Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Microsponges as Drug Delivery System: Past, Present, and Future Perspectives

Author(s): Avadh Biharee, Sudha Bhartiya, Arpita Yadav, Suresh Thareja* and Akhlesh Kumar Jain*

Volume 29, Issue 13, 2023

Published on: 20 April, 2023

Page: [1026 - 1045] Pages: 20

DOI: 10.2174/1381612829666230404082743

Price: $65

Abstract

Microsponges are polymeric delivery devices composed of porous microspheres that range in size from 5 to 300 micrometers. These have been explored for biomedical applications such as targeted drug delivery, transdermal drug delivery, anticancer drug delivery, and bone substitutes. The purpose of this study is to conduct a comprehensive analysis of recent developments and prospects for a microsponge-based drug delivery system. The current study analyzes how the Microsponge Delivery System (MDS) is made, how it works, and how it can be used for a wide range of therapeutic purposes. The therapeutic potential and patent information of microsponge-based formulations were systematically analyzed. The authors summarize various effective techniques for developing microsponges, such as liquid-liquid suspension polymerization, quasi-emulsion solvent diffusion method, water-in-oil-in-water (w/o/w) emulsion solvent diffusion, oil-in-oil emulsion solvent diffusion, lyophilization method, porogen addition method, vibrating orifice aerosol generator method, electrohydrodynamic atomization method, and ultrasound-assisted microsponge. Microsponge may reduce the side effects and increase drug stability by positively altering drug release. Drugs that are both hydrophilic and hydrophobic can be loaded into a microsponge and delivered to a specific target. The microsponge delivery technology offers numerous advantages over conventional delivery systems. Microsponges, which are spherical sponge-like nanoparticles with porous surfaces, have the potential to increase the stability of medications. They also efficiently decrease the undesirable effects and alter drug release.

[1]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[2]
Kita K, Dittrich C. Drug delivery vehicles with improved encapsulation efficiency: Taking advantage of specific drug-carrier interactions. Expert Opin Drug Deliv 2011; 8(3): 329-42.
[http://dx.doi.org/10.1517/17425247.2011.553216] [PMID: 21323506]
[3]
Singh K, Biharee A, Vyas A, Thareja S, Jain AK. Recent advancement of polymersomes as drug delivery carrier. Curr Pharm Des 2022; 28(20): 1621-31.
[http://dx.doi.org/10.2174/1381612828666220412103552] [PMID: 35418282]
[4]
Asghar LF, Chandran S. Multiparticulate formulation approach to colon specific drug delivery: Current perspectives. J Pharm Pharm Sci 2006; 9(3): 327-38.
[PMID: 17207416]
[5]
Jose S, Prema MT, Chacko AJ, Thomas AC, Souto EB. Colon specific chitosan microspheres for chronotherapy of chronic stable angina. Colloids Surf B Biointerfaces 2011; 83(2): 277-83.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.033] [PMID: 21194900]
[6]
Crcarevska MS, Dimitrovska A, Sibinovska N, Mladenovska K, Raicki RS, Dodov MG. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: Identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies. Int J Pharm 2015; 489(1-2): 58-72.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.038] [PMID: 25895722]
[7]
Srivastava R, Pathak K. Microsponges: A futuristic approach for oral drug delivery. Expert Opin Drug Deliv 2012; 9(7): 863-78.
[http://dx.doi.org/10.1517/17425247.2012.693072] [PMID: 22663167]
[8]
Nokhodchi A, Jelvehgari M, Siahi MR, Mozafari MR. Factors affecting the morphology of benzoyl peroxide microsponges. Micron 2007; 38(8): 834-40.
[http://dx.doi.org/10.1016/j.micron.2007.06.012] [PMID: 17692528]
[9]
Kaity S, Maiti S, Ghosh A, Pal D, Ghosh A, Banerjee S. Microsponges: A novel strategy for drug delivery system. J Adv Pharm Technol Res 2010; 1(3): 283-90.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[10]
Ravi R, Kumar SS, Parthiban S. Formulation and evaluation of the microsponges gel for an anti-acne agent for the treatment of acne. Indian J Pharm Sci Res 2013; 3: 32-8.
[11]
Osmani RAM, Aloorkar NH, Thaware BU, et al. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. Asian J Pharm Sci 2015; 10(5): 442-51.
[http://dx.doi.org/10.1016/j.ajps.2015.06.003]
[12]
Osmani RAM, Aloorkar NH, Ingale DJ, et al. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm J 2015; 23(5): 562-72.
[http://dx.doi.org/10.1016/j.jsps.2015.02.020] [PMID: 26594124]
[13]
Grimes PE. A microsponge formulation of hydroquinone 4% and retinol 0.15% in the treatment of melasma and postinflammatory hyperpigmentation. Cutis 2004; 74(6): 362-8.
[PMID: 15663072]
[14]
Abioye A. Polymer-drug nanoconjugate-an innovative nanomedicine: Challenges and recent advancements in rational formulation design for effective delivery of poorly soluble drugs. Pharm Nanotechnol 2016; 4(1): 38-79.
[http://dx.doi.org/10.2174/2211738504666160213001714]
[15]
Osmani RA, Aloorkar NH, Kulkarni AS, Harkare BR, Bhosale RR. A new cornucopia in topical drug delivery: Microsponge technology. Asian J Pharm Sci Technol 2014; 4: 48-60.
[16]
Nacht S, Katz M. The microsponge: A novel topical programmable delivery system. Drugs Pharm Sci 1990; 42: 299-325.
[17]
Shivakumar HN, Suresh S, Desai BG. Design and evaluation of controlled onset extended release multiparticulate systems for chronotherapeutic delivery of ketoprofen. Indian J Pharm Sci 2006; 68(1): 76.
[http://dx.doi.org/10.4103/0250-474X.22969]
[18]
Sharma S, Pawar A. Low density multiparticulate system for pulsatile release of meloxicam. Int J Pharm 2006; 313(1-2): 150-8.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.001] [PMID: 16540268]
[19]
Khramtsov P, Burdina O, Lazarev S, et al. Modified desolvation method enables simple one-step synthesis of gelatin nanoparticles from different gelatin types with any bloom values. Pharmaceutics 2021; 13(10): 1537.
[http://dx.doi.org/10.3390/pharmaceutics13101537] [PMID: 34683829]
[20]
Saboktakin M, Saboktakin A. Novel Thermal Insulations for Architecture. Academic Publishing 2015.
[21]
Vishwakarma P, Choudhary R. Microsponges: A novel strategy to control the delivery rate of active agents with reduced skin irritancy. J Drug Deliv Ther 2019; 9(6-s): 238-47.
[http://dx.doi.org/10.22270/jddt.v9i6-s.3757]
[22]
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics 2018; 10(3): 74.
[http://dx.doi.org/10.3390/pharmaceutics10030074] [PMID: 29937483]
[23]
Oberholzer ID. Peroral and nasal delivery of insulin with PheroidTM technology. North-West University 2009.
[24]
Johnson T, Bahrampourian R, Patel A, Mequanint K. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Biomed Mater Eng 2010; 20(2): 107-18.
[http://dx.doi.org/10.3233/BME-2010-0621] [PMID: 20592448]
[25]
Zhang G, Li G, Wang K. Wave structure of oblique detonation disturbed by an expansion wave from a bended tunnel. Appl Therm Eng 2020; 180: 115856.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.115856]
[26]
Hari K, Prathyusha SS, Vasavi G. Microsponges: A de novo method for colon targeted oral drug delivery. Int J Pharm Investig 2020; 10(3): 237-45.
[http://dx.doi.org/10.5530/ijpi.2020.3.44]
[27]
Crinnion W. AARP Clean, Green, and Lean: Get rid of the toxins that make you fat. John Wiley & Sons: New York City, US 2011.
[28]
Cao Y, Feng J, Wu P. Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 2010; 48(13): 3834-9.
[http://dx.doi.org/10.1016/j.carbon.2010.06.048]
[29]
Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour Technol 2010; 101(2): 639-45.
[http://dx.doi.org/10.1016/j.biortech.2009.08.050] [PMID: 19736002]
[30]
Moussa M, Martinet V, Trimeche A, Tainturier D, Anton M. Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen-thawed bull semen. Theriogenology 2002; 57(6): 1695-706.
[http://dx.doi.org/10.1016/S0093-691X(02)00682-9] [PMID: 12035979]
[31]
Zhang W, Ning S, Zhang S, et al. Synthesis of functional silica composite resin for the selective separation of zirconium from scandium. Microporous Mesoporous Mater 2019; 288: 109602.
[http://dx.doi.org/10.1016/j.micromeso.2019.109602]
[32]
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐dimensional pore control for tailored applications. Angew Chem Int Ed 2021; 60(18): 9828-51.
[http://dx.doi.org/10.1002/anie.202003053] [PMID: 32270894]
[33]
Bohr A, Boetker J, Rades T, Rantanen J, Yang M. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs: A particle engineering approach. Curr Pharm Des 2014; 20(3): 325-48.
[http://dx.doi.org/10.2174/13816128113199990399] [PMID: 23651398]
[34]
Bae SE, Son JS, Park K, Han DK. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release 2009; 133(1): 37-43.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.006] [PMID: 18838089]
[35]
Aloorkar N, Kulkarni A, Ingale D, Patil R. Microsponges as innovative drug delivery systems. Int J Pharm Sci Nanotechnol 2012; 5(1): 1597-606.
[36]
Li Q, Shen HX, Liu C, Wang C-F, Zhu L, Chen S. Advances in frontal polymerization strategy: From fundamentals to applications. Prog Polym Sci 2022; 127: 101514.
[http://dx.doi.org/10.1016/j.progpolymsci.2022.101514]
[37]
Singhvi G, Manchanda P, Hans N, Dubey SK, Gupta G. Microsponge: An emerging drug delivery strategy. Drug Dev Res 2019; 80(2): 200-8.
[http://dx.doi.org/10.1002/ddr.21492] [PMID: 30456763]
[38]
Dua JS, Prasad D, Hans M, Sharma R, Kumari S. Novel Strategy: Microsponges for topical drug delivery. J Drug Deliv Ther 2019; 9(3-s): 1025-31.
[39]
Shi A, Feng X, Wang Q, Adhikari B. Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll 2020; 109: 106117.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106117]
[40]
Arya P, Pathak K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: Optimization and pharmacokinetics. Int J Pharm 2014; 460(1-2): 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.045] [PMID: 24184218]
[41]
Rosenhek I. 2008.
[42]
Rawat A, Majumder QH, Ahsan F. Inhalable large porous microspheres of low molecular weight heparin: In vitro and in vivo evaluation. J Control Release 2008; 128(3): 224-32.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.013] [PMID: 18471921]
[43]
Maiti S, Kaity S, Ray S, Sa B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm 2011; 61(3): 257-70.
[http://dx.doi.org/10.2478/v10007-011-0022-6] [PMID: 21945905]
[44]
Giri TK, Choudhary C, Ajazuddin , Alexander A, Badwaik H, Tripathi DK. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm J 2013; 21(2): 125-41.
[http://dx.doi.org/10.1016/j.jsps.2012.05.009] [PMID: 23960828]
[45]
Mandal TK, Bostanian LA, Graves RA, Chapman SR, Idodo TU. Porous biodegradable microparticles for delivery of pentamidine. Eur J Pharm Biopharm 2001; 52(1): 91-6.
[http://dx.doi.org/10.1016/S0939-6411(01)00150-3] [PMID: 11438428]
[46]
Rizkalla CMZ, Aziz RL, Soliman II. In vitro and in vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery. AAPS PharmSciTech 2011; 12(3): 989-1001.
[http://dx.doi.org/10.1208/s12249-011-9663-5] [PMID: 21800216]
[47]
Ramaiya A. Detecting torsional motion of kinesin motor proteins using birefringent microspheres and high-resolution optical tweezers. Universität Tübingen, Tübingen 2018.
[48]
Trotta F, Cavalli R, Tumiatti W, et al. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. WO2006002814A1, 2008.
[49]
Pancholi K, Ahras N, Stride E, Edirisinghe M. Novel electrohydrodynamic preparation of porous chitosan particles for drug delivery. J Mat Sci Mat Med 2009; 917-23.
[http://dx.doi.org/10.1007/s10856-008-3638-4] [PMID: 19034624]
[50]
Mahant S, Kumar S, Nanda S, Rao R. Microsponges for dermatological applications: Perspectives and challenges. Asian J Pharm Sci 2020; 15(3): 273-91.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004] [PMID: 32636947]
[51]
Pifferi G, Santoro P, Pedrani M. Quality and functionality of excipients. Farmaco 1999; 54(1-2): 1-14.
[http://dx.doi.org/10.1016/S0014-827X(98)00101-3] [PMID: 10321025]
[52]
Tekade R. Drug delivery systems. Academic Press: Massachusetts 2019.
[53]
Embil K, Nacht S. The Microsponge® Delivery System (MDS): A topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J Microencapsul 1996; 13(5): 575-88.
[http://dx.doi.org/10.3109/02652049609026042] [PMID: 8864994]
[54]
Srivastava R, Ed. Microsponges for Drug Delivery. CRC Press: Taylor & Froncis Group, Oxfordshire, UK 2017.
[55]
Bussemer T, Otto I, Bodmeier R. Pulsatile drug-delivery systems. Crit Rev Ther Drug Carrier Syst 2001; 18(5): 26.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v18.i5.10] [PMID: 11763497]
[56]
Jain D, Bar-Shalom D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 2014; 40(12): 1576-84.
[http://dx.doi.org/10.3109/03639045.2014.917657] [PMID: 25109399]
[57]
Jain A, Gulbake A, Shilpi S, Jain A, Hurkat P, Jain SK. A new horizon in modifications of chitosan: Syntheses and applications. Crit Rev Ther Drug Carrier Syst 2013; 30(2): 91-181.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005678] [PMID: 23510147]
[58]
Jain SK, Kaur M, Kalyani P, Mehra A, Kaur N, Panchal N. Microsponges enriched gel for enhanced topical delivery of 5-fluorouracil. J Microencapsul 2019; 36(7): 677-91.
[http://dx.doi.org/10.1080/02652048.2019.1667447] [PMID: 31509035]
[59]
Kumari A, Jain A, Hurkat P, Tiwari A, Jain SK. Eudragit S100 coated microsponges for Colon targeting of prednisolone. Drug Dev Ind Pharm 2018; 44(6): 902-13.
[http://dx.doi.org/10.1080/03639045.2017.1420079] [PMID: 29260916]
[60]
Srivastava R, Kumar D, Pathak K. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet. Int J Pharm 2012; 427(2): 153-62.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.036] [PMID: 22306039]
[61]
Farris PK. Cosmeceuticals and cosmetic practice. John Wiley & Sons: New York City, UK 2013.
[http://dx.doi.org/10.1002/9781118384824]
[62]
Kydonieus AF, Berner B. Transdermal delivery of drugs. CRC Press: Boca Raton, US 1987.
[63]
Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 2018; 127: 167-84.
[http://dx.doi.org/10.1016/j.addr.2018.03.007] [PMID: 29567395]
[64]
Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1029-38.
[http://dx.doi.org/10.1021/ar200019c] [PMID: 21545096]
[65]
Chadawar V, Shaji J. Microsponge delivery system. Curr Drug Deliv 2007; 4(2): 123-9.
[http://dx.doi.org/10.2174/156720107780362320] [PMID: 17456031]
[66]
Kumar R, Bhowmick M, Dubey B. Polymeric microsponge technology-an overview on highly cross-linked porous spherical particles for topical delivery. Inventi Impact: NDDS 2012; 2012(2): 1-7.
[67]
Jelvehgari M, Siahi-Shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int J Pharm 2006; 308(1-2): 124-32.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.001] [PMID: 16359833]
[68]
Gangadharappa HV, Gupta N, Prasad MS, Shivakumar HG. Current trends in microsponge drug delivery system. Curr Drug Deliv 2013; 10(4): 453-65.
[http://dx.doi.org/10.2174/1567201811310040010] [PMID: 22974222]
[69]
JAIN R.. A study on physical fitness and psycho social parameters of adolescent school students 2018.
[70]
Salah S, Awad GEA, Makhlouf AIA. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur J Pharm Sci 2018; 114: 255-66.
[http://dx.doi.org/10.1016/j.ejps.2017.12.023] [PMID: 29288706]
[71]
Shukla A, Garg A, Garg S. Application of microsponge technique in topical drug delivery system. Asian J Biomater Res 2016; 2(4): 120-6.
[72]
Pradhan SK. Microsponges as the versatile tool for drug delivery system. Int J Res Pharm Chem 2011; 1(2): 243-58.
[73]
Kumari A, Jain A, Hurkat P, Verma A, Jain SK. Microsponges: A pioneering tool for biomedical applications. Crit Rev Ther Drug Carrier Syst 2016; 33(1): 77-105.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.40] [PMID: 27279339]
[74]
Verma NK. Microsponge Dru. Chem Pharm Sci 2015; 3(5): 1617-23.
[75]
Pawar AP, Gholap AP, Kuchekar AB, Bothiraja C, Mali AJ. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J Drug Delivery 2015; 2015: 261068.
[76]
Çomoglu T, Gönül N, Baykara T. The effects of pressure and direct compression on tabletting of microsponges. Int J Pharm 2002; 242(1-2): 191-5.
[http://dx.doi.org/10.1016/S0378-5173(02)00155-2] [PMID: 12176245]
[77]
Jafar M, Salahuddin M, Khan MSA, et al. Preparation and in vitro in vivo evaluation of luteolin loaded gastroretentive microsponge for the eradication of Helicobacter pylori infections. Pharmaceutics 2021; 13(12): 2094.
[http://dx.doi.org/10.3390/pharmaceutics13122094] [PMID: 34959375]
[78]
Abdellatif AAH, Zayed GM, Kamel HH, et al. A novel controlled release microsponges containing Albendazole against Haemonchus contortus in experimentally infected goats. J Drug Deliv Sci Technol 2018; 43: 469-76.
[http://dx.doi.org/10.1016/j.jddst.2017.10.022]
[79]
Charagonda S, Puligilla RD, Ananthula MB, Bakshi V. Formulation and evaluation of famotidine floating microsponges. Int Res J Pharm 2016; 7(4): 62-7.
[http://dx.doi.org/10.7897/2230-8407.07440]
[80]
Agarwal A, Shukla T, Jain N, et al. Formulation & development pantoprazole loaded microsponges for management of GERD. World J Pharm Pharm Sci 2015; 4(12): 1114-26.
[81]
Tadwee I, Shahi S. Formulation development of microsponge based delayed release dosage form of lansoprazole. Int J Pharm Sci Res 2018; 9(2): 824-31.
[82]
Martin A, Swarbrick J, Cammarrata A. Chapter 191991, 527.
[83]
Tatterton MR. Development of tissue engineered blood vessels using cell-seeded acellular porcine arterial scaffolds. University of Leeds, Leads 2015.
[84]
Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D. Extra-cellular matrix in vascular networks. Cell Prolif 2004; 37(3): 207-20.
[http://dx.doi.org/10.1111/j.1365-2184.2004.00306.x] [PMID: 15144498]
[85]
D’Emanuele A, Dinarvand R. Preparation, characterisation, and drug release from thermoresponsive microspheres. Int J Pharm 1995; 118(2): 237-42.
[http://dx.doi.org/10.1016/0378-5173(94)00384-H]
[86]
Abd Alhammid SN. Enhancement of the solubility and the dissolution rate of candesartan cilexetil using microsponge technology. Asian J Pharm Clin Res 2018; 11(9): 385-90.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26816]
[87]
Jain P, Darwhekar G, Khan F, Kukde D, Sharma V. Formulation and evaluation of colon specific tablet containing microsponges of metoprolol succinate. Int J Pharm Life Sci 2015; 6(12)
[88]
Patel SS, Patel MR, Patel MJ. Formulation and evaluation of microsponge based nicorandil sustained released tablet. J Sci Res 2017; 9(3): 285-96.
[http://dx.doi.org/10.3329/jsr.v9i3.31193]
[89]
AL Haydar M. Formulation of telmisartan microsponge tablets and in-vitro evaluation of dissolution profile. Karbala J Pharm Sci 2015; 6(9): 91-104.
[90]
Desavathu M, Pathuri R, Chunduru M. Design, development and characterization of valsartan microsponges by quasi emulsion technique and the impact of stirring rate on microsponge formation. J Appl Pharm Sci 2017; 7(1): 193-8.
[http://dx.doi.org/10.7324/JAPS.2017.70128]
[91]
Maheshwari R, Sharma P, Tekade M, et al. Microsponge embedded tablets for sustained delivery of nifedipine. Pharm Nanotechnol 2017; 5(3): 192-202.
[PMID: 28933273]
[92]
Junqueira MV, Bruschi ML. A review about the drug delivery from microsponges. AAPS PharmSciTech 2018; 19(4): 1501-11.
[http://dx.doi.org/10.1208/s12249-018-0976-5] [PMID: 29484616]
[93]
Rajurkar V, Gosavi Y. Sustain release microsponge based drug delivery system for the plasmodium treatment: Formulation development and in vitro in vivo evaluation. Anal Chem Lett 2018; 8(2): 205-16.
[http://dx.doi.org/10.1080/22297928.2018.1429304]
[94]
Kumar PM, Ghosh A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci 2017; 96: 243-54.
[http://dx.doi.org/10.1016/j.ejps.2016.09.038] [PMID: 27697504]
[95]
Madane MA, Shinde AD. Formulation and evaluation of microsponge based drug delivery system of levonorgestrel. Pharmacophore 2016; 7(4): 292-308.
[96]
Li SS, Li GF, Liu L, et al. Evaluation of paeonol skin-target delivery from its microsponge formulation: In vitro skin permeation and in vivo microdialysis. PLoS One 2013; 8(11): e79881.
[http://dx.doi.org/10.1371/journal.pone.0079881] [PMID: 24278204]
[97]
Pathak K, Raghuvanshi S. Bioadhesive floating microsponges of cinnarizine as novel gastroretentive delivery: Capmul GMO bioadhesive coating versus acconon MC 8-2 EP/NF with intrinsic bioadhesive property. Int J Pharm Investig 2016; 6(4): 181-93.
[http://dx.doi.org/10.4103/2230-973X.195923] [PMID: 28123987]
[98]
Gangwar A, Kumar P, Singh R, Kush P. Recent advances in mupirocin delivery strategies for the treatment of bacterial skin and soft tissue infection. Future Pharmacol 2021; 1(1): 80-103.
[http://dx.doi.org/10.3390/futurepharmacol1010007]
[99]
Singh S, Pathak K. Assessing the bioadhesivity of Acconon MC 8-2 EP/NF for gastroretention of floating microsponges of loratadine and achieving controlled drug delivery. Pharm Biomed Res 2016; 2(2): 58-74.
[http://dx.doi.org/10.18869/acadpub.pbr.2.2.58]
[100]
Abdalla KF, Osman MA, Nouh AT, El Maghraby GM. Microsponges for controlled release and enhanced oral bioavailability of carbamazepine. J Drug Deliv Sci Technol 2021; 65: 102683.
[http://dx.doi.org/10.1016/j.jddst.2021.102683]
[101]
Obiedallah MM, Abdel-Mageed AM, Elfaham TH. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm J 2018; 26(7): 909-20.
[http://dx.doi.org/10.1016/j.jsps.2018.01.005] [PMID: 30416345]
[102]
Subhan MA, Torchilin VP. Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl Res 2019; 214: 62-91.
[http://dx.doi.org/10.1016/j.trsl.2019.07.006] [PMID: 31369717]
[103]
Mahmoud DBED, Shukr MH, ElMeshad AN. Gastroretentive microsponge as a promising tool for prolonging the release of mitiglinide calcium in type-2 diabetes mellitus: Optimization and pharmacokinetics study. AAPS PharmSciTech 2018; 19(6): 2519-32.
[http://dx.doi.org/10.1208/s12249-018-1081-5] [PMID: 29948984]
[104]
Bhavesh Patel M, Shaikh F, Patel VB, Surti N. Application of experiential design for framing gastroretentive microsponges of glipizide: Screening of critical variables by plackett-burman design and optimization by box-behnken design. Indian J Pharm Educ Res 2021; 55(4): 966-78.
[http://dx.doi.org/10.5530/ijper.55.4.197]
[105]
Pandit AP, Patel SA, Bhanushali VP, Kulkarni VS, Kakad VD. Nebivolol-loaded microsponge gel for healing of diabetic wound. AAPS PharmSciTech 2017; 18(3): 846-54.
[http://dx.doi.org/10.1208/s12249-016-0574-3] [PMID: 27357423]
[106]
Tambe A, Deshmukh V. Topical anti-inflammatory gels of naproxen entrapped in eudragit based microsponge delivery system. J Adv Chem Eng 2015; 5(2): 1-6.
[107]
Kadhim ZM, Mahmood HS, Alaayedi M, Ghareeb MM. Formulation of flurbiprofen as microsponge drug delivery system. Int J Pharm Res 2020; 12(3): 748-53.
[108]
Sareen R, Nath K, Jain N, Dhar KL. Curcumin loaded microsponges for colon targeting in inflammatory bowel disease: fabrication, optimization, and in vitro and pharmacodynamic evaluation. BioMed Res Int 2014; 2014: 1-7.
[http://dx.doi.org/10.1155/2014/340701] [PMID: 25093165]
[109]
Kadam V, Patel VS, Karpe M, Kadam V. Design, development and evaluation of celecoxib-loaded microsponge-based topical gel formulation. Appl Clin Res Clin Trials Regul Aff 2016; 3(1): 44-55.
[http://dx.doi.org/10.2174/2213476X03666160308000647]
[110]
Hussain H, Dhyani A, Juyal D, Bahuguna A. Formulation and evaluation of gel-loaded microsponges of diclofenac sodium for topical delivery. Pharma Innov 2014; 3: 58.
[111]
Çomoğlu T, Savaşer A, Özkan Y, Gönül N, Baykara T. Enhancement of ketoprofen bioavailability by formation of microsponge tablets. Pharmazie 2007; 62(1): 51-4.
[PMID: 17294814]
[112]
He Y, Majid K, Maqbool M, et al. Formulation and characterization of lornoxicam-loaded cellulosic-microsponge gel for possible applications in arthritis. Saudi Pharm J 2020; 28(8): 994-1003.
[http://dx.doi.org/10.1016/j.jsps.2020.06.021] [PMID: 32792844]
[113]
Panday P, Shukla N, Sisodiya D, Jain V, Mahajan S. Design and characterization of microsponge loaded controlled release epicutaneous gel of lornoxicam. Appl Med Res 2015; 1(1): 16-21.
[http://dx.doi.org/10.5455/amr.20150127052147]
[114]
Janakidevi S, Ramanamurthy KV. Development of colon-targeted microsponges for the treatment of inflammatory bowel disease. Indian J Pharm Sci 2018; 80(4): 604-9.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000399]
[115]
Mohanty D, Bakshi V, Rashaid MA, et al. Design and in-vitro characterization of betamethasone microsponge loaded topical gel. Int J Pharma Res Health Sci 2016; 4(2): 1124-9.
[116]
Jain V, Singh R. Design and characterization of colon-specific drug delivery system containing paracetamol microsponges. Arch Pharm Res 2011; 34(5): 733-40.
[http://dx.doi.org/10.1007/s12272-011-0506-4] [PMID: 21656358]
[117]
Rajab NA, Jawad MS. Formulation and in vitro evaluation of piroxicam microsponge as a tablet. Int J Pharm Pharm Sci 2016; 8(2): 104-4.
[118]
Kawashima Y, Niwa T, Takeuchi H, Hino T, Ito Y. Control of prolonged drug release and compression properties of ibuprofen microspheres with acrylic polymer, eudragit RS, by changing their intraparticle porosity. Chem Pharm Bull 1992; 40(1): 196-201.
[http://dx.doi.org/10.1248/cpb.40.196] [PMID: 1576674]
[119]
Shinde A, Paithane M, Sawant S. Development and evaluation of fenoprofen microsponges and its colonic delivery using natura l polysaccharides. Ame J Pharma Sci Nanotech 2014; 1: 27-42.
[120]
Rashid M, Ahmad QZ. Trends in nanotechnology for practical applications Applications of targeted nano drugs and delivery systems. Elsevier; Amsterdam 2019; pp. 297-325.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00011-9]
[121]
Rajeswari S, Swapna V. Microsponges as a neoteric cornucopia for drug delivery systems. Int J Curr Pharm Res 2019; 11(3): 4-12.
[http://dx.doi.org/10.22159/ijcpr.2019v11i3.34099]
[122]
Patil N, Tadavi S, Pawar S. A research on formulation and evaluation of microsponge loaded in topical gel of ritonavir. World J Pharm Pharm Sci 2018; 7: 855-96.
[123]
Mahesh Kumar P, Ghosh A. Development and evaluation of metronidazole loaded microsponge based gel for superficial surgical wound infections. J Drug Deliv Sci Technol 2015; 30: 15-29.
[http://dx.doi.org/10.1016/j.jddst.2015.09.006]
[124]
Hussien AA. Preparation and evaluation of oral microsponge drug delivery system of ketoconazole. Al Mustansiriyah J Pharm Sci 2014; 14(1): 1-8.
[http://dx.doi.org/10.32947/ajps.v14i1.119]
[125]
Bothiraja C, Gholap AD, Shaikh KS, Pawar AP. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther Deliv 2014; 5(7): 781-94.
[http://dx.doi.org/10.4155/tde.14.43] [PMID: 25287385]
[126]
Kumari P, Misra S, Pandey S. Formulation and evaluation of tolnaftate microsponges loaded gels for treatment of dermatophytosis. Eur J Pharm Med Res 2017; 4(06): 326-35.
[127]
Jakhar S, Kadian V, Rao R. Dapsone-loaded microsponge gel for acne management: Preparation, characterization and anti-microbial activity. Micro Nanosyst 2021; 13(2): 211-22.
[http://dx.doi.org/10.2174/1876402912999200630130442]
[128]
Bargal J, Dhawale S, Landage S, Kulkarni R. Formulation and evaluation of Eudragit RS 100 Loaded microsponges of Flutrimazole. Int J Pharm Sci Res 2013; 4(8): 3039.
[129]
Mehta M, Panchal A, Shah VH, Upadhyay U. Formulation and in vitro evaluation of controlled release microsponge gel for topical delivery of clotrimazole. Int J Adv Pharm 2012; 2(2): 93-101.
[130]
Wadhwa G, Kumar S, Mittal V, Rao R. Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. Yao Wu Shi Pin Fen Xi 2019; 27(1): 60-70.
[PMID: 30648595]
[131]
Hasan MN, Salman MS, Hasan MM, et al. Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials. J Mol Struct 2023; 1276: 134795.
[http://dx.doi.org/10.1016/j.molstruc.2022.134795]
[132]
Awual MR. Novel ligand functionalized composite material for efficient copper(II) capturing from wastewater sample. Compos, Part B Eng 2019; 172: 387-96.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.103]
[133]
Awual MR, Yaita T, Kobayashi T, Shiwaku H, Suzuki S. Improving cesium removal to clean-up the contaminated water using modified conjugate material. J Environ Chem Eng 2020; 8(2): 103684.
[http://dx.doi.org/10.1016/j.jece.2020.103684]
[134]
Awual MR, Hasan MM, Rahman MM, Asiri AM. Novel composite material for selective copper(II) detection and removal from aqueous media. J Mol Liq 2019; 283: 772-80.
[http://dx.doi.org/10.1016/j.molliq.2019.03.141]
[135]
Talreja N, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA, Mangalaraja RV. A Zn-doped BiOI microsponge-based photocatalyst material for complete photodegradation of environmental contaminants. New J Chem 2021; 45(39): 18412-20.
[http://dx.doi.org/10.1039/D1NJ03415D]
[136]
Naushad M, Alqadami AA, Al-Kahtani AA, Ahamad T, Awual MR, Tatarchuk T. Adsorption of textile dye using para-aminobenzoic acid modified activated carbon: Kinetic and equilibrium studies. J Mol Liq 2019; 296: 112075.
[http://dx.doi.org/10.1016/j.molliq.2019.112075]
[137]
Kubra KT, Salman MS, Hasan MN, et al. Sustainable detection and capturing of cerium(III) using ligand embedded solid-state conjugate adsorbent. J Mol Liq 2021; 338: 116667.
[http://dx.doi.org/10.1016/j.molliq.2021.116667]
[138]
Awual MR. Novel conjugated hybrid material for efficient lead(II) capturing from contaminated wastewater. Mater Sci Eng C 2019; 101: 686-95.
[http://dx.doi.org/10.1016/j.msec.2019.04.015] [PMID: 31029362]
[139]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8(1): 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[140]
Stanley TH, Hague B. Compositions and methods of manufacture of compressed powder medicaments. CA1339190C, 1985.
[141]
Dean RC Jr, Cahn F, Phillips PG. Weighted microsponge for immobilizing bioactive material. WO1986005811A1, 1986.
[142]
Bhanse Najuka D, Shah C, Shah D. Novel and innovative strategy: Microsponges drug delivery system. Pharma Sci Monit 2016; 7(2): 90-8.
[143]
Sakadou H, Kida S. Production of microsponge. JPS63170436A, 1988.
[144]
Won Richard. Two step method for preparation of controlled release formulations. US5145675A, 1992.
[145]
Lo RJ. Microsphere reservoirs for controlled release application. US5725869, 1998.
[146]
Froix M, Pukshansky M, Nacht S. Retinoid formulations in porous microspheres for reduced irritation and enhanced stability. US5851538, 1998.
[147]
Tomlinson R, Davey G. Percutaneous delivery system. US6211250B1, 2001.
[148]
Shefer A, Shefer S. Stabilized retinol for cosmetic dermatological, and pharmaceutical compositions, and use thereof. US20030232091A1, 2002.
[149]
Embil K. Analgetic cream comprising salicylate dispersed in silicone oil and microsponge for substained delivery of counterirritants like menthol. WO2004014397A1, 2002.
[150]
Cattaneo M. Chitosan microparticles for the topical delivery of water insoluble active agents. US20040247632, 2004.
[151]
Embil K, Nacht S. Topical pharmaceutical and/or cosmetic dispense systems. WO2004064803A1, 2004.
[152]
Halliday JA, Carr DA, Boyd L, et al. Drug delivery polymer with hydrochloride salt of clindamycin. US20080160065, 2008.
[153]
Love ES, Taylor TS, Meeks RG, Alexander JL, Stavrakas KH. Nonwoven towel with microsponges. US20080260990A1, 2008.
[154]
Schaffner CP, Griesinger WK. Method of removing ticks from the epidermal tissue of humans and other mammals. US7604814B2, 2009.
[155]
Ayala FA. Topical antiacne preparations containing retinoid (tazarotene or adapalene), antibiotic (clindamycin phosphate) and/or keratolytic (microsponged benzoyl peroxide). US20090318371A1, 2009.
[156]
Malek S. Topical administration carrier composition and therapeutic formulations comprising same. US7749489B2, 2010.
[157]
Schaffner CP, Griesinger WK. Method of removing ticks from the skin and reducing the risk of bites. US8323672, 2012.
[158]
Hammond PT, Lee JB, Roh YH. Nucleic acid particles, methods and use thereof. WO2014134029A1, 2014.
[159]
Orsoni S, Willcox N. Gel composition for once-daily treatment of common acne comprising a combination of benzoyl peroxide and adapalene and/or adapalene salt. US8936800, 2010.
[160]
Mcdaniel DH. Method and apparatus for acne treatment using low intensity light therapy. US9227082B2, 2016.
[161]
Kharlampieva EP, Yancey B. Biodegradable photocatalytic nanocomposite microsponges of polyactic acid. US9764316, 2017.
[162]
Dos Santos IR, Sournac M. Transdermal device including porous microparticles. WO2013127929A1, 2018.
[163]
Tamarkin D, Gazal E, Hazot Y, Schuz D, Papiashvili I. Compositions, gels and foams with rheology modulators and uses. US20190240239A1, 2019.
[164]
Tamarkin D, Gazal E, Hazot Y, Schuz D, Papiashvili I. Compositions, gels and foams with rheology modulators and uses thereof. US10835613B2, 2020.
[165]
Cavalieri F, Rinaldi A. inventors; Nanofaber Srl, assignee. Nanoporous microsponge particles (nmp) of biocompatible polymers as universal carriers for biomolecules delivery. United States patent application US 17/634,660, 2022. Oct 13.
[http://dx.doi.org/10.3390/nano10061075] [PMID: 32486448]
[166]
Ho-ward J. Wet wipes. US4904524A, 1988.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy