Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Synthesis, Characterization, and Evaluation of Antioxidant Activities of 2-(1-(Substituted phenyl)ethylidene)-1-(4,6-dimethylpyrimidin-2-yl)hydrazines

Author(s): Monika Sihag, Rinku Soni, Neha Rani, Mayank Kinger, Manjusha Choudhary and Deepak Kumar Aneja*

Volume 21, Issue 10, 2024

Published on: 20 April, 2023

Page: [1593 - 1603] Pages: 11

DOI: 10.2174/1570180820666230405113026

Price: $65

Abstract

Background: Pyrimidine and hydrazones are well known for their therapeutic applications.

Objective: To investigate the antioxidant activities of compounds having pyrimidine and hydrazone motifs in hope of finding molecules with robust antioxidant activities.

Methods: Hydrazones were obtained by condensing pyrimidine hydrazine with aromatic ketones. The structures of these compounds were established on the basis of NMR, FTIR and mass spectral data analysis.

Results: All compounds were assessed for their antioxidant potential against DPPH, hydrogen peroxide, nitric oxide and superoxide free radicals.

Conclusion: A series of twelve 2-(1-(substituted phenyl)ethylidene)-1-(4,6-dimethylpyrimidin-2-yl)hydrazines was synthesized and compounds 6d, 6e, 6h, and 6j found to have good antioxidant activities.

Next »
[1]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12(1), 38.
[http://dx.doi.org/10.1186/s13065-018-0406-5] [PMID: 29619583]
[2]
Abdellatif, K.R.A.; Bakr, R.B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res., 2021, 30(1), 31-49.
[http://dx.doi.org/10.1007/s00044-020-02656-8]
[3]
Nassar, I.F.; Farargy, A.F.E.; Abdelrazek, F.M.; Hamza, Z. Novel uracil derivatives depicted potential anticancer agents: In vitro, molecular docking, and ADME study. Nucleos. Nucleot. Nucl., 2020, 39, 991-1010.
[http://dx.doi.org/10.1080/15257770.2020.1736300]
[4]
Omar, A.M.; Abd El Razik, H.A.; Hazzaa, A.A.; El-Attar, M.A.Z.; El Demellawy, M.A.; Abdel Wahab, A.E.; El Hawash, S.A.M. New pyrimidines and triazolopyrimidines as antiproliferative and antioxidants with cyclooxygenase-1/2 inhibitory potential. Future Med. Chem., 2019, 11(13), 1583-1603.
[http://dx.doi.org/10.4155/fmc-2018-0285] [PMID: 31469327]
[5]
El-Shamy, N.T.; Alkaoud, A.M.; Hussein, R.K.; Ibrahim, M.A.; Alhamzani, A.G.; Abou-Krisha, M.M. DFT, ADMET and Molecular Docking Investigations for the Antimicrobial Activity of 6,6′-Diamino-1,1′,3,3′-tetramethyl-5,5′-(4-chlorobenzylidene)bis.[pyri-midine-2,4(1H,3H)-dione]. Molecules, 2022, 27(3), 620.
[http://dx.doi.org/10.3390/molecules27030620] [PMID: 35163880]
[6]
Suryanarayana, K.; Maddila, S.; Nagaraju, K.; Jonnalagadda, S.B. Design, synthesis, docking study and biological evaluation of novel thieno[2,3-d]-pyrimidine tethered 1,2,3-triazole scaffolds. J. Mol. Struct., 2022, 1250, 131713.
[http://dx.doi.org/10.1016/j.molstruc.2021.131713]
[7]
Akbas, E.; Ergan, E.; Sahin, E.; Ekin, S.; Cakir, M.; Karakus, Y. Synthesis, characterization, antioxidant properties and DFT calculation of some new pyrimidine derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(8), 796-802.
[http://dx.doi.org/10.1080/10426507.2018.1550489]
[8]
Lavanya, M.; Asharani, I.V.; Thirumalai, D. One pot multi‐component synthesis of functionalized spiropyridine and pyrido[2,3‐ d]pyrimidine scaffolds and their potent in vitro anti‐inflammatory and anti‐oxidant investigations. Chem. Biol. Drug Des., 2019, 93(4), 464-472.
[http://dx.doi.org/10.1111/cbdd.13434] [PMID: 30393996]
[9]
Divekar, K.S.R.; Vedigounder, M.H.S. Synthesis, characterization and evaluation of some newer pyrimidine derivatives as Anti-inflammatory Agents. Res. J. Pharma. Technol., 2021, 14, 2529-2534.
[http://dx.doi.org/10.52711/0974-360X.2021.00445]
[10]
Khedkar, S.A.; Patil, J.S.; Sabale, P.M. Virtual analysis of condensed pyrimidine derivatives as COX II inhibitors potential anti-inflammatory agents. Res. J. Pharma. Technol., 2021, 14, 5423-5426.
[http://dx.doi.org/10.52711/0974-360X.2021.00945]
[11]
Morgan, J.; Haritakul, R.; Keller, P. Antimalarial activity of 2, 4-diaminopyrimidines. Lett. Drug Des. Discov., 2008, 5(4), 277-280.
[http://dx.doi.org/10.2174/157018008784619843]
[12]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Sinha, S.; Chauhan, P.M.S. A small library of trisubstituted pyrimidines as antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2005, 15(23), 5218-5221.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.053] [PMID: 16171994]
[13]
Rollas, S.; Küçükgüzel, S. Biological activities of hydrazone derivatives. Molecules, 2007, 12(8), 1910-1939.
[http://dx.doi.org/10.3390/12081910] [PMID: 17960096]
[14]
Ranea, R.A.; Telvekar, V.N. Synthesis and antimicrobial activity of new pyrimidine-hydrazones. Bioorg. Med. Chem. Lett., 2010, 20, 5681-5685.
[15]
Pandeya, S.N.; Srivastava, S.K.; Rai, P.; Singh, A. Synthesis and anticonvulsant activity of pyrimidine hydrazones. J. Sci. Res. Pharm., 2012, 1, 92-97.
[16]
Coimbra, E.S.; Antinarelli, L.M.R.; da Silva, A.D.; Bispo, M.L.F.; Kaiser, C.R.; de Souza, M.V.N. 7-Chloro-4-quinolinyl hydrazones: A promising and potent class of antileishmanial compounds. Chem. Biol. Drug Des., 2013, 81(5), 658-665.
[http://dx.doi.org/10.1111/cbdd.12112] [PMID: 23350797]
[17]
Coimbra, E.S.; da Silva, A.D.; Dias, R.M.P.; Corrales, R.C.N.R.; Bispo, M.L.F.; Kaiser, C.R.; de Souza, M.V.N. Amodiaquine analogs. Synthesis and anti-leishmanial activity. Mediterr. J. Chem., 2011, 1(3), 106-113.
[http://dx.doi.org/10.13171/mjc.1.3.2011.26.09.22]
[18]
El-Adl, K.; Ibrahim, M.K.; Khedr, F.; Abulkhair, H.S.; Eissa, I.H. Design, synthesis, docking, and anticancer evaluations of phthalazines as VEGFR‐2 inhibitors. Arch. Pharm., 2022, 355(1), 2100278.
[http://dx.doi.org/10.1002/ardp.202100278]
[19]
Horiuchi, T.; Chiba, J.; Uoto, K.; Soga, T. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of Cyclin D1-CDK4: Synthesis, biological evaluation, and structure–activity relationships. Bioorg. Med. Chem. Lett., 2009, 19(2), 305-308.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.090] [PMID: 19091560]
[20]
Sevim, R.; Guniz, K.S. Biologically active pyrimidine hydrazones. Molecules, 2007, 12, 1910-1939.
[21]
Govindasami, T.; Pandey, A.; Palanivelu, N.; Pandey, A. Synthesis, characterization and antibacterial activity of biologically important vanillin related hydrazone derivatives. Int. J. Org. Chem., 2011, 1(3), 71-77.
[http://dx.doi.org/10.4236/ijoc.2011.13012]
[22]
Mohana, K.N.; Prasanna Kumar, B.N.; Mallesha, L. Synthesis and biological activity of some pyrimidine derivatives. Drug Invent. Today, 2013, 5(3), 216-222.
[http://dx.doi.org/10.1016/j.dit.2013.08.004]
[23]
Salem, M.S.; Errayes, A.O. Synthesis and antioxidant properties of novel pyrimidine-containing heterocycles. J. Chem. Res., 2016, 40(5), 299-304.
[http://dx.doi.org/10.3184/174751916X14605482579576]
[24]
Shalaby, E. Antioxidants; IntechOpen: United Kingdom, 2019.
[http://dx.doi.org/10.5772/intechopen.77838]
[25]
Ashoori, M.; Saedisomeolia, A. Riboflavin (vitamin B2) and oxidative stress: A review. Br. J. Nutr., 2014, 111(11), 1985-1991.
[http://dx.doi.org/10.1017/S0007114514000178] [PMID: 24650639]
[26]
Lukienko, P.I.; Mel’nichenko, N.G.; Zverinskii, I.V.; Zabrodskaya, S.V. Antioxidant properties of thiamine. Bull. Exp. Biol. Med., 2000, 130(9), 874-876.
[http://dx.doi.org/10.1023/A:1015318413076] [PMID: 11177269]
[27]
Bhalgat, C.M.; Irfan Ali, M.; Ramesh, B.; Ramu, G. Novel pyrimidine and its triazole fused derivatives: Synthesis and investigation of antioxidant and anti-inflammatory activity. Arab. J. Chem., 2014, 7(6), 986-993.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.021]
[28]
Kotaiah, Y.; Nagaraju, K.; Harikrishna, N.; Venkata Rao, C.; Yamini, L.; Vijjulatha, M. Synthesis, docking and evaluation of antioxidant and antimicrobial activities of novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)selenopheno[2,3-d]pyrimidines. Eur. J. Med. Chem., 2014, 75, 195-202.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.006] [PMID: 24531232]
[29]
Quiroga, J.; Romo, P.E.; Ortiz, A.; Isaza, J.H.; Insuasty, B.; Abonia, R.; Nogueras, M.; Cobo, J. Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids. J. Mol. Struct., 2016, 1120, 294-301.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.045]
[30]
Abuelizz, H.A.; Taie, H.A.A.; Marzouk, M.; Al-Salahi, R. Synthesis and antioxidant activity of 2-methylthio-pyrido[3,2-e][1,2,4] triazolo[1,5-a]pyrimidines. Open Chem., 2019, 17(1), 823-830.
[http://dx.doi.org/10.1515/chem-2019-0092]
[31]
Bhadraiah, U.K.; Basavanna, V.; Gurudatt, D.M.; Shivalingappa, R.P.; Lingegowda, N.S.; Ningaiah, S. Bicyclic [1,3,4]thiadiazolo[3,2-α]pyrimidine analogues: Novel one-pot three-component synthesis, antimicrobial, and antioxidant evaluation. Biointerface Res. Appl. Chem., 2021, 11(5), 12925-12936.
[http://dx.doi.org/10.33263/BRIAC115.1292512936]
[32]
Khajeh Dangolani, S.; Panahi, F.; Tavaf, Z.; Nourisefat, M.; Yousefi, R.; Khalafi-Nezhad, A.S.; Panahi, F.; Tavaf, Z.; Nourisefat, M.; Yousefi, R.; Khalafi-Nezhad, A. Synthesis and antioxidant activity evaluation of some novel aminocarbonitrile derivatives incorporating carbohydrate moieties. ACS Omega, 2018, 3(8), 10341-10350.
[http://dx.doi.org/10.1021/acsomega.8b01124] [PMID: 31459162]
[33]
Pass Online. Available from: http://way2drug.com/passonline/predict.php
[34]
Kosolapoff, G.M.; Roy, C.H. Synthesis of some pyrimidylphosphonates. J. Org. Chem., 1961, 26(6), 1895-1898.
[http://dx.doi.org/10.1021/jo01065a049]
[35]
Nelson, D.J. Synthesis of hydrazine and chlorinated derivatives of bicyclic pyridazines. U.S. Patent No. 7,220,858, 2007.
[36]
Prakash, O.; Bhardwaj, V.; Kumar, R.; Tyagi, P.; Aneja, K.R. Organoiodine (III) mediated synthesis of 3-aryl/hetryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines as antibacterial agents. Eur. J. Med. Chem., 2004, 39(12), 1073-1077.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.011] [PMID: 15571869]
[37]
Landge, S.M.; Tkatchouk, E.; Benítez, D.; Lanfranchi, D.A.; Elhabiri, M.; Goddard, W.A., III; Aprahamian, I. Isomerization mechanism in hydrazone-based rotary switches: Lateral shift, rotation, or tautomerization? J. Am. Chem. Soc., 2011, 133(25), 9812-9823.
[http://dx.doi.org/10.1021/ja200699v] [PMID: 21585197]
[38]
Sreejayan, N.; Rao, M.N. Free radical scavenging activity of curcuminoids. Arzneimittelforschung, 1996, 46(2), 169-171.
[PMID: 8720307]
[39]
Gülçin, İ.; Alici, H.A.; Cesur, M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem. Pharm. Bull., 2005, 53(3), 281-285.
[http://dx.doi.org/10.1248/cpb.53.281] [PMID: 15744098]
[40]
Nishikimi, M.; Appaji Rao, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[41]
Govindarajan, R.; Rastogi, S.; Vijayakumar, M.; Shirwaikar, A.; Rawat, A.K.S.; Mehrotra, S.; Pushpangadan, P. Studies on the antioxidant activities of Desmodium gangeticum. Biol. Pharm. Bull., 2003, 26(10), 1424-1427.
[http://dx.doi.org/10.1248/bpb.26.1424] [PMID: 14519948]

© 2024 Bentham Science Publishers | Privacy Policy