Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Structure-Activity Relationships and Therapeutic Potential of Purinergic P2X7 Receptor Antagonists

Author(s): Imane Ghafir El Idrissi, Sabina Podlewska, Carmen Abate, Andrzej J. Bojarski, Enza Lacivita* and Marcello Leopoldo

Volume 31, Issue 11, 2024

Published on: 26 May, 2023

Page: [1361 - 1403] Pages: 43

DOI: 10.2174/0929867330666230403094538

Price: $65

Abstract

The purinergic P2X7 receptor (P2X7R), an ATP-gated non-selective cation channel, has emerged as a gatekeeper of inflammation that controls the release of proinflammatory cytokines. As a key player in initiating the inflammatory signaling cascade, the P2X7 receptor is currently under intense scrutiny as a target for the treatment of different pathologies, including chronic inflammatory disorders (rheumatoid arthritis and osteoarthritis), chronic neuropathic pain, mood disorders (depression and anxiety), neurodegenerative diseases, ischemia, cancer (leukemia), and many others. For these reasons, pharmaceutical companies have invested in discovering compounds able to modulate the P2X7R and filed many patent applications. This review article presents an account of P2X7R structure, function, and tissue distribution, emphasizing its role in inflammation. Next, we illustrate the different chemical classes of non-competitive P2X7R antagonists reported by highlighting their properties and qualities as clinical candidates for treating inflammatory disorders and neurodegenerative diseases. We also discuss the efforts to develop effective Positron Emission Tomography (PET) radioligands to progress the understanding of the pathomechanisms of neurodegenerative disorders, to provide evidence of drug-target engagement, and to assist clinical dose selection for novel drug therapies.

[1]
North, R.A. Molecular physiology of P2X receptors. Physiol. Rev., 2002, 82(4), 1013-1067.
[http://dx.doi.org/10.1152/physrev.00015.2002] [PMID: 12270951]
[2]
Burnstock, G.; Kennedy, C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol., 1985, 16(5), 433-440.
[http://dx.doi.org/10.1016/0306-3623(85)90001-1] [PMID: 2996968]
[3]
Mehta, N.; Kaur, M.; Singh, M.; Chand, S.; Vyas, B.; Silakari, P.; Bahia, M.S.; Silakari, O. Purinergic receptor P2X7: A novel target for anti-inflammatory therapy. Bioorg. Med. Chem., 2014, 22(1), 54-88.
[http://dx.doi.org/10.1016/j.bmc.2013.10.054] [PMID: 24314880]
[4]
Syed, N.H.; Kennedy, C. Pharmacology of P2X receptors. WIREs Membr. Transp. Signal, 2012, 1, 16-30.
[5]
Oliveira-Giacomelli, Á.; Petiz, L.L.; Andrejew, R.; Turrini, N.; Silva, J.B.; Sack, U.; Ulrich, H. Role of P2X7 receptors in immune responses during neurodegeneration. Front. Cell. Neurosci., 2021, 15, 662935.
[http://dx.doi.org/10.3389/fncel.2021.662935] [PMID: 34122013]
[6]
Junger, W.G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol., 2011, 11(3), 201-212.
[http://dx.doi.org/10.1038/nri2938] [PMID: 21331080]
[7]
Soto, F.; Garcia-Guzman, M.; Stühmer, W. Cloned ligand-gated channels activated by extracellular ATP (P2X receptors). J. Membr. Biol., 1997, 160(2), 91-100.
[http://dx.doi.org/10.1007/s002329900298] [PMID: 9354701]
[8]
Coddou, C.; Yan, Z.; Obsil, T.; Huidobro-Toro, J.P.; Stojilkovic, S.S. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev., 2011, 63(3), 641-683.
[http://dx.doi.org/10.1124/pr.110.003129] [PMID: 21737531]
[9]
Sluyter, R. The P2X7 receptor. Adv. Exp. Med. Biol., 2017, 1051, 17-53.
[http://dx.doi.org/10.1007/5584_2017_59] [PMID: 28676924]
[10]
Di Virgilio, F.; Dal Ben, D.; Sarti, A.C.; Giuliani, A.L.; Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity, 2017, 47(1), 15-31.
[http://dx.doi.org/10.1016/j.immuni.2017.06.020] [PMID: 28723547]
[11]
Jiang, L.H.; Baldwin, J.M.; Roger, S.; Baldwin, S.A. Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front. Pharmacol., 2013, 4, 55.
[http://dx.doi.org/10.3389/fphar.2013.00055] [PMID: 23675347]
[12]
Roger, S.; Mei, Z.Z.; Baldwin, J.M.; Dong, L.; Bradley, H.; Baldwin, S.A.; Surprenant, A.; Jiang, L.H. Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions. J. Psychiatr. Res., 2010, 44(6), 347-355.
[http://dx.doi.org/10.1016/j.jpsychires.2009.10.005] [PMID: 19931869]
[13]
Fuller, S.J.; Stokes, L.; Skarratt, K.K.; Gu, B.J.; Wiley, J.S. Genetics of the P2X7 receptor and human disease. Purinergic Signal., 2009, 5(2), 257-262.
[http://dx.doi.org/10.1007/s11302-009-9136-4] [PMID: 19319666]
[14]
Sperlágh, B.; Vizi, E.; Wirkner, K.; Illes, P. P2X7 receptors in the nervous system. Prog. Neurobiol., 2006, 78(6), 327-346.
[http://dx.doi.org/10.1016/j.pneurobio.2006.03.007] [PMID: 16697102]
[15]
Lenertz, L.Y.; Gavala, M.L.; Zhu, Y.; Bertics, P.J. Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic, and neurologic functions. Immunol. Res., 2011, 50(1), 22-38.
[http://dx.doi.org/10.1007/s12026-011-8203-4] [PMID: 21298493]
[16]
Wiley, J.S.; Sluyter, R.; Gu, B.J.; Stokes, L.; Fuller, S.J. The human P2X7 receptor and its role in innate immunity. Tissue Antigens, 2011, 78(5), 321-332.
[http://dx.doi.org/10.1111/j.1399-0039.2011.01780.x]
[17]
Torres, G.E.; Egan, T.M.; Voigt, M.M. Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J. Biol. Chem., 1999, 274(10), 6653-6659.
[http://dx.doi.org/10.1074/jbc.274.10.6653] [PMID: 10037762]
[18]
Nicke, A. Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem. Biophys. Res. Commun., 2008, 377(3), 803-808.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.042] [PMID: 18938136]
[19]
Kawate, T.; Michel, J.C.; Birdsong, W.T.; Gouaux, E. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature, 2009, 460(7255), 592-598.
[http://dx.doi.org/10.1038/nature08198] [PMID: 19641588]
[20]
Habermacher, C.; Dunning, K.; Chataigneau, T.; Grutter, T. Molecular structure and function of P2X receptors. Neuropharmacology, 2016, 104, 18-30.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.032] [PMID: 26231831]
[21]
McCarthy, A.E.; Yoshioka, C.; Mansoor, S.E. Full-Length P2X7 structures reveal how palmitoylation prevents channel desensitization. Cell, 2019, 179(3), 659-670.e13.
[http://dx.doi.org/10.1016/j.cell.2019.09.017] [PMID: 31587896]
[22]
Costa-Junior, H.M.; Marques-da-Silva, C.; Vieira, F.S.; Monção-Ribeiro, L.C.; Coutinho-Silva, R. Lipid metabolism modulation by the P2X7 receptor in the immune system and during the course of infection: new insights into the old view. Purinergic Signal., 2011, 7(4), 381-392.
[http://dx.doi.org/10.1007/s11302-011-9255-6] [PMID: 21845440]
[23]
Bidula, S.M.; Cromer, B.A.; Walpole, S.; Angulo, J.; Stokes, L. Mapping a novel positive allosteric modulator binding site in the central vestibule region of human P2X7. Sci. Rep., 2019, 9(1), 3231.
[http://dx.doi.org/10.1038/s41598-019-39771-5] [PMID: 30824738]
[24]
Bin Dayel, A.; Evans, R.J.; Schmid, R. Mapping the site of action of human P2X7 receptor antagonists AZ11645373, brilliant blue G, KN-62, calmidazolium, and ZINC58368839 to the intersubunit allosteric pocket. Mol. Pharmacol., 2019, 96(3), 355-363.
[http://dx.doi.org/10.1124/mol.119.116715] [PMID: 31263019]
[25]
Caseley, E.A.; Muench, S.P.; Baldwin, S.A.; Simmons, K.; Fishwick, C.W.; Jiang, L.H. Docking of competitive inhibitors to the P2X7 receptor family reveals key differences responsible for changes in response between rat and human. Bioorg. Med. Chem. Lett., 2015, 25(16), 3164-3167.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.001] [PMID: 26099538]
[26]
Karasawa, A.; Kawate, T. Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife, 2016, 5, e22153.
[http://dx.doi.org/10.7554/eLife.22153] [PMID: 27935479]
[27]
Surprenant, A.; Rassendren, F.; Kawashima, E.; North, R.A.; Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science, 1996, 272(5262), 735-738.
[http://dx.doi.org/10.1126/science.272.5262.735] [PMID: 8614837]
[28]
Wilhelm, K.; Ganesan, J.; Müller, T.; Dürr, C.; Grimm, M.; Beilhack, A.; Krempl, C.D.; Sorichter, S.; Gerlach, U.V.; Jüttner, E.; Zerweck, A.; Gärtner, F.; Pellegatti, P.; Di Virgilio, F.; Ferrari, D.; Kambham, N.; Fisch, P.; Finke, J.; Idzko, M.; Zeiser, R. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat. Med., 2010, 16(12), 1434-1438.
[http://dx.doi.org/10.1038/nm.2242] [PMID: 21102458]
[29]
Khakh, B.S.; Alan North, R. P2X receptors as cell-surface ATP sensors in health and disease. Nature, 2006, 442(7102), 527-532.
[http://dx.doi.org/10.1038/nature04886] [PMID: 16885977]
[30]
Pellegatti, P.; Raffaghello, L.; Bianchi, G.; Piccardi, F.; Pistoia, V.; Di Virgilio, F. Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase. PLoS One, 2008, 3(7), e2599.
[http://dx.doi.org/10.1371/journal.pone.0002599] [PMID: 18612415]
[31]
Eltzschig, H.K.; Sitkovsky, M.V.; Robson, S.C. Purinergic signaling during inflammation. N. Engl. J. Med., 2012, 367(24), 2322-2333.
[http://dx.doi.org/10.1056/NEJMra1205750] [PMID: 23234515]
[32]
Rassendren, F.; Buell, G.N.; Virginio, C.; Collo, G.; North, R.A.; Surprenant, A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J. Biol. Chem., 1997, 272(9), 5482-5486.
[http://dx.doi.org/10.1074/jbc.272.9.5482] [PMID: 9038151]
[33]
Chessell, I.P.; Simon, J.; Hibell, A.D.; Michel, A.D.; Barnard, E.A.; Humphrey, P.P.A. Cloning and functional characterisation of the mouse P2X 7 receptor. FEBS Lett., 1998, 439(1-2), 26-30.
[http://dx.doi.org/10.1016/S0014-5793(98)01332-5] [PMID: 9849870]
[34]
Adinolfi, E.; Giuliani, A.L.; De Marchi, E.; Pegoraro, A.; Orioli, E.; Di Virgilio, F. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol., 2018, 151, 234-244.
[http://dx.doi.org/10.1016/j.bcp.2017.12.021] [PMID: 29288626]
[35]
Di Virgilio, F. Purinergic signalling in the immune system. A brief update. Purinergic Signal., 2007, 3(1-2), 1-3.
[http://dx.doi.org/10.1007/s11302-006-9048-5] [PMID: 18404413]
[36]
Jacob, F.; Novo, C.P.; Bachert, C.; Van Crombruggen, K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal., 2013, 9(3), 285-306.
[http://dx.doi.org/10.1007/s11302-013-9357-4] [PMID: 23404828]
[37]
Peng, K.; Liu, L.; Wei, D.; Lv, Y.; Wang, G.; Xiong, W.; Wang, X.; Altaf, A.; Wang, L.; He, D.; Wang, H.; Qu, P. P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation. Int. J. Mol. Med., 2015, 35(5), 1179-1188.
[http://dx.doi.org/10.3892/ijmm.2015.2129] [PMID: 25761252]
[38]
Lister, M.F.; Sharkey, J.; Sawatzky, D.A.; Hodgkiss, J.P.; Davidson, D.J.; Rossi, A.G.; Finlayson, K. The role of the purinergic P2X7 receptor in inflammation. J. Inflamm. , 2007, 4(1), 5.
[http://dx.doi.org/10.1186/1476-9255-4-5] [PMID: 17367517]
[39]
Lenertz, L.Y.; Gavala, M.L.; Hill, L.M.; Bertics, P.J. Cell signaling via the P2X7 nucleotide receptor: Linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal., 2009, 5(2), 175-187.
[http://dx.doi.org/10.1007/s11302-009-9133-7] [PMID: 19263245]
[40]
Apolloni, S.; Parisi, C.; Pesaresi, M.G.; Rossi, S.; Carrì, M.T.; Cozzolino, M.; Volonté, C.; D’Ambrosi, N. The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J. Immunol., 2013, 190(10), 5187-5195.
[http://dx.doi.org/10.4049/jimmunol.1203262] [PMID: 23589615]
[41]
Wang, B.; Sluyter, R. P2X7 receptor activation induces reactive oxygen species formation in erythroid cells. Purinergic Signal., 2013, 9(1), 101-112.
[http://dx.doi.org/10.1007/s11302-012-9335-2] [PMID: 23014887]
[42]
Gross, O.; Thomas, C.J.; Guarda, G.; Tschopp, J. The inflammasome: An integrated view. Immunol. Rev., 2011, 243(1), 136-151.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01046.x] [PMID: 21884173]
[43]
Tschopp, J. Mitochondria: Sovereign of inflammation? Eur. J. Immunol., 2011, 41(5), 1196-1202.
[http://dx.doi.org/10.1002/eji.201141436] [PMID: 21469137]
[44]
Hung, S.C.; Choi, C.H.; Said-Sadier, N.; Johnson, L.; Atanasova, K.R.; Sellami, H.; Yilmaz, Ö.; Ojcius, D.M. P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation. PLoS One, 2013, 8(7), e70210.
[http://dx.doi.org/10.1371/journal.pone.0070210] [PMID: 23936165]
[45]
Minkiewicz, J.; de Rivero Vaccari, J.P.; Keane, R.W. Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013, 61(7), 1113-1121.
[http://dx.doi.org/10.1002/glia.22499] [PMID: 23625868]
[46]
Sanz, J.M.; Chiozzi, P.; Ferrari, D.; Colaianna, M.; Idzko, M.; Falzoni, S.; Fellin, R.; Trabace, L.; Di Virgilio, F. Activation of microglia by amyloid beta requires P2X7 receptor expression. J. Immunol., 2009, 182(7), 4378-4385.
[http://dx.doi.org/10.4049/jimmunol.0803612] [PMID: 19299738]
[47]
Sáez-Orellana, F.; Fuentes-Fuentes, M.C.; Godoy, P.A.; Silva-Grecchi, T.; Panes, J.D.; Guzmán, L.; Yévenes, G.E.; Gavilán, J.; Egan, T.M.; Aguayo, L.G.; Fuentealba, J. P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer’s disease. Neuropharmacology, 2018, 128, 366-378.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.027] [PMID: 29079292]
[48]
Parvathenani, L.K.; Tertyshnikova, S.; Greco, C.R.; Roberts, S.B.; Robertson, B.; Posmantur, R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J. Biol. Chem., 2003, 278(15), 13309-13317.
[http://dx.doi.org/10.1074/jbc.M209478200] [PMID: 12551918]
[49]
McLarnon, J.G.; Ryu, J.K.; Walker, D.G.; Choi, H.B. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J. Neuropathol. Exp. Neurol., 2006, 65(11), 1090-1097.
[http://dx.doi.org/10.1097/01.jnen.0000240470.97295.d3] [PMID: 17086106]
[50]
Ryu, J.K.; McLarnon, J.G. Block of purinergic P2X7 receptor is neuroprotective in an animal model of Alzheimer’s disease. Neuroreport, 2008, 19(17), 1715-1719.
[http://dx.doi.org/10.1097/WNR.0b013e3283179333] [PMID: 18852683]
[51]
Durrenberger, P.F.; Grünblatt, E.; Fernando, F.S.; Monoranu, C.M.; Evans, J.; Riederer, P.; Reynolds, R.; Dexter, D.T. Inflammatory pathways in Parkinson’s disease; a BNE microarray study. Parkinsons Dis., 2012, 2012, 1-16.
[http://dx.doi.org/10.1155/2012/214714] [PMID: 22548201]
[52]
Jiang, T.; Hoekstra, J.; Heng, X.; Kang, W.; Ding, J.; Liu, J.; Chen, S.; Zhang, J. P2X7 receptor is critical in α-synuclein–mediated microglial NADPH oxidase activation. Neurobiol. Aging, 2015, 36(7), 2304-2318.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.03.015] [PMID: 25983062]
[53]
Carmo, M.R.S.; Menezes, A.P.F.; Nunes, A.C.L.; Pliássova, A.; Rolo, A.P.; Palmeira, C.M.; Cunha, R.A.; Canas, P.M.; Andrade, G.M. The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology, 2014, 81, 142-152.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.045] [PMID: 24508709]
[54]
Kumar, S.; Mishra, A.; Krishnamurthy, S. Purinergic antagonism prevents mitochondrial dysfunction and behavioral deficits associated with dopaminergic toxicity induced by 6-OHDA in rats. Neurochem. Res., 2017, 42(12), 3414-3430.
[http://dx.doi.org/10.1007/s11064-017-2383-9] [PMID: 28836128]
[55]
Volonté, C.; Amadio, S.; Liguori, F.; Fabbrizio, P. Duality of P2X7 receptor in amyotrophic lateral sclerosis. Front. Pharmacol., 2020, 11, 1148.
[http://dx.doi.org/10.3389/fphar.2020.01148] [PMID: 32792962]
[56]
Fabbrizio, P.; Apolloni, S.; Bianchi, A.; Salvatori, I.; Valle, C.; Lanzuolo, C.; Bendotti, C.; Nardo, G.; Volonté, C. P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol., 2020, 30(2), 272-282.
[http://dx.doi.org/10.1111/bpa.12774] [PMID: 31376190]
[57]
Yiangou, Y.; Facer, P.; Durrenberger, P.; Chessell, I.P.; Naylor, A.; Bountra, C.; Banati, R.R.; Anand, P. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol., 2006, 6(1), 12.
[http://dx.doi.org/10.1186/1471-2377-6-12] [PMID: 16512913]
[58]
Nukui, T.; Matsui, A.; Niimi, H.; Sugimoto, T.; Hayashi, T.; Dougu, N.; Konishi, H.; Yamamoto, M.; Anada, R.; Matsuda, N.; Kitajima, I.; Nakatsuji, Y. Increased cerebrospinal fluid adenosine 5′-triphosphate in patients with amyotrophic lateral sclerosis. BMC Neurol., 2021, 21(1), 255.
[http://dx.doi.org/10.1186/s12883-021-02288-4] [PMID: 34193068]
[59]
Gandelman, M.; Peluffo, H.; Beckman, J.S.; Cassina, P.; Barbeito, L. Extracellular ATP and the P2X7receptor in astrocyte-mediated motor neuron death: Implications for amyotrophic lateral sclerosis. J. Neuroinflammation, 2010, 7(1), 33.
[http://dx.doi.org/10.1186/1742-2094-7-33] [PMID: 20534165]
[60]
Fabbrizio, P.; Amadio, S.; Apolloni, S.; Volonté, C. P2X7 Receptor activation modulates autophagy in SOD1-G93A mouse microglia. Front. Cell. Neurosci., 2017, 11, 249.
[http://dx.doi.org/10.3389/fncel.2017.00249] [PMID: 28871219]
[61]
Matute, C.; Torre, I.; Pérez-Cerdá, F.; Pérez-Samartín, A.; Alberdi, E.; Etxebarria, E.; Arranz, A.M.; Ravid, R.; Rodríguez-Antigüedad, A.; Sánchez-Gómez, M.; Domercq, M. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci., 2007, 27(35), 9525-9533.
[http://dx.doi.org/10.1523/JNEUROSCI.0579-07.2007] [PMID: 17728465]
[62]
Amadio, S.; Parisi, C.; Piras, E.; Fabbrizio, P.; Apolloni, S.; Montilli, C.; Luchetti, S.; Ruggieri, S.; Gasperini, C.; Laghi-Pasini, F.; Battistini, L.; Volonté, C. Modulation of P2X7 receptor during inflammation in multiple sclerosis. Front. Immunol., 2017, 8, 1529.
[http://dx.doi.org/10.3389/fimmu.2017.01529] [PMID: 29187851]
[63]
Cai, X.; Yao, Y.; Teng, F.; Li, Y.; Wu, L.; Yan, W.; Lin, N. The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity. Int. Immunopharmacol. 2021, 101(Pt A), 108297.
[http://dx.doi.org/10.1016/j.intimp.2021.108297] [PMID: 34717202]
[64]
Portales-Cervantes, L.; Niño-Moreno, P.; Doníz-Padilla, L.; Baranda-Candido, L.; García-Hernández, M.; Salgado-Bustamante, M.; González-Amaro, R.; Portales-Pérez, D. Expression and function of the P2X7 purinergic receptor in patients with systemic lupus erythematosus and rheumatoid arthritis. Hum. Immunol., 2010, 71(8), 818-825.
[http://dx.doi.org/10.1016/j.humimm.2010.05.008] [PMID: 20493226]
[65]
Fan, Z.D.; Zhang, Y.Y.; Guo, Y.H.; Huang, N.; Ma, H.H.; Huang, H.; Yu, H.G. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice. Sci. Rep., 2016, 6(1), 35804.
[http://dx.doi.org/10.1038/srep35804] [PMID: 27775097]
[66]
McInnes, I.B.; Cruwys, S.; Bowers, K.; Braddock, M. Targeting the P2X7 receptor in rheumatoid arthritis: Biological rationale for P2X7 antagonism. Clin. Exp. Rheumatol., 2014, 32(6), 878-882.
[PMID: 25288220]
[67]
Lopez-Castejon, G.; Theaker, J.; Pelegrin, P.; Clifton, A.D.; Braddock, M.; Surprenant, A. P2X(7) receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. J. Immunol., 2010, 185(4), 2611-2619.
[http://dx.doi.org/10.4049/jimmunol.1000436] [PMID: 20639492]
[68]
Neves, A.R.; Castelo-Branco, M.T.L.; Figliuolo, V.R.; Bernardazzi, C.; Buongusto, F.; Yoshimoto, A.; Nanini, H.F.; Coutinho, C.M.L.M.; Carneiro, A.J.V.; Coutinho-Silva, R.; de Souza, H.S.P. Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn’s disease. Inflamm. Bowel Dis., 2014, 20(3), 444-457.
[http://dx.doi.org/10.1097/01.MIB.0000441201.10454.06] [PMID: 24412990]
[69]
Gentile, D.; Lazzerini, P.E.; Gamberucci, A.; Natale, M.; Selvi, E.; Vanni, F.; Alì, A.; Taddeucci, P.; Del-Ry, S.; Cabiati, M.; Della-Latta, V.; Abraham, D.J.; Morales, M.A.; Fulceri, R.; Laghi-Pasini, F.; Capecchi, P.L. Searching novel therapeutic targets for scleroderma: P2X7-receptor is upregulated and promotes a fibrogenic phenotype in systemic sclerosis fibroblasts. Front. Pharmacol., 2017, 8, 638.
[http://dx.doi.org/10.3389/fphar.2017.00638] [PMID: 28955239]
[70]
Adinolfi, E.; Callegari, M.G.; Ferrari, D.; Bolognesi, C.; Minelli, M.; Wieckowski, M.R.; Pinton, P.; Rizzuto, R.; Di Virgilio, F. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol. Biol. Cell, 2005, 16(7), 3260-3272.
[http://dx.doi.org/10.1091/mbc.e04-11-1025] [PMID: 15901833]
[71]
Adinolfi, E.; Callegari, M.G.; Cirillo, M.; Pinton, P.; Giorgi, C.; Cavagna, D.; Rizzuto, R.; Di Virgilio, F. Expression of the P2X7 receptor increases the Ca2+ content of the endoplasmic reticulum, activates NFATc1, and protects from apoptosis. J. Biol. Chem., 2009, 284(15), 10120-10128.
[http://dx.doi.org/10.1074/jbc.M805805200] [PMID: 19204004]
[72]
Hill, L.M.; Gavala, M.L.; Lenertz, L.Y.; Bertics, P.J. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J. Immunol., 2010, 185(5), 3028-3034.
[http://dx.doi.org/10.4049/jimmunol.1001298] [PMID: 20668222]
[73]
Gu, B.J.; Wiley, J.S. Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood, 2006, 107(12), 4946-4953.
[http://dx.doi.org/10.1182/blood-2005-07-2994] [PMID: 16514055]
[74]
Qian, F.; Xiao, J.; Hu, B.; Sun, N.; Yin, W.; Zhu, J. High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Hum. Pathol., 2017, 64, 61-68.
[http://dx.doi.org/10.1016/j.humpath.2017.03.019] [PMID: 28412208]
[75]
Choi, J.H.; Ji, Y.G.; Ko, J.J.; Cho, H.J.; Lee, D.H. Activating P2X7 receptors increases proliferation of human pancreatic cancer cells via ERK1/2 and JNK. Pancreas, 2018, 47(5), 643-651.
[http://dx.doi.org/10.1097/MPA.0000000000001055] [PMID: 29683976]
[76]
Qiu, Y.; Li, W.; Zhang, H.; Liu, Y.; Tian, X.X.; Fang, W.G. P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS One, 2014, 9(12), e114371.
[http://dx.doi.org/10.1371/journal.pone.0114371] [PMID: 25486274]
[77]
Lara, R.; Adinolfi, E.; Harwood, C.A.; Philpott, M.; Barden, J.A.; Di Virgilio, F.; McNulty, S. P2X7 in cancer: From molecular mechanisms to therapeutics. Front. Pharmacol., 2020, 11, 793.
[http://dx.doi.org/10.3389/fphar.2020.00793] [PMID: 32581786]
[78]
Danquah, W.; Meyer-Schwesinger, C.; Rissiek, B.; Pinto, C.; Serracant-Prat, A.; Amadi, M.; Iacenda, D.; Knop, J.H.; Hammel, A.; Bergmann, P.; Schwarz, N.; Assunção, J.; Rotthier, W.; Haag, F.; Tolosa, E.; Bannas, P.; Boué-Grabot, E.; Magnus, T.; Laeremans, T.; Stortelers, C.; Koch-Nolte, F. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci. Transl. Med., 2016, 8(366), 366ra162.
[http://dx.doi.org/10.1126/scitranslmed.aaf8463] [PMID: 27881823]
[79]
Salvestrini, V.; Orecchioni, S.; Talarico, G.; Reggiani, F.; Mazzetti, C.; Bertolini, F.; Orioli, E.; Adinolfi, E.; Virgilio, F.D.; Pezzi, A.; Cavo, M.; Lemoli, R.M.; Curti, A. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells. Oncotarget, 2017, 8(4), 5895-5908.
[http://dx.doi.org/10.18632/oncotarget.13927] [PMID: 27980223]
[80]
Souza, C.O.; Santoro, G.F.; Figliuolo, V.R.; Nanini, H.F.; de Souza, H.S.P.; Castelo-Branco, M.T.L.; Abalo, A.A.; Paiva, M.M.; Coutinho, C.M.L.M.; Coutinho-Silva, R. Extracellular ATP induces cell death in human intestinal epithelial cells. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(12), 1867-1878.
[http://dx.doi.org/10.1016/j.bbagen.2012.08.013] [PMID: 22951220]
[81]
White, N.; Butler, P.E.M.; Burnstock, G. Human melanomas express functional P2X7 receptors. Cell Tissue Res., 2005, 321(3), 411-418.
[http://dx.doi.org/10.1007/s00441-005-1149-x] [PMID: 15991050]
[82]
Tamajusuku, A.S.K.; Villodre, E.S.; Paulus, R.; Coutinho-Silva, R.; Battasstini, A.M.O.; Wink, M.R.; Lenz, G. Characterization of ATP-induced cell death in the GL261 mouse glioma. J. Cell. Biochem., 2010, 109(5), 983-991.
[http://dx.doi.org/10.1002/jcb.22478] [PMID: 20069573]
[83]
Jiang, L.H.; Mackenzie, A.B.; North, R.A.; Surprenant, A. Brilliant blue G selectively blocks ATP-gated rat P2X(7) receptors. Mol. Pharmacol., 2000, 58(1), 82-88.
[http://dx.doi.org/10.1124/mol.58.1.82] [PMID: 10860929]
[84]
Gargett, C.E.; Wiley, J.S. The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br. J. Pharmacol., 1997, 120(8), 1483-1490.
[http://dx.doi.org/10.1038/sj.bjp.0701081] [PMID: 9113369]
[85]
Donnelly-Roberts, D.L.; Namovic, M.T.; Han, P.; Jarvis, M.F. Mammalian P2X7 receptor pharmacology: Comparison of recombinant mouse, rat and human P2X7 receptors. Br. J. Pharmacol., 2009, 157(7), 1203-1214.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00233.x] [PMID: 19558545]
[86]
McGaraughty, S.; Chu, K.L.; Namovic, M.T.; Donnelly-Roberts, D.L.; Harris, R.R.; Zhang, X.F.; Shieh, C.C.; Wismer, C.T.; Zhu, C.Z.; Gauvin, D.M.; Fabiyi, A.C.; Honore, P.; Gregg, R.J.; Kort, M.E.; Nelson, D.W.; Carroll, W.A.; Marsh, K.; Faltynek, C.R.; Jarvis, M.F. P2X7-related modulation of pathological nociception in rats. Neuroscience, 2007, 146(4), 1817-1828.
[http://dx.doi.org/10.1016/j.neuroscience.2007.03.035] [PMID: 17478048]
[87]
Honore, P.; Donnelly-Roberts, D.; Namovic, M.T.; Hsieh, G.; Zhu, C.Z.; Mikusa, J.P.; Hernandez, G.; Zhong, C.; Gauvin, D.M.; Chandran, P.; Harris, R.; Medrano, A.P.; Carroll, W.; Marsh, K.; Sullivan, J.P.; Faltynek, C.R.; Jarvis, M.F. A-740003 [N-(1-[(cyanoimino)(5-quinolinylamino) methyl]amino-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J. Pharmacol. Exp. Ther., 2006, 319(3), 1376-1385.
[http://dx.doi.org/10.1124/jpet.106.111559] [PMID: 16982702]
[88]
Broom, D.C.; Matson, D.J.; Bradshaw, E.; Buck, M.E.; Meade, R.; Coombs, S.; Matchett, M.; Ford, K.K.; Yu, W.; Yuan, J.; Sun, S.H.; Ochoa, R.; Krause, J.E.; Wustrow, D.J.; Cortright, D.N. Characterization of N -(Adamantan-1-ylmethyl)-5-[(3 R -aminopyrrolidin-1-yl)methyl]-2-chloro-benzamide, a P2X 7 antagonist in animal models of pain and inflammation. J. Pharmacol. Exp. Ther., 2008, 327(3), 620-633.
[http://dx.doi.org/10.1124/jpet.108.141853] [PMID: 18772321]
[89]
Gum, R.J.; Wakefield, B.; Jarvis, M.F. P2X receptor antagonists for pain management: Examination of binding and physicochemical properties. Purinergic Signal., 2012, 8(S1), 41-56.
[http://dx.doi.org/10.1007/s11302-011-9272-5] [PMID: 22086553]
[90]
Donnelly-Roberts, D.L.; Jarvis, M.F. Discovery of P2X 7 receptor-selective antagonists offers new insights into P2X 7 receptor function and indicates a role in chronic pain states. Br. J. Pharmacol., 2007, 151(5), 571-579.
[http://dx.doi.org/10.1038/sj.bjp.0707265] [PMID: 17471177]
[91]
Allsopp, R.C.; Dayl, S.; Schmid, R.; Evans, R.J. Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci. Rep., 2017, 7(1), 725.
[http://dx.doi.org/10.1038/s41598-017-00732-5] [PMID: 28389651]
[92]
Guile, S.D.; Alcaraz, L.; Birkinshaw, T.N.; Bowers, K.C.; Ebden, M.R.; Furber, M.; Stocks, M.J. Antagonists of the P2X(7) receptor. From lead identification to drug development. J. Med. Chem., 2009, 52(10), 3123-3141.
[http://dx.doi.org/10.1021/jm801528x] [PMID: 19191585]
[93]
Baxter, A.; Bent, J.; Bowers, K.; Braddock, M.; Brough, S.; Fagura, M.; Lawson, M.; McInally, T.; Mortimore, M.; Robertson, M.; Weaver, R.; Webborn, P. Hit-to-Lead studies: The discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg. Med. Chem. Lett., 2003, 13(22), 4047-4050.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.034] [PMID: 14592505]
[94]
Wilkinson, S.M.; Gunosewoyo, H.; Barron, M.L.; Boucher, A.; McDonnell, M.; Turner, P.; Morrison, D.E.; Bennett, M.R.; McGregor, I.S.; Rendina, L.M.; Kassiou, M. The first CNS-active carborane: A novel P2X7 receptor antagonist with antidepressant activity. ACS Chem. Neurosci., 2014, 5(5), 335-339.
[http://dx.doi.org/10.1021/cn500054n] [PMID: 24689484]
[95]
Wilkinson, S.M.; Barron, M.L.; O’Brien-Brown, J.; Janssen, B.; Stokes, L.; Werry, E.L.; Chishty, M.; Skarratt, K.K.; Ong, J.A.; Hibbs, D.E.; Vugts, D.J.; Fuller, S.; Windhorst, A.D.; Kassiou, M. Pharmacological evaluation of novel bioisosteres of an adamantanyl benzamide P2X7 Receptor antagonist. ACS Chem. Neurosci., 2017, 8(11), 2374-2380.
[http://dx.doi.org/10.1021/acschemneuro.7b00272] [PMID: 28841278]
[96]
Dombroski, M.A.; Duplantier, A.J.; Subramanyam, C. Benzamide inhibitors of the P2X7 receptor. PCT Appl. N. WO 2004/099146, 2004.
[97]
Chen, X.; Pierce, B.; Naing, W.; Grapperhaus, M.L.; Phillion, D.P. Discovery of 2-chloro-N-((4,4-difluoro-1-hydroxycyclohexyl)methyl)-5-(5-fluoropyrimidin-2-yl)benzamide as a potent and CNS penetrable P2X7 receptor antagonist. Bioorg. Med. Chem. Lett., 2010, 20(10), 3107-3111.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.094] [PMID: 20392639]
[98]
Duplantier, A.J.; Dombroski, M.A.; Subramanyam, C.; Beaulieu, A.M.; Chang, S.P.; Gabel, C.A.; Jordan, C.; Kalgutkar, A.S.; Kraus, K.G.; Labasi, J.M.; Mussari, C.; Perregaux, D.G.; Shepard, R.; Taylor, T.J.; Trevena, K.A.; Whitney-Pickett, C.; Yoon, K. Optimization of the physicochemical and pharmacokinetic attributes in a 6-azauracil series of P2X7 receptor antagonists leading to the discovery of the clinical candidate CE-224,535. Bioorg. Med. Chem. Lett., 2011, 21(12), 3708-3711.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.077] [PMID: 21565499]
[99]
Subramanyam, C.; Duplantier, A.J.; Dombroski, M.A.; Chang, S.P.; Gabel, C.A.; Whitney-Pickett, C.; Perregaux, D.G.; Labasi, J.M.; Yoon, K.; Shepard, R.M.; Fisher, M. Discovery, synthesis and SAR of azinyl- and azolylbenzamides antagonists of the P2X7 receptor. Bioorg. Med. Chem. Lett., 2011, 21(18), 5475-5479.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.117] [PMID: 21782426]
[100]
Stock, T.C.; Bloom, B.J.; Wei, N.; Ishaq, S.; Park, W.; Wang, X.; Gupta, P.; Mebus, C.A. Efficacy and safety of CE-224,535, an antagonist of P2X7 receptor, in treatment of patients with rheumatoid arthritis inadequately controlled by methotrexate. J. Rheumatol., 2012, 39(4), 720-727.
[http://dx.doi.org/10.3899/jrheum.110874] [PMID: 22382341]
[101]
Guile, S.D.; Ebden, M. Quinoline derivatives for the treatment of inflammatory diseases. PCT Appl. N. Patent: WO 2008/114002,, 2008.
[102]
Guile, S.D.; Thompson, T. A quinoline derivative acting as a P2X7-receptor antagonist. PCT Appl. N. Patent: WO 2009/070116,, 2009.
[103]
Xiao, Y.; Karra, S.; Goutopoulos, A.; Morse, N.T.; Zhang, S.; Dhanabal, M.; Tian, H.; Seenisamy, J.; Jayadevan, J.; Caldwell, R.; Potnick, J.; Bleich, M.; Chekler, E.; Sherer, B.; Sriraman, V. Synthesis and SAR development of quinoline analogs as novel P2X7 receptor antagonists. Bioorg. Med. Chem. Lett., 2019, 29(13), 1660-1664.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.033] [PMID: 31031055]
[104]
Letavic, M.A.; Lord, B.; Bischoff, F.; Hawryluk, N.A.; Pieters, S.; Rech, J.C.; Sales, Z.; Velter, A.I.; Ao, H.; Bonaventure, P.; Contreras, V.; Jiang, X.; Morton, K.L.; Scott, B.; Wang, Q.; Wickenden, A.D.; Carruthers, N.I.; Bhattacharya, A. Synthesis and pharmacological characterization of two novel, brain penetrating P2X7 antagonists. ACS Med. Chem. Lett., 2013, 4(4), 419-422.
[http://dx.doi.org/10.1021/ml400040v] [PMID: 24900687]
[105]
Kilburn, J.P.; Rasmussen, L.K.; Jessing, M.; Eldemenky, E.M.; Chen, B.; Jiang, Y.; Hopper, A.T. Benzamides. PCT Appl. N. Patent: WO 2014/057078, 2014.
[106]
Kilburn, J.P.; Rasmussen, L.K.; Jessing, M.; Eldemenky, E.M.; Chen, B.; Jiang, Y. N N -(2-(cyclic amine)ethyl)benzamide derivatives as P2X7 inhibitors. PCT Appl. N. Patent: WO 2014/057080, , 2014.
[107]
Kilburn, J.P.; Hopper, A.T.; Juhl, M. Inhibitor of the p2x7 receptor., PCT Appl. N. Patent: WO 2017/076825, 2014.
[108]
Hopper, A.T.; Juhl, M.; Hornberg, J.; Badolo, L.; Kilburn, J.P.; Thougaard, A.; Smagin, G.; Song, D.; Calice, L.; Menon, V.; Dale, E.; Zhang, H.; Cajina, M.; Nattini, M.E.; Gandhi, A.; Grenon, M.; Jones, K.; Khayrullina, T.; Chandrasena, G.; Thomsen, C.; Zorn, S.H.; Brodbeck, R.; Poda, S.B.; Staal, R.; Möller, T. Synthesis and characterization of the novel rodent-active and CNS-Penetrant P2X7 receptor antagonist Lu AF27139. J. Med. Chem., 2021, 64(8), 4891-4902.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02249] [PMID: 33822617]
[109]
Love, C.J.; Leenaerts, J.E.; Cooymans, L.P.; Lebsack, A.D.; Branstetter, B.J.; Rech, J.C.; Gleason, E.A.; Venable, J.D.; Wiener, D.; Smith, D.M.; Breitenbucher, J.G. PCT Appl. N. Patent: WO 2009/132000,, 2009.
[110]
Rech, J.C.; Bhattacharya, A.; Branstetter, B.J.; Love, C.J.; Leenaerts, J.E.; Cooymans, L.P.; Eckert, W.A., III; Ao, H.; Wang, Q.; Chaplan, S.R.; Wickenden, A.D.; Lebsack, A.D.; Breitenbucher, J.G. The discovery and preclinical characterization of 6-chloro- N -(2-(4,4-difluoropiperidin-1-yl)-2-(2-(trifluoromethyl)pyrimidin-5-yl)ethyl)quinoline-5-carboxamide based P2X7 antagonists. Bioorg. Med. Chem. Lett., 2016, 26(19), 4781-4784.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.029] [PMID: 27595421]
[111]
Dean, D.K.; Munoz-Muriedas, J.; Sime, M.; Steadman, J.G.A.; Thewlis, R.E.A.; Trani, G.; Walter, D.S. 5,6,7,8- Tetrahydro[1,2,4]triazolo[4,3-a]pyrazine derivatives as P2X7 modulators. PCT Appl. N Patent: WO 2010/125102,, 2010.
[112]
Rudolph, D.A.; Alcazar, J.; Ameriks, M.K.; Anton, A.B.; Ao, H.; Bonaventure, P.; Carruthers, N.I.; Chrovian, C.C.; De Angelis, M.; Lord, B.; Rech, J.C.; Wang, Q.; Bhattacharya, A.; Andres, J.I.; Letavic, M.A. Novel methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones are P2X7 antagonists. Bioorg. Med. Chem. Lett., 2015, 25(16), 3157-3163.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.004] [PMID: 26099534]
[113]
Chrovian, C.C.; Soyode-Johnson, A.; Ao, H.; Bacani, G.M.; Carruthers, N.I.; Lord, B.; Nguyen, L.; Rech, J.C.; Wang, Q.; Bhattacharya, A.; Letavic, M.A. Novel phenyl-substituted 5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazine P2X7 antagonists with robust target engagement in rat brain. ACS Chem. Neurosci., 2016, 7(4), 490-497.
[http://dx.doi.org/10.1021/acschemneuro.5b00303] [PMID: 26752113]
[114]
Savall, B.M.; Wu, D.; De Angelis, M.; Carruthers, N.I.; Ao, H.; Wang, Q.; Lord, B.; Bhattacharya, A.; Letavic, M.A. Synthesis, SAR, and pharmacological characterization of brain penetrant P2X7 receptor antagonists. ACS Med. Chem. Lett., 2015, 6(6), 671-676.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00089] [PMID: 26101572]
[115]
Letavic, M.A.; Savall, B.M.; Allison, B.D.; Aluisio, L.; Andres, J.I.; De Angelis, M.; Ao, H.; Beauchamp, D.A.; Bonaventure, P.; Bryant, S.; Carruthers, N.I.; Ceusters, M.; Coe, K.J.; Dvorak, C.A.; Fraser, I.C.; Gelin, C.F.; Koudriakova, T.; Liang, J.; Lord, B.; Lovenberg, T.W.; Otieno, M.A.; Schoetens, F.; Swanson, D.M.; Wang, Q.; Wickenden, A.D.; Bhattacharya, A. 4-Methyl-6,7-dihydro-4 H -triazolo[4,5- c]pyridine-Based P2X7 receptor antagonists: optimization of pharmacokinetic properties leading to the identification of a clinical candidate. J. Med. Chem., 2017, 60(11), 4559-4572.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00408] [PMID: 28493698]
[116]
Swanson, D.M.; Savall, B.M.; Coe, K.J.; Schoetens, F.; Koudriakova, T.; Skaptason, J.; Wall, J.; Rech, J.; Deng, X.; De Angelis, M.; Everson, A.; Lord, B.; Wang, Q.; Ao, H.; Scott, B.; Sepassi, K.; Lovenberg, T.W.; Carruthers, N.I.; Bhattacharya, A.; Letavic, M.A. Identification of (R)-(2-Chloro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyridin-2-yl)-4-methyl-6,7-dihydro-1 H -imidazo[4,5- c]pyridin-5(4 H)-yl)methanone (JNJ 54166060), a small molecule antagonist of the P2X7 receptor. J. Med. Chem., 2016, 59(18), 8535-8548.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00989] [PMID: 27548392]
[117]
Ziff, J.; Rudolph, D.A.; Stenne, B.; Koudriakova, T.; Lord, B.; Bonaventure, P.; Lovenberg, T.W.; Carruthers, N.I.; Bhattacharya, A.; Letavic, M.A.; Shireman, B.T. Substituted 5,6-(Dihydropyrido[3,4- d]pyrimidin-7(8 H)-yl)-methanones as P2X7 antagonists. ACS Chem. Neurosci., 2016, 7(4), 498-504.
[http://dx.doi.org/10.1021/acschemneuro.5b00304] [PMID: 26754558]
[118]
Ameriks, M.K.; Ao, H.; Carruthers, N.I.; Lord, B.; Ravula, S.; Rech, J.C.; Savall, B.M.; Wall, J.L.; Wang, Q.; Bhattacharya, A.; Letavic, M.A. Preclinical characterization of substituted 6,7-dihydro-[1,2,4]triazolo[4,3- a]pyrazin-8(5 H)-one P2X7 receptor antagonists. Bioorg. Med. Chem. Lett., 2016, 26(2), 257-261.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.052] [PMID: 26707399]
[119]
Carroll, W.A.; Perez-Medrano, A.; Florjancic, A.S.; Nelson, D.W.; Peddi, S.; Li, T.; Bunnelle, E.M.; Hirst, G.C.; Li, B. Amino-tetrazoles analogues and methods of use., PCT Appl. N. Patent: WO 2005/111003, 2005.
[120]
Carroll, W.A. P2X7 receptor antagonists and methods of use. . PCT Appl. N. Patent: WO2007056046, 2007.
[121]
Lopez-Tapia, F.; Walker, K.A.M.; Brotherton-Pleiss, C.; Caroon, J.; Nitzan, D.; Lowrie, L.; Gleason, S.; Zhao, S.H.; Berger, J.; Cockayne, D.; Phippard, D.; Suttmann, R.; Fitch, W.L.; Bourdet, D.; Rege, P.; Huang, X.; Broadbent, S.; Dvorak, C.; Zhu, J.; Wagner, P.; Padilla, F.; Loe, B.; Jahangir, A.; Alker, A. Novel series of dihydropyridinone P2X7 receptor antagonists. J. Med. Chem., 2015, 58(21), 8413-8426.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00365] [PMID: 26460788]
[122]
Beswick, P.J.; Chambers, L.J.; Davies, D.J.; Dean, D.K.; Demont, E.H.; Susan Roomans, S.; Walter, D.S. N N (phenylmethyl)-2-(1H-pyrazol-4-yl) acetamide derivatives as P2X7 antagonists for the treatment of pain, inflammation and neurodegeneration. PCT Appl. N. Patent: WO 2007/141267,, 2007.
[123]
Beswick, P.J.; Dean, D.K.; Walter, D.S. Pyrazole derivatives as P2X7 modulators.. PCT Appl. N. PCT App N. Patent: WO 2008/125600,, 2008.
[124]
Chambers, L.J.; Stevens, A.J.; Moses, A.P.; Michel, A.D.; Walter, D.S.; Davies, D.J.; Livermore, D.G.; Fonfria, E.; Demont, E.H.; Vimal, M.; Theobald, P.J.; Beswick, P.J.; Gleave, R.J.; Roman, S.A.; Senger, S. Synthesis and structure–activity relationships of a series of (1H-pyrazol-4-yl)acetamide antagonists of the P2X7 receptor. Bioorg. Med. Chem. Lett., 2010, 20(10), 3161-3164.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.096] [PMID: 20399651]
[125]
Beswick, P.J.; Billinton, A.; Chambers, L.J.; Dean, D.K.; Fonfria, E.; Gleave, R.J.; Medhurst, S.J.; Michel, A.D.; Moses, A.P.; Patel, S.; Roman, S.A.; Roomans, S.; Senger, S.; Stevens, A.J.; Walter, D.S. Structure–activity relationships and in vivo activity of (1H-pyrazol-4-yl)acetamide antagonists of the P2X7 receptor. Bioorg. Med. Chem. Lett., 2010, 20(15), 4653-4656.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.107] [PMID: 20579878]
[126]
Gleave, R.J.; Walter, D.S.; Beswick, P.J.; Fonfria, E.; Michel, A.D.; Roman, S.A.; Tang, S.P. Synthesis and biological activity of a series of tetrasubstituted-imidazoles as P2X7 antagonists. Bioorg. Med. Chem. Lett., 2010, 20(16), 4951-4954.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.018] [PMID: 20634071]
[127]
Abdi, M.H.; Beswick, P.J.; Billinton, A.; Chambers, L.J.; Charlton, A.; Collins, S.D.; Collis, K.L.; Dean, D.K.; Fonfria, E.; Gleave, R.J.; Lejeune, C.L.; Livermore, D.G.; Medhurst, S.J.; Michel, A.D.; Moses, A.P.; Page, L.; Patel, S.; Roman, S.A.; Senger, S.; Slingsby, B.; Steadman, J.G.A.; Stevens, A.J.; Walter, D.S. Discovery and structure–activity relationships of a series of pyroglutamic acid amide antagonists of the P2X7 receptor. Bioorg. Med. Chem. Lett., 2010, 20(17), 5080-5084.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.033] [PMID: 20673717]
[128]
Ali, Z.; Laurijssens, B.; Ostenfeld, T.; McHugh, S.; Stylianou, A.; Scott-Stevens, P.; Hosking, L.; Dewit, O.; Richardson, J.C.; Chen, C. Pharmacokinetic and pharmacodynamic profiling of a P2X7 receptor allosteric modulator GSK1482160 in healthy human subjects. Br. J. Clin. Pharmacol., 2013, 75(1), 197-207.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04320.x] [PMID: 22568863]
[129]
Abberley, L.; Bebius, A.; Beswick, P.J.; Billinton, A.; Collis, K.L.; Dean, D.K.; Fonfria, E.; Gleave, R.J.; Medhurst, S.J.; Michel, A.D.; Moses, A.P.; Patel, S.; Roman, S.A.; Scoccitti, T.; Smith, B.; Steadman, J.G.A.; Walter, D.S. Identification of 2-oxo-N-(phenylmethyl)-4-imidazolidine-carboxamide antagonists of the P2X7 receptor. Bioorg. Med. Chem. Lett., 2010, 20(22), 6370-6374.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.101] [PMID: 20934331]
[130]
Wilson, A.W.; Medhurst, S.J.; Dixon, C.I.; Bontoft, N.C.; Winyard, L.A.; Brackenborough, K.T.; Alba, J.; Clarke, C.J.; Gunthorpe, M.J.; Hicks, G.A.; Bountra, C.; McQueen, D.S.; Chessell, I.P. An animal model of chronic inflammatory pain: Pharmacological and temporal differentiation from acute models. Eur. J. Pain, 2006, 10(6), 537-549.
[http://dx.doi.org/10.1016/j.ejpain.2005.08.003] [PMID: 16199187]
[131]
Betschmann, P.; Carroll, W.A.; Ericsson, A.M.; Fix-Stenzel, S.R.; Friedman, M.; Hirst, G.C.; Josephsohn, N.S.; Li, B.; Perez-Medrano, A.; Morytko, M.J.; Rafferty, P.; Chen, H. Piperazines as P2X7 antagonists. PCT Appl. N. Patent: WO 2008/005368,, 2008.
[132]
Morytko, M.J.; Betschmann, P.; Woller, K.; Ericsson, A.; Chen, H.; Donnelly-Roberts, D.L.; Namovic, M.T.; Jarvis, M.F.; Carroll, W.A.; Rafferty, P. Synthesis and in vitro activity of N′-cyano-4-(2-phenylacetyl)-N-o-tolylpiperazine-1-carboximidamide P2X7 antagonists. Bioorg. Med. Chem. Lett., 2008, 18(6), 2093-2096.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.094] [PMID: 18272365]
[133]
Patberg, M.; Isaak, A.; Füsser, F.; Ortiz Zacarías, N.V.; Vinnenberg, L.; Schulte, J.; Michetti, L.; Grey, L.; van der Horst, C.; Hundehege, P.; Koch, O.; Heitman, L.H.; Budde, T.; Junker, A. Piperazine squaric acid diamides, a novel class of allosteric P2X7 receptor antagonists. Eur. J. Med. Chem., 2021, 226, 113838.
[http://dx.doi.org/10.1016/j.ejmech.2021.113838] [PMID: 34571173]
[134]
O’Brien-Brown, J.; Jackson, A.; Reekie, T.A.; Barron, M.L.; Werry, E.L.; Schiavini, P.; McDonnell, M.; Munoz, L.; Wilkinson, S.; Noll, B.; Wang, S.; Kassiou, M. Discovery and pharmacological evaluation of a novel series of adamantyl cyanoguanidines as P2X7 receptor antagonists. Eur. J. Med. Chem., 2017, 130, 433-439.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.060] [PMID: 28279849]
[135]
Calzaferri, F.; Narros-Fernández, P.; de Pascual, R.; de Diego, A.M.G.; Nicke, A.; Egea, J.; García, A.G.; de los Ríos, C. Synthesis and pharmacological evaluation of novel non-nucleotide purine derivatives as P2X7 antagonists for the treatment of neuroinflammation. J. Med. Chem., 2021, 64(4), 2272-2290.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02145] [PMID: 33560845]
[136]
Faria, R.X.; Oliveira, F.H.; Salles, J.P.; Oliveira, A.S.; von Ranke, N.L.; Bello, M.L.; Rodrigues, C.R.; Castro, H.C.; Louvis, A.R.; Martins, D.L.; Ferreira, V.F. 1,4-Naphthoquinones potently inhibiting P2X7 receptor activity. Eur. J. Med. Chem., 2018, 143, 1361-1372.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.033] [PMID: 29133043]
[137]
Pacheco, P.A.F.; Galvão, R.M.S.; Faria, A.F.M.; Von Ranke, N.; Rangel, M.S.; Ribeiro, T.M.; Bello, M.; Rodrigues, C.R.; Ferreira, V.F.; da Rocha, D.R.; Faria, R.X. 8-Hydroxy-2-(1H-1,2,3-triazol-1-yl)-1,4-naphtoquinone derivatives inhibited P2X7 Receptor-Induced dye uptake into murine macrophages. Bioorg. Med. Chem., 2019, 27(8), 1449-1455.
[http://dx.doi.org/10.1016/j.bmc.2018.11.036] [PMID: 30528164]
[138]
Pislyagin, E.; Kozlovskiy, S.; Menchinskaya, E.; Chingizova, E.; Likhatskaya, G.; Gorpenchenko, T.; Sabutski, Y.; Polonik, S.; Aminin, D. Synthetic 1,4-Naphthoquinones inhibit P2X7 receptors in murine neuroblastoma cells. Bioorg. Med. Chem., 2021, 31, 115975.
[http://dx.doi.org/10.1016/j.bmc.2020.115975] [PMID: 33401207]
[139]
Park, J.H.; Lee, G.E.; Lee, S.D.; Hien, T.T.; Kim, S.; Yang, J.W.; Cho, J.H.; Ko, H.; Lim, S.C.; Kim, Y.G.; Kang, K.W.; Kim, Y.C. Discovery of novel 2,5-dioxoimidazolidine-based P2X(7) receptor antagonists as constrained analogues of KN62. J. Med. Chem., 2015, 58(5), 2114-2134.
[http://dx.doi.org/10.1021/jm500324g] [PMID: 25597334]
[140]
Park, J.H.; Lee, G.E.; Lee, S.D.; Ko, H.; Kim, Y.C. Structure–activity relationship studies of pyrimidine-2,4-dione derivatives as potent P2X7 receptor antagonists. Eur. J. Med. Chem., 2015, 106, 180-193.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.036] [PMID: 26547056]
[141]
Matasi, J.J.; Brumfield, S.; Tulshian, D.; Czarnecki, M.; Greenlee, W.; Garlisi, C.G.; Qiu, H.; Devito, K.; Chen, S.C.; Sun, Y.; Bertorelli, R.; Geiss, W.; Le, V.D.; Martin, G.S.; Vellekoop, S.A.; Haber, J.; Allard, M.L. Synthesis and SAR development of novel P2X7 receptor antagonists for the treatment of pain: Part 1. Bioorg. Med. Chem. Lett., 2011, 21(12), 3805-3808.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.034] [PMID: 21570840]
[142]
Mahmood, A.; Ali Shah, S.J.; Iqbal, J. Design and synthesis of adamantane-1-carbonyl thiourea derivatives as potent and selective inhibitors of h-P2X4 and h-P2X7 receptors: An emerging therapeutic tool for treatment of inflammation and neurological disorders. Eur. J. Med. Chem., 2022, 231, 114162.
[http://dx.doi.org/10.1016/j.ejmech.2022.114162] [PMID: 35123298]
[143]
Rudin, M.; Weissleder, R. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov., 2003, 2(2), 123-131.
[http://dx.doi.org/10.1038/nrd1007] [PMID: 12563303]
[144]
Pike, V.W. Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr. Med. Chem., 2016, 23(18), 1818-1869.
[http://dx.doi.org/10.2174/0929867323666160418114826] [PMID: 27087244]
[145]
Janssen, B.; Vugts, D.; Windhorst, A.; Mach, R. PET imaging of microglial activation beyond targeting TSPO. Molecules, 2018, 23(3), 607.
[http://dx.doi.org/10.3390/molecules23030607] [PMID: 29518005]
[146]
Janssen, B.; Ory, D.; Wilkinson, S.M.; Vugts, D.J.; Kooijman, E.; Verbeek, J.; Funke, U.; Molenaar, G.T.; Kruijer, P.S.; Lammertsma, A.A.; Kassiou, M.; Bormans, G.; Windhorst, A.D. Initial evaluation of P2X7R antagonists [11C]A-740003 and [11C]SMW64-D16 as PET tracers of microglialactivation in neuroinflammation. J. Labelled Comp. Radiopharm., 2015, 58, S277.
[147]
Janssen, B.; Vugts, D.J.; Wilkinson, S.M.; Ory, D.; Chalon, S.; Hoozemans, J.J.M.; Schuit, R.C.; Beaino, W.; Kooijman, E.J.M.; van den Hoek, J.; Chishty, M.; Doméné, A.; Van der Perren, A.; Villa, A.; Maggi, A.; Molenaar, G.T.; Funke, U.; Shevchenko, R.V.; Baekelandt, V.; Bormans, G.; Lammertsma, A.A.; Kassiou, M.; Windhorst, A.D. Identification of the allosteric P2X7 receptor antagonist [11C]SMW139 as a PET tracer of microglial activation. Sci. Rep., 2018, 8(1), 6580.
[http://dx.doi.org/10.1038/s41598-018-24814-0] [PMID: 29700413]
[148]
Hagens, M.H.J.; Golla, S.S.V.; Janssen, B.; Vugts, D.J.; Beaino, W.; Windhorst, A.D.; O’Brien-Brown, J.; Kassiou, M.; Schuit, R.C.; Schwarte, L.A.; de Vries, H.E.; Killestein, J.; Barkhof, F.; van Berckel, B.N.M.; Lammertsma, A.A. The P2X7 receptor tracer [11C]SMW139 as an in vivo marker of neuroinflammation in multiple sclerosis: A first-in man study. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(2), 379-389.
[http://dx.doi.org/10.1007/s00259-019-04550-x] [PMID: 31705174]
[149]
Territo, P.R.; Meyer, J.A.; Peters, J.S.; Riley, A.A.; McCarthy, B.P.; Gao, M.; Wang, M.; Green, M.A.; Zheng, Q.H.; Hutchins, G.D. Characterization of 11C-GSK1482160 for targeting the P2X7 receptor as a biomarker for neuroinflammation. J. Nucl. Med., 2017, 58(3), 458-465.
[http://dx.doi.org/10.2967/jnumed.116.181354] [PMID: 27765863]
[150]
Han, J.; Liu, H.; Liu, C.; Jin, H.; Perlmutter, J.S.; Egan, T.M.; Tu, Z. Pharmacologic characterizations of a P2X7 receptor-specific radioligand, [11C]GSK1482160 for neuroinflammatory response. Nucl. Med. Commun., 2017, 38(5), 372-382.
[http://dx.doi.org/10.1097/MNM.0000000000000660] [PMID: 28338530]
[151]
Green, M.; Hutchins, G.; Fletcher, J.; Territo, W.; Polson, H.; Trussel, H.; Wissman, C.; Zheng, Q-H.; Gao, M.; Wang, M.; Glick-Wilson, B. Distribution of the P2X7-receptor-targeted [11C]GSK1482160 radiopharmaceutical in normal human subjects. J. Nucl. Med., 2018, 59(Suppl. 1), 1009.
[152]
Gao, M.; Wang, M.; Meyer, J.A.; Territo, P.R.; Hutchins, G.D.; Zarrinmayeh, H.; Zheng, Q.H. Synthesis and in vitro biological evaluation of new P2X7R radioligands [11C]halo-GSK1482160 analogs. Bioorg. Med. Chem. Lett., 2019, 29(12), 1476-1480.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.018] [PMID: 31005444]
[153]
Ory, D.; Celen, S.; Gijsbers, R.; Van Den Haute, C.; Postnov, A.; Koole, M.; Vandeputte, C.; Andrés, J.I.; Alcazar, J.; De Angelis, M.; Langlois, X.; Bhattacharya, A.; Schmidt, M.; Letavic, M.A.; Vanduffel, W.; Van Laere, K.; Verbruggen, A.; Debyser, Z.; Bormans, G. Preclinical evaluation of a P2X7 receptor-selective radiotracer: PET studies in a rat model with local overexpression of the human P2X7 receptor and in nonhuman primates. J. Nucl. Med., 2016, 57(9), 1436-1441.
[http://dx.doi.org/10.2967/jnumed.115.169995] [PMID: 27199364]
[154]
Van Weehaeghe, D.; Koole, M.; Schmidt, M.E.; Deman, S.; Jacobs, A.H.; Souche, E.; Serdons, K.; Sunaert, S.; Bormans, G.; Vandenberghe, W.; Van Laere, K. [11C]JNJ54173717, a novel P2X7 receptor radioligand as marker for neuroinflammation: human biodistribution, dosimetry, brain kinetic modelling and quantification of brain P2X7 receptors in patients with Parkinson’s disease and healthy volunteers. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(10), 2051-2064.
[http://dx.doi.org/10.1007/s00259-019-04369-6] [PMID: 31243495]
[155]
Fantoni, E.R.; Dal Ben, D.; Falzoni, S.; Di Virgilio, F.; Lovestone, S.; Gee, A. Design, synthesis and evaluation in an LPS rodent model of neuroinflammation of a novel 18F-labelled PET tracer targeting P2X7. EJNMMI Res., 2017, 7(1), 31.
[http://dx.doi.org/10.1186/s13550-017-0275-2] [PMID: 28374288]
[156]
Koole, M.; Schmidt, M.E.; Hijzen, A.; Ravenstijn, P.; Vandermeulen, C.; Van Weehaeghe, D.; Serdons, K.; Celen, S.; Bormans, G.; Ceusters, M.; Zhang, W.; Van Nueten, L.; Kolb, H.; de Hoon, J.; Van Laere, K. 18F-JNJ-64413739, a novel PET ligand for the P2X7 ion channel: Radiation dosimetry, kinetic modeling, test-retest variability, and occupancy of the P2X7 antagonist JNJ-54175446. J. Nucl. Med., 2019, 60(5), 683-690.
[http://dx.doi.org/10.2967/jnumed.118.216747] [PMID: 30262518]
[157]
Mertens, N.; Schmidt, M.E.; Hijzen, A.; Van Weehaeghe, D.; Ravenstijn, P.; Depre, M.; de Hoon, J.; Van Laere, K.; Koole, M. Minimally invasive quantification of cerebral P2X7R occupancy using dynamic [18F]JNJ-64413739 PET and MRA-driven image derived input function. Sci. Rep., 2021, 11(1), 16172.
[http://dx.doi.org/10.1038/s41598-021-95715-y] [PMID: 34373571]
[158]
Morgan, J.; Moreno, O.; Alves, M.; Baz, Z.; Menéndez Méndez, A.; Leister, H.; Melia, C.; Smith, J.; Visekruna, A.; Nicke, A.; Bhattacharya, A.; Ceusters, M.; Henshall, D.C.; Gómez-Vallejo, V.; Llop, J.; Engel, T. Increased uptake of the P2X7 receptor radiotracer18 F‐JNJ ‐64413739 in the brain and peripheral organs according to the severity of status epilepticus in male mice. Epilepsia, 2023, 64(2), 511-523.
[http://dx.doi.org/10.1111/epi.17484] [PMID: 36507708]
[159]
Fu, Z.; Lin, Q.; Hu, B.; Zhang, Y.; Chen, W.; Zhu, J.; Zhao, Y.; Choi, H.S.; Shi, H.; Cheng, D. P2X7 PET radioligand 18F-PTTP for differentiation of lung tumor from inflammation. J. Nucl. Med., 2019, 60(7), 930-936.
[http://dx.doi.org/10.2967/jnumed.118.222547] [PMID: 30655332]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy