Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Mini-Review Article

Recent Trends in Nanocarriers for the Management of Atopic Dermatitis

Author(s): Pravin Kumar*, Mahendra Singh Ashawat, Vinay Pandit, Chandra Pal Singh Verma, Amar Deep Ankalgi and Manish Kumar

Volume 11, Issue 5, 2023

Published on: 12 May, 2023

Page: [397 - 409] Pages: 13

DOI: 10.2174/2211738511666230330115229

Price: $65

Abstract

Background: Atopic dermatitis (AD) is a pruritic inflammatory skin condition with increasing global prevalence, almost affecting 15% to 30% of children and 5% of adults. AD results due to a complex interaction between the impaired skin barrier function, allergens, and immunological cells. Topical corticosteroids or calcineurin inhibitors in the form of creams or ointments are the mainstay of therapy, but they have low skin penetration and skin barrier repair efficiency.

Objective: The above limitations of conventional dosage forms have motivated the development of nanoformulations of drugs for improved penetration and deposition in the skin for better management of AD.

Methods: Databases, such as Pubmed, Elsevier, and Google Scholar, were reviewed for the investigations or reviews published related to the title.

Results: The present review discusses the advantages of nanoformulations for the management of AD. Further, it also discusses the various types of topically investigated nanoformulations, i.e., polymeric nanoparticles, inorganic nanoparticles, solid lipid nanoparticles, liposomes, ethosomes, transfersomes, cubosomes, and nanoemulsion for the management of atopic dermatitis. In addition, it also discusses advancements in nanoformulations, such as nanofibres, nanosponges, micelles, and nanoformulations embedded textiles development for the management of AD.

Conclusion: The nanoformulations of drugs can be a better alternative for the topical management of AD with enhanced skin penetration and deposition of drugs with reduced systemic side effects and better patient compliance.

Next »
Graphical Abstract

[1]
Ramos Campos EV, Proença PLDF, Doretto-Silva L, Andrade-Oliveira V, Fraceto LF, de Araujo DR. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin Drug Deliv 2020; 17(11): 1615-30.
[http://dx.doi.org/10.1080/17425247.2020.1813107] [PMID: 32816566]
[2]
Kumar P, Sharma DK, Ashawat MS. Traditional Herbal Medicines, newer herbs and other novel approaches integrated in herbal medicine for atopic dermatitis-a narrative review. Curr Drug Ther 2020; 15(3): 194-208.
[http://dx.doi.org/10.2174/1574885514666191018165209]
[3]
Kumar P, Sharma DK, Ashawat MS. Pathophysioloy and management of atopic dermatitis: A Laconic review. Curr Drug Ther 2020; 15(4): 321-36.
[http://dx.doi.org/10.2174/1574885514666190828152316]
[4]
Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. Immunity 2019; 50(3): 552-65.
[http://dx.doi.org/10.1016/j.immuni.2019.02.023] [PMID: 30893586]
[5]
Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol 2016; 16(6): 353-66.
[http://dx.doi.org/10.1038/nri.2016.48] [PMID: 27231051]
[6]
Novak N, Bieber T, Leung DYM. Immune mechanisms leading to atopic dermatitis. J Allergy Clin Immunol 2003; 112 (Suppl. 6): S128-39.
[http://dx.doi.org/10.1016/j.jaci.2003.09.032] [PMID: 14657843]
[7]
Myles IA, Earland NJ, Anderson ED, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 2018; 3(9): e120608.
[http://dx.doi.org/10.1172/jci.insight.120608] [PMID: 29720571]
[8]
Bieber T. Interleukin‐13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020; 75(1): 54-62.
[http://dx.doi.org/10.1111/all.13954] [PMID: 31230370]
[9]
Elias PM, Wakefield JS, Man MQ. Moisturizers versus current and next generation barrier repair therapy for management of atopic dermatitis. Skin Pharmacol Physiol 2019; 32(1): 1-7.
[http://dx.doi.org/10.1159/000493641] [PMID: 30336483]
[10]
Purnamawati S, Indrastuti N, Danarti R, Saefudin T. The role of moisturizers in addressing various kinds of dermatitis-A Review. Clin Med Res 2017; 15(3-4): 75-87.
[http://dx.doi.org/10.3121/cmr.2017.1363] [PMID: 29229630]
[11]
Moreton C. Trends in pharmaceutical excipients: An update. 2010. Available from: http://finnbrit.com/SubPages/Background/PDF%20Files/Trends%20in%20Pharmaceutical%20Excipients,%20An%20Update.pdf (Accessed on: 16/04/2022).
[12]
Bhanot A, Huntley A, Ridd MJ. Adverse events from emollient use in eczema: A restricted review of published data. Dermatol Ther 2019; 9(2): 193-208.
[http://dx.doi.org/10.1007/s13555-019-0284-3] [PMID: 30771093]
[13]
Raison-Peyron N, Dereure O. Allergic contact dermatitis caused by 10‐hydroxydecenoic acid contained in an emollient cream. Contact Dermat 2019; 81(5): 386-7.
[http://dx.doi.org/10.1111/cod.13338]
[14]
Eichner B, Michaels LAC, Branca K, et al. A community-based assessment of skin care, allergies, and eczema (CASCADE): An atopic dermatitis primary prevention study using emollients-protocol for a randomized controlled trial. Trials 2020; 21(1): 243.
[http://dx.doi.org/10.1186/s13063-020-4150-5] [PMID: 32131885]
[15]
Simpson EL, Akinlade B, Ardeleanu M. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med 2017; 376(11): 1090-1.
[http://dx.doi.org/10.1056/NEJMc1700366] [PMID: 28296614]
[16]
Man G, Hu L, Elias PM, Man M. Therapeutic benefits of natural ingredients for atopic dermatitis. Chin J Integr Med 2018; 24(4): 308-14.
[http://dx.doi.org/10.1007/s11655-017-2769-1] [PMID: 28861804]
[17]
Wan H, Jia H, Xia T, Zhang D. Comparative efficacy and safety of abrocitinib, baricitinib, and upadacitinib for moderate‐to‐severe atopic dermatitis: A network meta‐analysis. Dermatol Ther 2022; 35(9): e15636.
[http://dx.doi.org/10.1111/dth.15636] [PMID: 35703351]
[18]
Shao M, Hussain Z, Thu HE, et al. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf B Biointerfaces 2016; 147(1): 475-91.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.027] [PMID: 27592075]
[19]
Souto EB, Dias-Ferreira J, Oliveira J, et al. Trends in atopic dermatitis-from standard pharmacotherapy to novel drug delivery systems. Int J Mol Sci 2019; 20(22): 5659.
[http://dx.doi.org/10.3390/ijms20225659] [PMID: 31726723]
[20]
Saleem S, Iqubal MK, Garg S, Ali J, Baboota S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: an enticing approach to offset psoriasis. Expert Opin Drug Deliv 2020; 17(6): 817-38.
[http://dx.doi.org/10.1080/17425247.2020.1758665] [PMID: 32315216]
[21]
Rao NV, Ko H, Lee J, Park JH. Recent progress and advances in stimuli responsive polymers for cancer therapy. Front Bioeng Biotechnol 2018; 6(1): 110.
[http://dx.doi.org/10.3389/fbioe.2018.00110] [PMID: 30159310]
[22]
Westerhof W. Possibilities of liposomes as dynamic dosage form in dermatology. Med Hypotheses 1985; 16(3): 283-8.
[http://dx.doi.org/10.1016/0306-9877(85)90011-8] [PMID: 4000006]
[23]
Songkro S, Pichayakorn W, Sungkarak S, Wungsintaweekul J. Investigation of plaunoi-loaded micro/nanoemulsions for the treatment of dermatitis: formulation, évaluation and skin irritation studies. J Drug Deliv Sci Technol 2011; 21(5): 401-10.
[http://dx.doi.org/10.1016/S1773-2247(11)50065-6]
[24]
Alam MS, Ali MS, Alam N, Siddiqui MR, Shamim M, Safhi MM. In vivo study of clobetasol propionate loaded nanoemulsion for topical application in psoriasis and atopic dermatitis. Drug Invention Today 2013; 5(1): 8-12.
[http://dx.doi.org/10.1016/j.dit.2013.02.001]
[25]
Sahle FF, Gerecke C, Kleuser B, Bodmeier R. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int J Pharm 2017; 516(1-2): 21-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.029] [PMID: 27845215]
[26]
Nastiti C, Ponto T, Abd E, Grice J, Benson H, Roberts M. Topical micro and nanoformulations for skin delivery. Pharmaceutics 2017; 9(4): 37.
[http://dx.doi.org/10.3390/pharmaceutics9040037] [PMID: 28934172]
[27]
Damiani G, Eggenhöffner R, Pigatto PDM, Bragazzi NL. Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact Mater 2019; 4(1): 380-6.
[http://dx.doi.org/10.1016/j.bioactmat.2019.11.003] [PMID: 31872162]
[28]
Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(3): 205-18.
[http://dx.doi.org/10.1002/wnan.1211] [PMID: 23386536]
[29]
Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release 2017; 247(1): 86-105.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.022] [PMID: 28024914]
[30]
Schäferkorting M, Mehnert W, Korting H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[31]
Parekh K, Mehta TA, Dhas N, Kumar P, Popat A. Emerging nanomedicines for the treatment of atopic dermatitis. AAPS PharmSciTech 2021; 22(2): 55-67.
[http://dx.doi.org/10.1208/s12249-021-01920-3] [PMID: 33486609]
[32]
Zhuo F, Abourehab MAS, Hussain Z. Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr Polym 2018; 197(1): 478-89.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.023] [PMID: 30007638]
[33]
Pandey M, Choudhury H, Gunasegaran TAP, et al. Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles: fabrication, characterisation, in vitro release kinetics, and dermal targeting. Drug Deliv Transl Res 2019; 9(2): 520-33.
[http://dx.doi.org/10.1007/s13346-018-0480-1] [PMID: 29488170]
[34]
Barbosa AI, Costa Lima SA, Reis S. Development of methotrexate loaded fucoidan/chitosan nanoparticles with anti-inflammatory potential and enhanced skin permeation. Int J Biol Macromol 2019; 124(1): 1115-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.014] [PMID: 30521895]
[35]
Md S, Kuldeep Singh JKAP, Waqas M, et al. Nanoencapsulation of betamethasone valerate using high pressure homogenization–solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting. Drug Dev Ind Pharm 2019; 45(2): 323-32.
[http://dx.doi.org/10.1080/03639045.2018.1542704] [PMID: 30404554]
[36]
Try C, Moulari B, Béduneau A, et al. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. Eur J Pharm Biopharm 2016; 100(1): 101-8.
[http://dx.doi.org/10.1016/j.ejpb.2016.01.002] [PMID: 26792104]
[37]
Hussain Z, Katas H, Mohd Amin MCI, Kumolosasi E. Efficient immuno-modulation of TH1/TH2 biomarkers in 2,4-dinitrofluorobenzene-induced atopic dermatitis: Nanocarrier-mediated transcutaneous co-delivery of anti-inflammatory and antioxidant drugs. PLoS One 2014; 9(11): e113143.
[http://dx.doi.org/10.1371/journal.pone.0113143] [PMID: 25396426]
[38]
Hussain Z, Katas H, Mohd Amin MCI, Kumolosasi E, Buang F, Sahudin S. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: An ex vivo and in vivo study using an NC/Nga mouse model. Int J Pharm 2013; 444(1-2): 109-19.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.024] [PMID: 23337632]
[39]
Siddique MI, Katas H, Jamil A, et al. Potential treatment of atopic dermatitis: Tolerability and safety of cream containing nanoparticles loaded with hydrocortisone and hydroxytyrosol in human subjects. Drug Deliv Transl Res 2019; 9(2): 469-81.
[http://dx.doi.org/10.1007/s13346-017-0439-7] [PMID: 29159691]
[40]
Siddique MI, Katas H, Amin MCIM, et al. Minimization of local and systemic adverse effects of topical glucocorticoids by nanoencapsulation: In vivo safety of hydrocortisone and hydroxytyrosol loaded chitosan nanoparticles. J Pharm Sci 2015; 104(12): 4276-86.
[http://dx.doi.org/10.1002/jps.24666] [PMID: 26447747]
[41]
Siddique MI, Katas H, Amin MCIM, et al. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis. Int J Pharm 2016; 507(1-2): 72-82.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.005] [PMID: 27154252]
[42]
Marto J, Ruivo E, Lucas SD, et al. Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. Eur J Pharm Biopharm 2018; 127(1): 1-11.
[http://dx.doi.org/10.1016/j.ejpb.2018.01.011] [PMID: 29409864]
[43]
Jung SM, Yoon GH, Lee HC, et al. Thermodynamic insights and conceptual design of skin-sensitive chitosan coated ceramide/PLGA nanodrug for regeneration of stratum corneum on atopic dermatitis. Sci Rep 2015; 5(1): 18089.
[http://dx.doi.org/10.1038/srep18089] [PMID: 26666701]
[44]
Yu K, Wang Y, Wan T, et al. Tacrolimus nanoparticles based on chitosan combined with nicotinamide: enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int J Nanomedicine 2017; 13(1): 129-42.
[http://dx.doi.org/10.2147/IJN.S150319] [PMID: 29317821]
[45]
Ghosh N, Mitra S, Banerjee ER. Therapeutic effects of topically-administered guar gum nanoparticles in oxazolone-induced atopic dermatitis in mice. Biomed Res Ther 2018; 5(5): 2305-25.
[http://dx.doi.org/10.15419/bmrat.v5i5.444]
[46]
Rosado C, Silva C, Reis CP. Hydrocortisone-loaded poly(ε-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm Dev Technol 2013; 18(3): 710-8.
[http://dx.doi.org/10.3109/10837450.2012.712537] [PMID: 22889124]
[47]
Özcan I. Azizoğlu E, Senyiğit T, Özyazıcı M, Özer O. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. Int J Nanomedicine 2013; 8(1): 461-75.
[http://dx.doi.org/10.2147/IJN.S40519] [PMID: 23390364]
[48]
Özcan İ Azizoğlu E, Şenyiğit T, Özyazıcı M, Özer Ö. Comparison of PLGA and lecithin/chitosan nanoparticles for dermal targeting of betamethasone valerate. J Drug Target 2013; 21(6): 542-50.
[http://dx.doi.org/10.3109/1061186X.2013.769106] [PMID: 23390922]
[49]
Wang M, Marepally SK, Vemula PK, Xu C. Inoranic nanoparticles for transdermal drug delivery and topical application. In: Hamblin MR, Avci P, Prow TW, Eds. Nanoscience in Dermatology. Boston: Academic Press 2016; pp. 57-72.
[http://dx.doi.org/10.1016/B978-0-12-802926-8.00005-7]
[50]
Carazo E, Borrego-Sánchez A, García-Villén F, et al. Advanced inorganic nanosystems for skin drug delivery. Chem Rec 2018; 18(7-8): 891-9.
[http://dx.doi.org/10.1002/tcr.201700061] [PMID: 29314634]
[51]
Yanagisawa R, Takano H, Inoue K, Koike E, Sadakane K, Ichinose T. Size effects of polystyrene nanoparticles on atopic dermatitislike skin lesions in NC/NGA mice. Int J Immunopathol Pharmacol 2010; 23(1): 131-41.
[http://dx.doi.org/10.1177/039463201002300112] [PMID: 20378001]
[52]
Kang H, Kim S, Lee KH, et al. 5 nm silver nanoparticles amplify clinical features of atopic dermatitis in mice by activating mast cells. Small 2017; 13(9): 1602363.
[http://dx.doi.org/10.1002/smll.201602363] [PMID: 28005305]
[53]
Hirai T, Yoshikawa T, Nabeshi H, et al. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part Fibre Toxicol 2012; 9(1): 3.
[http://dx.doi.org/10.1186/1743-8977-9-3] [PMID: 22296706]
[54]
IIves N, Palomaki J, Vippola M, et al. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in atopic dermatitis mice model. Part Fibre Toxicol 2014; 11(1)
[55]
Shershakova N, Baraboshkina E, Andreev S, et al. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnology 2016; 14(1): 8.
[http://dx.doi.org/10.1186/s12951-016-0159-z] [PMID: 26810232]
[56]
Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[57]
Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis-Part II: In vivo assessment of dermatopharmacokinetics, biodistribution and efficacy. Int J Pharm 2012; 434(1-2): 70-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.051] [PMID: 22609427]
[58]
Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 2012; 47(1): 139-51.
[http://dx.doi.org/10.1016/j.ejps.2012.05.010] [PMID: 22664358]
[59]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[60]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[61]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-32.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[62]
Chauhan I, Yasir M, Verma M, Singh AP. nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[63]
El-Telbany DFA, El-Telbany RFA, Zakaria S, Ahmed KA, El-Feky YA. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomed Pharmacother 2021; 143: 112130.
[http://dx.doi.org/10.1016/j.biopha.2021.112130] [PMID: 34560549]
[64]
Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, Part II-in vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm 2013; 84(1): 72-83.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.026] [PMID: 23246619]
[65]
Kang JH, Chon J, Kim YI, et al. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int J Nanomedicine 2019; 14(1): 5381-96.
[http://dx.doi.org/10.2147/IJN.S215153] [PMID: 31409994]
[66]
Maia CS, Mehnert W, Schäfer-Korting M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm 2000; 196(2): 165-7.
[http://dx.doi.org/10.1016/S0378-5173(99)00413-5] [PMID: 10699710]
[67]
Kong X, Zhao Y, Quan P, Fang L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian. J Pharm Sci 2016; 11(2): 248-54.
[68]
Schmid MH, Korting HC. Liposomes for atopic dry skin: The rationale for a promising approach. Clin Investig 1993; 71(8): 649-53.
[http://dx.doi.org/10.1007/BF00184495] [PMID: 8219663]
[69]
Lee YS, Jeon SH, Ham HJ, Lee HP, Song MJ, Hong JT. Improved anti-inflammatory effects of liposomal astaxanthin on phtalic anhydride induced atopic dermatitis model. Front Immunol 2020; 11(1)
[70]
Kathuria H, Nguyen DTP, Handral HK, Cai J, Cao T, Kang L. Proposome for transdermal delivery of tofacitinib. Int J Pharm 2020; 585: 119558.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119558] [PMID: 32565283]
[71]
Jahn A, Song CK, Balakrishnan P, et al. AAPE proliposomes for topical atopic dermatitis treatment. J Microencapsul 2014; 31(8): 768-73.
[http://dx.doi.org/10.3109/02652048.2014.932027] [PMID: 25090594]
[72]
Jung SH, Cho YS, Jun SS, Koo JS, Cheon HG, Shin BC. Topical application of liposomal cobalamin hydrogel for atopic dermatitis therapy. Pharmazie 2011; 66(6): 430-5.
[PMID: 21699082]
[73]
Kang MJ, Eum JY, Jeong MS, et al. Tat peptide-admixed elastic liposomal formulation of hirsutenone for the treatment of atopic dermatitis in NC/Nga mice. Int J Nanomedicine 2011; 6(1): 2459-67.
[PMID: 22072881]
[74]
Kang MJ, Eum JY, Park SH, et al. Pep-1 peptide-conjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/Nga mice. Int J Pharm 2010; 402(1-2): 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.030] [PMID: 20888893]
[75]
Kim ST, Lee KM, Park HJ, Jin SE, Ahn WS, Kim CK. Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med 2009; 11(1): 26-37.
[http://dx.doi.org/10.1002/jgm.1268] [PMID: 19006098]
[76]
Jose Morilla M, Lilia Romero E. Carrier deformability in drug delivery. Curr Pharm Des 2016; 22(9): 1118-34.
[http://dx.doi.org/10.2174/1381612822666151216145737] [PMID: 26675226]
[77]
Guillot AJ, Jornet-Mollá E, Landsberg N, et al. Cyanocobalamine ultra flexible lipid vesicles: Characterization and in vitro evaluation of drug skin depth profiles. Pharmaceutics 2021; 13(3): 418.
[http://dx.doi.org/10.3390/pharmaceutics13030418] [PMID: 33804652]
[78]
Goindi S, Kumar G, Kumar N, Kaur A. Development of novel elastic vesicle-based topical formulation of cetirizine dihydrochloride for treatment of atopic dermatitis. AAPS PharmSciTech 2013; 14(4): 1284-93.
[http://dx.doi.org/10.1208/s12249-013-0017-3] [PMID: 23959702]
[79]
Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm Sci 2013; 8(6): 336-45.
[80]
Kumar P, Sharma DK, Ashawat MS. Topical creams of piperine loaded lipid nanocarriers for management of atopic dermatitis: development, characterization, and in vivo investigation using BALB/c mice model. J Liposome Res 2022; 32(1): 62-73.
[http://dx.doi.org/10.1080/08982104.2021.1880436] [PMID: 33944670]
[81]
Kumar P, Sharma DK, Ashawat MS. Development of phospholipids vesicular nanocarrier for topical delivery of tea tree oil in management of atopic dermatitis using BALB/c mice model. Eur J Lipid Sci Technol 2021; 123(10): 2100002.
[http://dx.doi.org/10.1002/ejlt.202100002]
[82]
Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M. Paclitaxel-loaded ethosomes®: Potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm 2012; 81(1): 102-12.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.008] [PMID: 22414731]
[83]
Esposito E, Cortesi R, Drechsler M, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 2005; 22(12): 2163-73.
[http://dx.doi.org/10.1007/s11095-005-8176-x] [PMID: 16267633]
[84]
Dhadwal A, Sharma DR, Pandit V, Ashawat MS, Kumar P. Cubosomes: A novel carrier for transdermal drug delivery. J Drug Deliv Ther 2020; 10(1): 123-30.
[http://dx.doi.org/10.22270/jddt.v10i1.3814]
[85]
Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: In vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release 2005; 103(1): 123-36.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.020] [PMID: 15710506]
[86]
Taek-Kwan K, Hyeon-Yong L, Jin-Chul K, Hwang B. In vitro skin permeation enhancement of asiaticosides by liquid crystal vesicles. Mol Cryst Liq Cryst (Phila Pa) 2009; 508(1): 191-9.
[87]
Kwon TK, Kim JC. In vitro skin permeation and anti-atopic efficacy of lipid nanocarriers containing water soluble extracts of Houttuynia cordata. Drug Dev Ind Pharm 2014; 40(10): 1350-7.
[http://dx.doi.org/10.3109/03639045.2013.819883] [PMID: 23886304]
[88]
Espinoza LC, Vera-García R, Silva-Abreu M, et al. Topical pioglitazone formulation for the treatment of atopic dermatitis: Design, characterization and efficacy in hairless mice model. Pharmaceutics 2020; 12(3): 255.
[http://dx.doi.org/10.3390/pharmaceutics12030255] [PMID: 32178278]
[89]
Baspinar Y, Keck CM, Borchert HH. Development of a positively charged prednicarbate nanoemulsion. Int J Pharm 2010; 383(1-2): 201-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.002] [PMID: 19747968]
[90]
Sarfaraz Alam M, Ali MS, Zakir F, et al. Enhancement of anti-dermatitis potential of clobetasol propionate by DHA [docosahexaenoic acid] rich algal oil nanoemulsion gel. Iran J Pharm Res 2016; 15(1): 35-52.
[PMID: 27610146]
[91]
Yang M, Gu Y, Yang D, Tang X, Liu J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J Nanobiotechnology 2017; 15(1): 88.
[http://dx.doi.org/10.1186/s12951-017-0323-0] [PMID: 29202753]
[92]
Izumi R, Azuma K, Izawa H, et al. Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice. Carbohydr Polym 2016; 146(1): 320-7.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.068] [PMID: 27112880]
[93]
Assem M, Khowessah OM, Ghorab D. Optimization and evaluation of beclomethasone dipropionate micelles incorporated into biocompatible hydrogel using a sub-chronic dermatitis animal model. AAPS PharmSciTech 2019; 20(4): 152.
[http://dx.doi.org/10.1208/s12249-019-1355-6] [PMID: 30911861]
[94]
Lapteva M, Mondon K, Möller M, Gurny R, Kalia YN. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Mol Pharm 2014; 11(9): 2989-3001.
[http://dx.doi.org/10.1021/mp400639e] [PMID: 25057896]
[95]
Iriventi P, Gupta NV, Osmani RAM, Balamuralidhara V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru 2020; 28(2): 489-506.
[http://dx.doi.org/10.1007/s40199-020-00352-x] [PMID: 32472531]
[96]
Avci P, Sadasivam M, Gupta A, et al. Animal models of skin disease for drug discovery. Expert Opin Drug Discov 2013; 8(3): 331-55.
[http://dx.doi.org/10.1517/17460441.2013.761202] [PMID: 23293893]
[97]
Chatterjee S, Hui PC, Wat E, Kan C, Leung PC, Wang W. Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydr Polym 2020; 236(1): 116074.
[http://dx.doi.org/10.1016/j.carbpol.2020.116074] [PMID: 32172887]
[98]
Brooker C, d’Arcy R, Mele E, Willcock H. Designing responsive dressings for inflammatory skin disorders; encapsulating antioxidant nanoparticles into biocompatible electrospun fibres. Soft Matter 2021; 17(14): 3775-83.
[http://dx.doi.org/10.1039/D0SM01987A] [PMID: 33533791]
[99]
Atanasova D, Staneva D, Grabchev I. Textile materials modified with stimuli responsive drug carrier for skin topical and transdermal delivery. Materials 2021; 14(4): 930.
[http://dx.doi.org/10.3390/ma14040930] [PMID: 33669245]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy