]
Culberson, C.F. Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. J. Chromatogr. A, 1972, 72(1), 113-125.
[http://dx.doi.org/10.1016/0021-9673(72)80013-X] [PMID: 5072880]
[24]
Legaz, M.E.; Vicente, C. Endogenous inactivators of arginase, arginine decarboxilase e agmnatine amidinohydrolase in Evernia prusnatri thallus. Plant Physiol., 1983, 71(2), 300-302.
[http://dx.doi.org/10.1104/pp.71.2.300] [PMID: 16662821]
[25]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[26]
da Silva, M.M.; Rocha, T.A.; de Moura, D.F.; Chagas, C.A.; de Aguiar Júnior, F.C.A.; da Silva Santos, N.P.; Da Silva Sobral, R.V.; do Nascimento, J.M.; Lima Leite, A.C.; Pastrana, L.; Costa, R.M.P.B..; Nascimento, T.P.; Porto, A.L.F. Effect of acute exposure in swiss mice (Mus musculus) to a fibrinolytic protease produced by Mucor subtilissimus UCP 1262: An histomorphometric, genotoxic and cytological approach. Regul. Toxicol. Pharmacol., 2019, 103, 282-291.
[http://dx.doi.org/10.1016/j.yrtph.2019.02.009] [PMID: 30790607]
[27]
Geran, R.I.; Greenberg, H.M.; McDonald, M.; Abbott, B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep., 1972, 33, 1-17.
[28]
BIOVIA discovery studio visualizer. 2020. Available from:https://discover.3ds.com/discovery-studio-visualizer-download
[29]
PubChem databank. 2020. Available from:https://pubchem.ncbi.nlm.nih.gov/
[30]
Avogadro program 2020. Available from:https://avogadro.cc/
[31]
MetaSite program of Moldiscovery 2020. Available from:https://www.moldiscovery.com/software/metasite/
[32]
Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S. Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. J. Chem. Inf. Model., 2006, 46(1), 380-391.
[http://dx.doi.org/10.1021/ci050283k] [PMID: 16426072]
[33]
da Silva-Junior, E.F.; Barcellos, F.P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr. Computeraided Drug Des., 2018, 14(1), 68-78.
[http://dx.doi.org/10.2174/1573409913666170519112758] [PMID: 28523999]
[34]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[35]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[36]
Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated force field Topology Builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037.
[http://dx.doi.org/10.1021/ct200196m] [PMID: 26598349]
[37]
Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem., 1964, (3), 441-451.
[38]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[39]
Falcão, E.P.S.; Silva, N.H.; Gusmão, N.B.; Ribeiro, S.M.; Pereira, E.C. Antimicrobial activity of phenolic derivatives of lichen. Acta Bot. Bras., 2004, 18, 911-918.
[http://dx.doi.org/10.1590/S0102-33062004000400022]
[40]
Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine, 2012, 19(13), 1166-1172.
[http://dx.doi.org/10.1016/j.phymed.2012.07.012] [PMID: 22921748]
[41]
Huneck, S.; Yoshimura, I. Identification of lichen substances; Springer: New York, 1996.
[http://dx.doi.org/10.1007/978-3-642-85243-5]
[42]
Eifler-Lima, V.L.; Sperry, A.; Sinbandhit, S.; Boustie, J.; Tomasi, S.; Schenkel, E. NMR spectral data of salazinic acid isolated from some species ofParmotrema. Magn. Reson. Chem., 2000, 38(6), 472-474.
[http://dx.doi.org/10.1002/1097-458X(200006)38:6<472:AID-MRC658>3.0.CO;2-P]
[43]
Paluszczak, J.; Kleszcz, R.; Studzińska-Sroka, E.; Krajka-Kuźniak, V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol. Cell. Biochem., 2018, 441(1-2), 109-124.
[http://dx.doi.org/10.1007/s11010-017-3178-7] [PMID: 28887754]
[44]
Liu, X.; Zheng, L.; Zhang, R.; Liu, G.; Xiao, S.; Qiao, X.; Wu, Y.; Gong, Z. Toxicological evaluation of advanced glycation end product Nε-(carboxymethyl)lysine: Acute and subacute oral toxicity studies. Regul. Toxicol. Pharmacol., 2016, 77, 65-74.
[http://dx.doi.org/10.1016/j.yrtph.2016.02.013] [PMID: 26921796]
[45]
Aniagu, S.O.; Nwinyi, F.C.; Akumka, D.D.; Ajoku, G.A.; Dzarma, S.; Izebe, K.S.; Ditse, M.; Nwaneri, P.E.C.; Wambebe, C.; Gamaniel, K. Toxicity studies in rats fed nature cure bitters. Afr. J. Biotechnol., 2005, 4, 72-78.
[46]
Silva, M.M.; Nascimento, T.P.; Porto, A.L.F. The importance of Sarcoma-180 as valid model to determine the toxicity and antitumor activity of molecules extracts. Int. J. Recent Acad. Res., 2019, 01, 433-437.
[47]
Debnath, S.; Karan, S.; Debnath, M.; Dash, J.; Chatterjee, T.K. Poly-L-lysine inhibits tumor angiogenesis and induces apoptosis in Ehrlich ascites carcinoma and in sarcoma S-180 tumor. Asian Pac. J. Cancer Prev., 2017, 18(8), 2255-2268.
[http://dx.doi.org/10.22034/APJCP.2017.18.8.2255] [PMID: 28843265]
[48]
Longley, D.B.; Allen, W.L.; McDermott, U.; Wilson, T.R.; Latif, T.; Boyer, J.; Lynch, M.; Johnston, P.G. The roles of thymidylate synthase and p53 in regulating Fas-mediated apoptosis in response to antimetabolites. Clin. Cancer Res., 2004, 10(10), 3562-3571.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0532] [PMID: 15161716]
[49]
Almeida, V.L.; Leitão, A.; Reina, L.C.B.; Montanari, C.A.; Donnici, C.L.; Lopes, M.T.P. Cancer and cell-cycle-specific and cell-cycle non-specific DNA-interacting antineoplastic agents: An introduction. Quim. Nova, 2005, 28(1), 118-129.
[http://dx.doi.org/10.1590/S0100-40422005000100021]
[50]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[51]
Zhao, T.; Mao, G.; Zhang, M.; Zou, Y.; Feng, W.; Gu, X.; Zhu, Y.; Mao, R.; Yang, L.; Wu, X. Enhanced antitumor and reduced toxicity effect of Schisanreae polysaccharide in 5-Fu treated Heps-bearing mice. Int. J. Biol. Macromol., 2014, 63, 114-118.
[52]
Cireşan, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. Med. Image Comput. Comput. Assist. Interv., 2013, 16(2), 411-418.
[http://dx.doi.org/10.1007/978-3-642-40763-5_51]
[53]
Veta, M.; van Diest, P.J.; Pluim, J.P.W. Detecting mitotic figures in breast cancer histopathology images. Med Imaging: Digit Pathol., 2013, 8676, 867607.
[http://dx.doi.org/10.1117/12.2006626]
[54]
van Diest, P.J.; van der Wall, E.; Baak, J.P.A. Prognostic value of proliferation in invasive breast cancer: A review. J. Clin. Pathol., 2004, 57(7), 675-681.
[http://dx.doi.org/10.1136/jcp.2003.010777] [PMID: 15220356]
[55]
Ludovic, R.; Daniel, R.; Nicolas, L.; Maria, K.; Humayun, I.; Jacques, K.; Frédérique, C.; Catherine, G.; Gilles, L.N.; Metin, N.G. Mitosis detection in breast cancer histological images An ICPR 2012 contest. J. Pathol. Inform., 2013, 4(1), 8.
[http://dx.doi.org/10.4103/2153-3539.112693] [PMID: 23858383]
[56]
Singh, D.; Cho, W.C.; Upadhyay, G. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview. Front. Physiol., 2016, 6, 363.
[http://dx.doi.org/10.3389/fphys.2015.00363] [PMID: 26858648]
[57]
Mukesh, K.S.; Ganesh, N.S.; Vishal, V.; Ranjan, B. Hepatotoxicity: A major complication with critical treatment. MOJ Toxicol., 2015, 1(3), 114-120.
[http://dx.doi.org/10.15406/mojt.2015.01.00016]
[58]
Marinho, K.S.N.; Antonio, E.A.; Silva, C.V.N.S.; Silva, K.T.; Teixeira, V.W.; Aguiar-Júnior, F.C.A.; Santos, K.R.R.P.; Silva, N.H. Hepatic toxicity caused by PLGA-microspheres containing usnic acid from the lichen C ladonia substellata (AHTI) during pregnancy in Wistar rats. An. Acad. Bras. Cienc., 2017, 89(2), 1073-1084.
[59]
Arii, S.; Imamura, M. Physiological role of sinusoidal endothelial cells and Kupffer cells and their implication in the pathogenesis of liver injury. J. Hepatobiliary Pancreat. Surg., 2000, 7(1), 40-48.
[http://dx.doi.org/10.1007/s005340050152] [PMID: 10982590]
[60]
Barnett, L.M.A.; Cummings, B.S. Cellular and molecular mechanisms of kidney toxicity. Semin. Nephrol., 2019, 39(2), 141-151.
[http://dx.doi.org/10.1016/j.semnephrol.2018.12.004] [PMID: 30827337]
[61]
El-Shenawy, N.S.; Hamza, R.Z.; Khaled, H.E. Protective effect of α–lipoic acid against spleen toxicity of dimethylnitrosamine in male mice: Antioxidant and ultrastructure approaches. Biomed. Pharmacother., 2017, 96, 459-465.
[http://dx.doi.org/10.1016/j.biopha.2017.10.010] [PMID: 29031205]
[62]
Crăciunaş, C.; Crăciun, C.; Crăciun, V.; Dordea, M.; Toader-Radu, M. Ultrastructural effects of certain cytostatics on rat spleen. Curr. Probl. Techn. Cell. Mole. Biol., 1996, 1, 311-317.
[63]
Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem., 2005, 48(22), 6970-6979.
[http://dx.doi.org/10.1021/jm050529c] [PMID: 16250655]
[64]
Pozzi, C.; Ferrari, S.; Luciani, R.; Costi, M.; Mangani, S. Structural and functional characterization of the Human Thymidylate Synthase (hTS) Interface Variant R175C, new perspectives for the development of hTS inhibitors. Molecules, 2019, 24(7), 1362.
[http://dx.doi.org/10.3390/molecules24071362] [PMID: 30959951]
[65]
Choi, Y.M.; Yeo, H.K.; Park, Y.W.; Lee, J.Y. Structural analysis of thymidylate synthase from Kaposi’s sarcoma-associated herpesvirus with the anticancer drug raltitrexed. PLoS One, 2016, 11(12), e0168019.
[http://dx.doi.org/10.1371/journal.pone.0168019] [PMID: 27936107]
[66]
Chen, D.; Jansson, A.; Sim, D.; Larsson, A.; Nordlund, P. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. J. Biol. Chem., 2017, 292(32), 13449-13458.
[http://dx.doi.org/10.1074/jbc.M117.787267] [PMID: 28634233]
[67]
Kukol, A. Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. Chem., 2011, 46(9), 4661-4664.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.026] [PMID: 21640444]
[68]
Phan, J.; Koli, S.; Minor, W.; Dunlap, R.B.; Berger, S.H.; Lebioda, L. Human thymidylate synthase is in the closed conformation when complexed with dUMP and raltitrexed, an antifolate drug. Biochemistry, 2001, 40(7), 1897-1902.
[http://dx.doi.org/10.1021/bi002413i] [PMID: 11329255]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy