Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Review of the Chemical Composition and Biological Activities of Essential Oils from Artemisia Argyi, Artemisia Princeps, and Artemisia Montana

Author(s): Dan Yu, Nan‑Nan Huang and Xiao‑Wei Du*

Volume 23, Issue 16, 2023

Published on: 04 May, 2023

Page: [1522 - 1541] Pages: 20

DOI: 10.2174/1568026623666230330152345

Price: $65

Abstract

Background: Artemisia argyi Lévl. et Van., Artemisia princeps Pamp., and Artemisia montana Pamp., which are the sources of mugwort, have been popular across East Asian countries for nearly 2000 years now. Essential oils are the major chemical component obtained from them, exhibiting a variety of biological activities.

Objective: This review mainly focuses on the chemical composition and biological activities of A. argyi essential oil (AAEO), A. princeps essential oil (APEO), and A. montana essential oil (AMEO), with a special focus on their common and specific characteristics. The traditional use, distribution, and botany of A. argyi, A. princeps, and A. montana have also been summarized. In addition, the pharmacokinetics of AAEO was involved.

Methods: We collected literature from online and offline databases by entering the following keywords: mugwort, wormwood, A. argyi, A. princeps, A. montana, essential oil, and volatile oil. No language limitation was present in our search.

Results: A. argyi, A. princeps, and A. montana were used as traditional medicine, food, and health care products for a long time in Asia. They are widely distributed in most parts of China, Korea, and Japan. AAEO, APEO, and AMEO composed of monoterpenes, sesquiterpenes and their derivatives, alkanes, olefins, etc. Most of the specific compounds of AAEO were monoterpenoids, nearly half of the specific compounds of APEO were aliphatic hydrocarbons, and the sesquiterpenes were the typical specific compounds of AMEO. The mugwort essential oil showed multiple biological activities, such as anti-microbial, anti-inflammatory, antioxidant, antitumor, anticoagulation, sedative, and insecticide.

Conclusion: The present review provided insight into the chemical composition and biological activity of AAEO, APEO, and AMEO. The comprehensive literature showed that they possessed wide application prospects in various fields. However, they should be studied in more depth. The underlying bioactive mechanisms should be elucidated and their toxicity and quality control should be determined.

Graphical Abstract

[1]
Hu, Q.; Liu, Z.; Guo, Y.; Lu, S.; Du, H.; Cao, Y. Antioxidant capacity of flavonoids from Folium Artemisiae argyi and the molecular mechanism in Caenorhabditis elegans. J. Ethnopharmacol., 2021, 279, 114398.
[http://dx.doi.org/10.1016/j.jep.2021.114398] [PMID: 34242729]
[2]
Ryu, S.N. Bioactive constituents and utilities of Ganghwayakssuk (Artemisia princeps Pamp.). J. Korean Soc. Int. Agric., 2008, 20, 308-314.
[3]
Lee, K.O.; Kim, S.; Chang, S.B.; Yoo, J.S. Effects of Artemisia a. smoke (ssukjahun) on menstrual distress, dysmenorrhea, and prostaglandin F2α. Korean J. Women Health Nurs., 2009, 15(2), 150-159.
[http://dx.doi.org/10.4069/kjwhn.2009.15.2.150]
[4]
Xiao, J.Q.; Liu, W.Y.; Sun, H.; Li, W.; Koike, K.; Kikuchi, T.; Yamada, T.; Li, D.; Feng, F.; Zhang, J. Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi. Bioorg. Chem., 2019, 92, 103268.
[http://dx.doi.org/10.1016/j.bioorg.2019.103268] [PMID: 31541800]
[5]
Zhang, Y.H.; Xue, M.Q.; Bai, Y.C.; Yuan, H.H.; Zhao, H.L.; Lan, M.B. 3,5-Dicaffeoylquinic acid isolated from Artemisia argyi and its ester derivatives exert anti-Leucyl-tRNA synthetase of Giardia lamblia (GlLeuRS) and potential anti-giardial effects. Fitoterapia, 2012, 83(7), 1281-1285.
[http://dx.doi.org/10.1016/j.fitote.2012.05.016] [PMID: 22668973]
[6]
Jung, H.A.; Islam, M.D.N.; Kwon, Y.S.; Jin, S.E.; Son, Y.K.; Park, J.J.; Sohn, H.S.; Choi, J.S. Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem. Toxicol., 2011, 49(2), 376-384.
[http://dx.doi.org/10.1016/j.fct.2010.11.012] [PMID: 21092751]
[7]
Yamamoto, N.; Kanemoto, Y.; Ueda, M.; Kawasaki, K.; Fukuda, I.; Ashida, H. Anti-obesity and anti-diabetic effects of ethanol extract of Artemisia princeps in C57BL/6 mice fed a high-fat diet. Food Funct., 2011, 2(1), 45-52.
[http://dx.doi.org/10.1039/C0FO00129E] [PMID: 21773585]
[8]
Wang, Z.; Xu, M.; Shi, Z.; Bao, C.; Liu, H.; Zhou, C.; Yan, Y.; Wang, C.; Li, G.; Zhang, W.; Gao, A.; Wu, H. Mild moxibustion for irritable bowel syndrome with diarrhea (IBS-D): A randomized controlled trial. J. Ethnopharmacol., 2022, 289, 115064.
[http://dx.doi.org/10.1016/j.jep.2022.115064] [PMID: 35114338]
[9]
Hosking, R. A dictionary of Japanese food, 3rd ed; Tuttle Publishing: Tokyo, 2003.
[10]
Oh, J.H.; Karadeniz, F.; Lee, J.I.; Seo, Y.; Kong, C.S. Artemisia princeps inhibits adipogenic differentiation of 3T3-L1 pre-adipocytes via downregulation of PPARγ and MAPK Pathways. Prev. Nutr. Food Sci., 2019, 24(3), 299-307.
[http://dx.doi.org/10.3746/pnf.2019.24.3.299] [PMID: 31608255]
[11]
Park, H.J.; Cho, J.G.; Baek, Y.S.; Seo, K.H.; Kim, S.Y.; Choi, M.S.; Lee, K.T.; Jeong, T.S.; Chung, H.G.; Kang, E.G.; Baek, N.I. Identification of bitter components from Artemisia princeps Pamp. Food Sci. Biotechnol., 2016, 25(1), 27-32.
[http://dx.doi.org/10.1007/s10068-016-0004-z] [PMID: 30263232]
[12]
Chen, P.; Qiang, X.; Yu, X.; Niu, Y.; Ju, L.; Qiang, X. High-yielding cultivation technology of Nanyang Artemisia. Heilongjiang Nongye Kexue, 2022, (1), 119-121.
[13]
Kim, J.H.; Jung, S.H.; Yang, Y.I.; Ahn, J.H.; Cho, J.G.; Lee, K.T.; Baek, N.I.; Choi, J.H. Artemisia leaf extract induces apoptosis in human endometriotic cells through regulation of the p38 and NFκB pathways. J. Ethnopharmacol., 2013, 145(3), 767-775.
[http://dx.doi.org/10.1016/j.jep.2012.12.003] [PMID: 23228915]
[14]
Hirano, A.; Goto, M.; Mitsui, T.; Hashimoto-Hachiya, A.; Tsuji, G.; Furue, M. Antioxidant Artemisia princeps extract enhances the expression of filaggrin and loricrin via the AHR/OVOL1 Pathway. Int. J. Mol. Sci., 2017, 18(9), 1948.
[http://dx.doi.org/10.3390/ijms18091948] [PMID: 28892018]
[15]
Yun, C.; Jung, Y.; Chun, W.; Yang, B.; Ryu, J.; Lim, C.; Kim, J.H.; Kim, H.; Cho, S.I. Anti-inflammatory effects of Artemisia leaf extract in mice with contact dermatitis in vitro and in vivo. Mediators Inflamm., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/8027537] [PMID: 27647952]
[16]
Committee on Chinese Pharmacopoeia. Chinese Pharmacopoeia; China Traditional Chinese Medicine Science and Technology Press: Beijing, 2020.
[17]
Committee on Japanese Pharmacopoeia. Japanese Pharmacopoeia; The Ministry of Health, Labour and Welfare of Japan: Tokyo, 2021.
[18]
Central Pharmaceutical Affairs Council of Korea. Korean Herbal Pharmacopoeia; The Korean Food and Drug Administration: Seoul, 2013.
[19]
Flora of China. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences Available from: www.iplant.cn/foc
[20]
Xiang, F.; Bai, J.; Tan, X.; Chen, T.; Yang, W.; He, F. Antimicrobial activities and mechanism of the essential oil from Artemisia argyi Levl. et Van. var. argyi cv. Qiai. Ind. Crops Prod., 2018, 125, 582-587.
[http://dx.doi.org/10.1016/j.indcrop.2018.09.048]
[21]
Guan, X.; Ge, D.; Li, S.; Huang, K.; Liu, J.; Li, F. Chemical composition and antimicrobial activities of Artemisia argyi Lévl. et Vant essential oils extracted by simultaneous distillation-extraction, subcritical extraction and hydrodistillation. Molecules, 2019, 24(3), 483.
[http://dx.doi.org/10.3390/molecules24030483] [PMID: 30700013]
[22]
Ge, Y.; Wang, Z.; Xiong, Y.; Huang, X.; Mei, Z.; Hong, Z. Anti-inflammatory and blood stasis activities of essential oil extracted from Artemisia argyi leaf in animals. J. Nat. Med., 2016, 70(3), 531-538.
[http://dx.doi.org/10.1007/s11418-016-0972-6] [PMID: 26894818]
[23]
Chung, M.S. Antiviral activities of Artemisia princeps var. orientalis essential oil and its α-thujone against norovirus surrogates. Food Sci. Biotechnol., 2017, 26(5), 1457-1461.
[http://dx.doi.org/10.1007/s10068-017-0158-3] [PMID: 30263682]
[24]
Ding, Y.P.; Liu, J.Y.; Tian, Y.; Li, Y.L.; Wu, M.Z.; Zhao, Z.H. Inhibitory effects of volatile oils from Artemisia argyi folium on A549 cells. Zhongchengyao, 2019, 41(9), 2063-2068.
[25]
Kunihiro, K.; Myoda, T.; Tajima, N.; Gotoh, K.; Kaneshima, T.; Someya, T.; Toeda, K.; Fujimori, T.; Nishizawa, M. Volatile components of the essential oil of Artemisia montana and their sedative effects. J. Oleo Sci., 2017, 66(8), 843-849.
[http://dx.doi.org/10.5650/jos.ess16006] [PMID: 28381767]
[26]
Liu, C.H.; Mishra, A.K.; Tan, R.X.; Tang, C.; Yang, H.; Shen, Y.F. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Bioresour. Technol., 2006, 97(15), 1969-1973.
[http://dx.doi.org/10.1016/j.biortech.2005.09.002] [PMID: 16230008]
[27]
Liu, Y.; He, Y.; Wang, F.; Xu, R.; Yang, M.; Ci, Z.; Wu, Z.; Zhang, D.; Lin, J. From longevity grass to contemporary soft gold: Explore the chemical constituents, pharmacology, and toxicology of Artemisia argyi H. Lév. & vaniot essential oil. J. Ethnopharmacol., 2021, 279, 114404.
[http://dx.doi.org/10.1016/j.jep.2021.114404] [PMID: 34246739]
[28]
Sun, J. A study on Chinese Mugwort cultural heritage in China., MA Thesis, Nanjing Agricultural University: Nanjing 2016.
[29]
Chang, Y.Q.; Xue, Z.J.; Yang, G.Y.; Guo, M.; Zhang, D.; Zheng, Y.G.; Guo, L. Dynamic changes of volatile components of Qiai from different harvest time based on GC-MS and chemometrics analysis. Zhongguo Zhongyao Zazhi, 2020, 45(10), 2417-2424.
[PMID: 32495601]
[30]
Huang, C.; Liang, J.; Han, L.; Liu, J.; Yu, M.; Zhao, B. Moxibustion in early Chinese Medicine and its relation to the origin of meridians: A study on the unearthed literatures. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/8242136] [PMID: 28298936]
[31]
Deng, H.; Shen, X. The mechanism of moxibustion: Ancient theory and modern research. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/379291] [PMID: 24159344]
[32]
Song, X.; Wen, X.; He, J.; Zhao, H.; Li, S.; Wang, M. Phytochemical components and biological activities of Artemisia argyi. J. Funct. Foods, 2019, 52(52), 648-662.
[http://dx.doi.org/10.1016/j.jff.2018.11.029]
[33]
Nishidono, Y.; Chiyomatsu, T.; Sanuki, K.; Tezuka, Y.; Tanaka, K. Analysis of seasonal variations of the volatile constituents in Artemisia princeps (Japanese mugwort) leaves by metabolomic approach. Nat. Prod. Commun., 2019, 14(8), 1934578X1987260.
[http://dx.doi.org/10.1177/1934578X19872600]
[34]
Sun, J.; Shen, J.; Hu, J. Effect of process conditions on shelf-life of the Qingming festival food-green dumplings. Food Ind., 2017, 38(4), 129-133.
[35]
Tang, R.; Song, L.; Li, M.; Ruan, Z. Effects of starch raw materials on the qualities of Qingtuan. Huazhong Nongye Daxue Xuebao, 2019, 38(5), 130-136.
[36]
Mamun, M.I.R.; Abd El-Aty, A.M.; Musfiqur Rahman, M.; Choi, J.H.; Yun, K.W.; Shin, H.C.; Shim, J.H. Characterization of secondary metabolite compounds correlated with the seasons in Artemisia princeps var. orientalis (Pamp.) H. Hara leaves using direct sample injection and gas chromatography-mass spectrometry: contribution to phytotoxicity. J. Korean Soc. Appl. Biol. Chem., 2015, 58(2), 173-183.
[http://dx.doi.org/10.1007/s13765-015-0020-3]
[37]
Du, M.L. The Datong Nanjiao area and the Hangzhou Yuhang area fifth day of the fifth lunar month folk custom quite studies., MA Thesis, Zhejiang Normal University: Zhejiang, 2008.
[38]
Pu, R.; Wan, D.; Chen, P.; Xia, H.; Wu, J.; Guo, S. Effects of environmental factors on the contents of the seven active components of Artemisia argyi leaf in Qichun. Zhonghua Zhongyiyao Zazhi, 2020, 35(10), 4948-4952.
[39]
Ahn, J.B.; Hur, J.N.; Jung, H.G.; Park, J.H. Study on the growth environment of ‘Ganghwa mugwort’ through the climatological characteristic analysis of Ganghwa region. Korean J. Agric. Forest Meteorol., 2012, 14(2), 71-78.
[http://dx.doi.org/10.5532/KJAFM.2012.14.2.071]
[40]
Hu, J.Q. Comparative identifications and quality analyses of Artemisiae Argyi Folium and its similar drugs from different places in China, Korea and Japan, MA Thesis, South-Central University for Nationalities: Wuhan, 2016.
[41]
Ding, M. Morphology and chemical constituents of seven plants in item Folium Artemisiae argyi in Chinese Materia Medica. Jilin J. Trad. Chinese Med., 2015, 35(5), 515-517.
[42]
Chen, P.; Bai, Q.; Wu, Y.; Zeng, Q.; Song, X.; Guo, Y.; Zhou, P.; Wang, Y.; Liao, X.; Wang, Q.; Ren, Z.; Wang, Y. The essential oil of Artemisia argyi H. Lév. and Vaniot attenuates NLRP3 inflammasome activation in THP-1 Cells. Front. Pharmacol., 2021, 12, 712907.
[http://dx.doi.org/10.3389/fphar.2021.712907] [PMID: 34603026]
[43]
Huang, H.C.; Wang, H.F.; Yih, K.H.; Chang, L.Z.; Chang, T.M. Dual bioactivities of essential oil extracted from the leaves of Artemisia argyi as an antimelanogenic versus antioxidant agent and chemical composition analysis by GC/MS. Int. J. Mol. Sci., 2012, 13(12), 14679-14697.
[http://dx.doi.org/10.3390/ijms131114679] [PMID: 23203088]
[44]
Zhang, D.; Yao, L.; Chang, Y.; Yang, G.; Xue, Z.; Wang, L.; Zheng, Y.; Guo, L. Evaluation and comparison of bioactive constituents of Artemisiae argyi Folium collected at different developmental stages. J. AOAC Int., 2021, 104(2), 515-525.
[http://dx.doi.org/10.1093/jaoacint/qsaa105] [PMID: 33580684]
[45]
Wenqiang, G.; Shufen, L.; Ruixiang, Y.; Yanfeng, H. Comparison of composition and antifungal activity of Artemisia argyi Lévl. et Vant inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide. Nat. Prod. Res., 2006, 20(11), 992-998.
[http://dx.doi.org/10.1080/14786410600921599] [PMID: 17032625]
[46]
Li, N.; Mao, Y.; Zhang, X.; Zhang, X. Separation and identification of volatile constituents in Artemisia argyi flowers by GC-MS with SPME and steam distillation. J. Chromatogr. Sci., 2008, 46(5), 401-405.
[http://dx.doi.org/10.1093/chromsci/46.5.401] [PMID: 18492349]
[47]
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T. Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps pamp.). J. Agric. Food Chem., 2000, 48(8), 3463-3469.
[http://dx.doi.org/10.1021/jf0001738] [PMID: 10956134]
[48]
Kim, J. Seasonal variation in concentration and composition of monoterpenes from Artemisia princeps var. Orientalis. Korean J. Ecol., 1996, 19(4), 321-328.
[49]
Choi, J.Y.; Cho, I.H.; Kim, Y.S.; Lee, H.J. Aroma-active compounds of Korean mugwort (Artemisia princeps orientalis). J. Korean Soc. Appl. Biol. Chem., 2014, 57(3), 323-329.
[http://dx.doi.org/10.1007/s13765-014-4082-4]
[50]
Kim, S.C.; Adesogan, A.T.; Ko, Y.D. The respective effects of shoot height and conservation method on the yield and nutritive value, and essential oils of wormwood (Artemisia montana Pampan). Asian-Australas. J. Anim. Sci., 2006, 19(6), 816-824.
[http://dx.doi.org/10.5713/ajas.2006.816]
[51]
Lee, S.S.; Kim, D.H.; Paradhipta, D.H.V.; Lee, H.J.; Yoon, H.; Joo, Y.H.; Adesogan, A.T.; Kim, S.C. Effects of wormwood (Artemisia montana) essential oils on digestibility, fermentation indices, and microbial diversity in the rumen. Microorganisms, 2020, 8(10), 1605.
[http://dx.doi.org/10.3390/microorganisms8101605] [PMID: 33081073]
[52]
Yoon, M.S.; Won, K.J.; Kim, D.Y.; Hwang, D.; Yoon, S.W.; Kim, B.; Lee, H.M. Skin regeneration effect and chemical composition of essential oil from Artemisia montana. Nat. Prod. Commun., 2014, 9(11), 1934578X1400901.
[http://dx.doi.org/10.1177/1934578X1400901123] [PMID: 25532296]
[53]
Guo, L.; Zhang, D.; Wang, L.; Xue, Z.; Guo, M.; Duan, L.; Zheng, Y. Comparison and discrimination of Artemisia argyi and Artemisia lavandulifolia by Gas Chromatography-Mass Spectrometry-Based metabolomic approach. J. AOAC Int., 2019, 102(6), 1814-1821.
[http://dx.doi.org/10.5740/jaoacint.19-0080] [PMID: 31288892]
[54]
Choi, B.B.; Lee, H.J.; Bang, S.K. Studies on the volatile flavor components and biochemical characterizations of Artemisia princeps and A. argyi. Korean J. Food Nutr., 2005, 18(4), 334-340.
[55]
Zhang, W.J.; You, C.X.; Yang, K.; Chen, R.; Wang, Y.; Wu, Y.; Geng, Z.F.; Chen, H.P.; Jiang, H.Y.; Su, Y.; Lei, N.; Ma, P.; Du, S.S.; Deng, Z.W. Bioactivity of essential oil of Artemisia argyi Lévl. et Van. and its main compounds against Lasioderma serricorne. J. Oleo Sci., 2014, 63(8), 829-837.
[http://dx.doi.org/10.5650/jos.ess14057] [PMID: 25017866]
[56]
Chung, M.J.; Kang, A.Y.; Park, S.O.; Park, K.W.; Jun, H.J.; Lee, S.J. The effect of essential oils of dietary wormwood (Artemisia princeps), with and without added vitamin E, on oxidative stress and some genes involved in cholesterol metabolism. Food Chem. Toxicol., 2007, 45(8), 1400-1409.
[http://dx.doi.org/10.1016/j.fct.2007.01.021] [PMID: 17368686]
[57]
Oh, S.Y. A useful quality control using herbal volatiles of Artemisia princeps Pamp. cv. ssajuari (ssajuari‐ssuk; Korean mugwort) according to air‐drying time by fast gas chromatography with uncoated surface acoustic wave sensor (Electronic zNose). Phytochem. Anal., 2021, 32(5), 710-723.
[http://dx.doi.org/10.1002/pca.3017] [PMID: 33354846]
[58]
Nuerbiye, A.; Rena, K.; Yang, L.; Wang, J. Study on chemical constituents and antifungal activity of volatile oil in Artemisia argyi Lévl. et Vant. J. Xinjiang Med. Univ., 2017, 40(9), 1195-1198+1202.
[59]
Shi, G.X.; Wang, T.M.; Wu, S.B.; Wang, Y.X.; Shao, J.; Zhou, M.Q.; Wang, C.Z. Activity of essential oil extracted from Artemisia argyi in inducing apoptosis of Candida albicans. Zhongguo Zhongyao Zazhi, 2017, 42(18), 3572-3577.
[PMID: 29218944]
[60]
Trinh, H.T.; Lee, I.A.; Hyun, Y.J.; Kim, D.H. Artemisia princeps Pamp. Essential oil and its constituents eucalyptol and α-terpineol ameliorate bacterial vaginosis and vulvovaginal candidiasis in mice by inhibiting bacterial growth and NF-κB activation. Planta Med., 2011, 77(18), 1996-2002.
[http://dx.doi.org/10.1055/s-0031-1280094] [PMID: 21830186]
[61]
Zhao, Z.H.; Wang, L.Y.; Zheng, L.Y.; Geng, N.; Zhao, X.J.; Li, J.Y.; Wang, G.F.; Zhang, Z.L.; Zhang, X.J. Inhibitory effect of volatile oil from Artemisia argyi Folium on HBV. J. Zhengzhou Univ., 2015, 50(2), 301-304.
[62]
Han, Y.; Dai, C.; Tang, L.Y. A Preliminary study of virus-inhibiting effect of volatile oil from Artemsia argyi. Amino Acids Biotic Resources, 2005, 27(2), 14-16.
[63]
Woo, H.J.; Yang, J.Y.; Lee, M.H.; Kim, H.W.; Kwon, H.J.; Park, M.; Kim, S.; Park, S.Y.; Kim, S.H.; Kim, J.B. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo. Int. J. Mol. Sci., 2020, 21(3), 1008.
[http://dx.doi.org/10.3390/ijms21031008] [PMID: 32028744]
[64]
Chen, L.L.; Zhang, H.J.; Chao, J.; Liu, J.F. Essential oil of Artemisia argyi suppresses inflammatory responses by inhibiting JAK/STATs activation. J. Ethnopharmacol., 2017, 204, 107-117.
[http://dx.doi.org/10.1016/j.jep.2017.04.017] [PMID: 28438564]
[65]
Ryu, K.R.; Choi, J.Y.; Chung, S.; Kim, D.H. Anti-scratching behavioral effect of the essential oil and phytol isolated from Artemisia princeps Pamp. in mice. Planta Med., 2011, 77(1), 22-26.
[http://dx.doi.org/10.1055/s-0030-1250119] [PMID: 20645242]
[66]
Irrera, N. D’Ascola, A.; Pallio, G.; Bitto, A.; Mazzon, E.; Mannino, F.; Squadrito, V.; Arcoraci, V.; Minutoli, L.; Campo, G.M.; Avenoso, A.; Bongiorno, E.B.; Vaccaro, M.; Squadrito, F.; Altavilla, D. β-Caryophyllene mitigates collagen antibody induced arthritis (CAIA) in mice through a cross-talk between CB2 and PPAR-γ receptors. Biomolecules, 2019, 9(8), 326.
[http://dx.doi.org/10.3390/biom9080326] [PMID: 31370242]
[67]
Linghu, K.G.; Wu, G.P.; Fu, L.Y.; Yang, H.; Li, H.Z.; Chen, Y.; Yu, H.; Tao, L.; Shen, X.C. 1,8-Cineole ameliorates LPS-Induced vascular endothelium dysfunction in mice via PPAR-γ dependent regulation of NF-κ. B. Front. Pharmacol., 2019, 10, 178.
[http://dx.doi.org/10.3389/fphar.2019.00178] [PMID: 30930772]
[68]
Ji, J.; Zhang, R.; Li, H.; Zhu, J.; Pan, Y.; Guo, Q. Analgesic and anti-inflammatory effects and mechanism of action of borneol on photodynamic therapy of acne. Environ. Toxicol. Pharmacol., 2020, 75, 103329.
[http://dx.doi.org/10.1016/j.etap.2020.103329] [PMID: 31978868]
[69]
Choi, J.; Lee, K.T.; Jung, W.T.; Jung, H.J.; Lee, S.H.; Park, H.J. Inhibitory effects of the essential oils on acetaminophen-induced lipid peroxidation in the rat. Nat. Prod. Sci., 2002, 8(1), 18-22.
[70]
Flores-Soto, M.E. Corona-Angeles, J.A.; Tejeda-Martinez, A.R.; Flores-Guzman, P.A.; Luna-Mujica, I.; Chaparro-Huerta, V.; Viveros-Paredes, J.M. β-Caryophyllene exerts protective antioxidant effects through the activation of NQO1 in the MPTP model of Parkinson’s disease. Neurosci. Lett., 2021, 742, 135534.
[http://dx.doi.org/10.1016/j.neulet.2020.135534] [PMID: 33271195]
[71]
Luo, D.Y.; Yan, Z.T.; Che, L.R.; Zhu, J.J.; Chen, B. Repellency and insecticidal activity of seven Mugwort (Artemisia argyi) essential oils against the malaria vector Anopheles sinensis. Sci. Rep., 2022, 12(1), 5337.
[http://dx.doi.org/10.1038/s41598-022-09190-0] [PMID: 35351963]
[72]
Liu, H.; Bai, Y.; Hong, Y.; Zhang, X. Analysis of chemical constituents of volatile oil from Artemisia argyi L. prepared by different extraction methods and comparison of acute hepatotoxicity. Zhongguo Zhongyao Zazhi, 2010, 35(11), 1439-1446.
[PMID: 20822017]
[73]
Hou, M.Z.; Chen, L.L.; Chang, C.; Zan, J.F.; Du, S.M. Pharmacokinetic and tissue distribution study of eight volatile constituents in rats orally administrated with the essential oil of Artemisiae argyi Folium by GC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1181, 122904.
[http://dx.doi.org/10.1016/j.jchromb.2021.122904] [PMID: 34479182]
[74]
Sa, C.; Liu, J.; Dong, Y.; Jiang, L.; Gentana, G.; Wurita, A. Quantification of eucalyptol (1,8‐cineole) in rat serum by gas chromatography-mass/mass spectrometry and its application to a rat pharmacokinetic study. Biomed. Chromatogr., 2021, 35(6), e5080.
[http://dx.doi.org/10.1002/bmc.5080] [PMID: 33527438]
[75]
Cheng, C.; Liu, X.; Du, F.; Li, M.; Xu, F.; Wang, F.; Liu, Y.; Li, C.; Sun, Y. Sensitive assay for measurement of volatile borneol, isoborneol, and the metabolite camphor in rat pharmacokinetic study of Borneolum (Bingpian) and Borneolum syntheticum (synthetic Bingpian). Acta Pharmacol. Sin., 2013, 34(10), 1337-1348.
[http://dx.doi.org/10.1038/aps.2013.86] [PMID: 23974515]
[76]
Guénette, S.A.; Ross, A.; Marier, J.F.; Beaudry, F.; Vachon, P. Pharmacokinetics of eugenol and its effects on thermal hypersensitivity in rats. Eur. J. Pharmacol., 2007, 562(1-2), 60-67.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.044] [PMID: 17321520]
[77]
Liu, H.; Yang, G.; Tang, Y.; Cao, D.; Qi, T.; Qi, Y.; Fan, G. Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int. J. Pharm., 2013, 450(1-2), 304-310.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.013] [PMID: 23598076]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy