Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

Molecular Targets Underlying the Neuroprotective Effects of Boswellic Acid: A Systematic Review

Author(s): Faezeh Khaafi and Behjat Javadi*

Volume 23, Issue 19, 2023

Published on: 17 April, 2023

Page: [1912 - 1925] Pages: 14

DOI: 10.2174/1389557523666230330113611

Price: $65

Abstract

Background: Neurodegenerative procedures include a large spectrum of disorders with diverse pathological features and clinical manifestations, such as Alzheimer's Disease (AD), Parkinson's disease (PD), Multiple sclerosis, and Amyotrophic lateral sclerosis (ALS). Neurodegenerative diseases (NDs) are indicated by progressive loss of neurons and cognitive function, which is associated with free radical formation, extra and intercellular accumulation of misfolded proteins, oxidative stress, mitochondrial and neurotrophins dysfunction, bioenergetic impairment, inflammation, and apoptotic cell death. Boswellic acid is a pentacyclic triterpene molecule of plant origin that has been applied for treating several inflammatory disorders. Numerous studies have also investigated its’ therapeutic potential against multiple NDs.

Objective: In this article, we aim to review the neuroprotective effects of boswellic acid on NDs and the related mechanisms of action.

Methods: The databases of PubMed, Google Scholar, Web of Sciences, and Scopus were searched to find studies that reported the effects of boswellic acid on NDs without time limits. Review articles, letters, editorials, unpublished data, and articles not published in the English language were not included in the study.

Results: Overall, 17 studies were included in the present study (8 NDs in general, 5 AD, 3 PD, and 1 ALS). According to the reports, boswellic acid exerts anti-inflammatory, antioxidant, antiapoptotic, and neuromodulatory effects against NDs. Boswellic acid decreases Tau phosphorylation and amyloid-β (Aβ) generation in AD. This substance also protects nigrostriatal dopaminergic neurons and improves motor impairments in PD and modulates neurotransmitters, decreases the demyelination region, and improves behavioral functions in ALS.

Conclusion: Due to the significant effects of boswellic acid in NDs, more clinical studies are necessary to evaluate the pharmacokinetics of this substance because it seems that boswellic acid can be used as a complementary or alternative treatment in patients with NDs.

« Previous
Graphical Abstract

[1]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[2]
Maher, B.A. Airborne magnetite-and iron-rich pollution nanoparticles: Potential neurotoxicants and environmental risk factors for neurodegenerative disease, including Alzheimer’s disease. J. Alzheimers Dis., 2019, 71(2), 361-375.
[http://dx.doi.org/10.3233/JAD-190204] [PMID: 31381513]
[3]
Whiteside, M.; Herndon, J. Aerosolized coal fly ash: Risk factor for neurodegenerative disease. J. Adv. Med. Med. Res., 2018, 25(10), 1-11.
[http://dx.doi.org/10.9734/JAMMR/2018/40072]
[4]
Bianchi, V.E.; Herrera, P.F.; Laura, R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr. Neurosci., 2021, 24(10), 810-834.
[http://dx.doi.org/10.1080/1028415X.2019.1681088] [PMID: 31684843]
[5]
Elias, L.A.; Matoso, D.E.C.; Watanabe, R.N.; Kohn, A.F. Perspectives on the modeling of the neuromusculoskeletal system to investigate the influence of neurodegenerative diseases on sensorimotor control. Res. Biomed. Eng., 2018, 34(2), 176-186.
[http://dx.doi.org/10.1590/2446-4740.00118]
[6]
Särkämö, T.; Sihvonen, A.J. Lost in sound: Auditory perceptual abilities in neurodegenerative diseases. Brain, 2020, 143(9), 2626-2627.
[http://dx.doi.org/10.1093/brain/awaa218] [PMID: 32947613]
[7]
Muddapu, V.R.; Dharshini, S.A.P.; Chakravarthy, V.S.; Gromiha, M.M. Neurodegenerative diseases–is metabolic deficiency the root cause? Front. Neurosci., 2020, 14, 213.
[http://dx.doi.org/10.3389/fnins.2020.00213] [PMID: 32296300]
[8]
Mathieu, C.; Pappu, R.V.; Taylor, J.P. Beyond aggregation: Pathological phase transitions in neurodegenerative disease. Science, 2020, 370(6512), 56-60.
[http://dx.doi.org/10.1126/science.abb8032] [PMID: 33004511]
[9]
Panchal, K.; Tiwari, A.K. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion, 2019, 47, 151-173.
[http://dx.doi.org/10.1016/j.mito.2018.11.002] [PMID: 30408594]
[10]
Wadhwa, R.; Gupta, R.; Maurya, P.K. Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr. Pharm. Des., 2019, 24(40), 4711-4725.
[http://dx.doi.org/10.2174/1381612825666190115121018] [PMID: 30644343]
[11]
Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett., 2018, 592(5), 728-742.
[http://dx.doi.org/10.1002/1873-3468.12956] [PMID: 29281123]
[12]
Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(10), 2407.
[http://dx.doi.org/10.3390/ijms20102407] [PMID: 31096608]
[13]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[14]
Simpson, D.S.A.; Oliver, P.L. ROS generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants, 2020, 9(8), 743.
[http://dx.doi.org/10.3390/antiox9080743] [PMID: 32823544]
[15]
Welz, A.N.; Emberger-Klein, A.; Menrad, K. Why people use herbal medicine: Insights from a focus-group study in Germany. BMC Complement. Altern. Med., 2018, 18(1), 92.
[http://dx.doi.org/10.1186/s12906-018-2160-6] [PMID: 29544493]
[16]
Xiong, X.; Wang, P.; Su, K.; Cho, W.C.; Xing, Y. Chinese herbal medicine for coronavirus disease 2019: A systematic review and meta-analysis. Pharmacol. Res., 2020, 160, 105056.
[http://dx.doi.org/10.1016/j.phrs.2020.105056] [PMID: 32622723]
[17]
Ghaderi, M.A.; Emam, S.A.; Javadi, B. The role of sesamin in targeting the neurodegenerative disorders: A systematic review. Mini Rev. Med. Chem., 2022.
[http://dx.doi.org/10.2174/1389557522666220523112027]
[18]
Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; Kunnumakkara, A.B. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci., 2019, 20(17), 4101.
[http://dx.doi.org/10.3390/ijms20174101] [PMID: 31443458]
[19]
Javadi, B.; Sahebkar, A.; Emami, S.A. Medicinal plants for the treatment of asthma: A traditional persian medicine perspective. Curr. Pharm. Des., 2017, 23(11), 1623-1632.
[http://dx.doi.org/10.2174/1381612822666161021143332] [PMID: 27774904]
[20]
Beheshti, S.; Aghaie, R. Therapeutic effect of frankincense in a rat model of Alzheimer’s disease. Avicenna J. Phytomed., 2016, 6(4), 468-475.
[PMID: 27516988]
[21]
Mehta, M.; Shukla, B.; Khurana, N.; Arora, P.; Sharma, N.; Mahajan, S. Recent patent technologies of boswellic acids: A short review., 2018.
[22]
Karra, A.G. Tziortziou, M.; Kylindri, P.; Georgatza, D.; Gorgogietas, V.A.; Makiou, A.; Krokida, A.; Tsialtas, I.; Kalousi, F.D.; Papadopoulos, G.E.; Papadopoulou, K.K.; Psarra, A.M.G. Boswellic acids and their derivatives as potent regulators of glucocorticoid receptor actions. Arch. Biochem. Biophys., 2020, 695, 108656.
[http://dx.doi.org/10.1016/j.abb.2020.108656] [PMID: 33127380]
[23]
Haroyan, A.; Mukuchyan, V.; Mkrtchyan, N.; Minasyan, N.; Gasparyan, S.; Sargsyan, A.; Narimanyan, M.; Hovhannisyan, A. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: A comparative, randomized, double-blind, placebo-controlled study. BMC Complement. Altern. Med., 2018, 18(1), 7.
[http://dx.doi.org/10.1186/s12906-017-2062-z] [PMID: 29316908]
[24]
Zwerger, M.; Ganzera, M. Analysis of boswellic acids in dietary supplements containing Indian frankincense (Boswellia serrata) by Supercritical Fluid Chromatography. J. Pharm. Biomed. Anal., 2021, 201, 114106.
[http://dx.doi.org/10.1016/j.jpba.2021.114106] [PMID: 33962180]
[25]
Gomaa, A.A.; Mohamed, H.S.; Abd-ellatief, R.B.; Gomaa, M.A.; Hammam, D.S. Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: A randomized clinical trial. Inflammopharmacology, 2022, 30(2), 477-486.
[http://dx.doi.org/10.1007/s10787-022-00939-7] [PMID: 35233748]
[26]
Narasagoudr, S.S.; Hegde, V.G.; Chougale, R.B.; Masti, S.P.; Dixit, S. Influence of boswellic acid on multifunctional properties of chitosan/poly (vinyl alcohol) films for active food packaging. Int. J. Biol. Macromol., 2020, 154, 48-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.073] [PMID: 32173434]
[27]
Haghaei, H.; Soltani, S.; Aref Hosseini, S.; Rashidi, M.R.; Karima, S. Boswellic acids as promising leads in drug development against Alzheimer’s disease. Ulum-i Daruyi, 2020, 27(1), 14-31.
[http://dx.doi.org/10.34172/PS.2020.25]
[28]
Gunasekaran, V.; Augustine, A.; Avarachan, J.; Khayum, A.; Ramasamy, A. 3-O-Acetyl-11-keto-β-boswellic acid ameliorates chronic unpredictable mild stress induced HPA axis dysregulation in relation with glutamate/GABA aberration in depressive rats. Clin. and Exp. Pharmacol. Physiol., 2021, 48(12), 1633-1641.
[http://dx.doi.org/10.1111/1440-1681.13567]
[29]
Barakat, B.M.; Ahmed, H.I.; Bahr, H.I.; Elbahaie, A.M. Protective effect of boswellic acids against doxorubicin-induced hepatotoxicity: Impact on Nrf2/HO-1 defense pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/8296451]
[30]
Kundu, S.; Singh, S. Protective Mechanisms of 3-Acetyl-11-keto-beta-boswellic acid and piperine in fluid percussion rat model of traumatic brain injury targeting Nrf2 and NFkB Signaling Neurotox.Res., 2023, 41(1), 57-84. Epub 2022 Dec 28.
[http://dx.doi.org/10.1007/s12640-022-00628-x] [PMID: 36576717]
[31]
Siddiqui, A.; Shah, Z.; Jahan, R.N.; Othman, I.; Kumari, Y. Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties. Biomed. Pharmacother., 2021, 144, 112250.
[http://dx.doi.org/10.1016/j.biopha.2021.112250] [PMID: 34607104]
[32]
Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol., 2010, 1(2), 94-99.
[33]
Ulrey, A.; Kolle, S.; Landsiedel, R.; Hill, E. How a GIVIMP certification program can increase confidence in in vitro methods. Altern. Anim. Exp., 2021, 38(2), 316-318.
[http://dx.doi.org/10.14573/altex.2102261] [PMID: 33871038]
[34]
Monzio Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol., 2020, 57(7), 2959-2980.
[http://dx.doi.org/10.1007/s12035-020-01926-1] [PMID: 32445085]
[35]
Mackay, D.F.; Russell, E.R.; Stewart, K.; MacLean, J.A.; Pell, J.P.; Stewart, W. Neurodegenerative disease mortality among former professional soccer players. N. Engl. J. Med., 2019, 381(19), 1801-1808.
[http://dx.doi.org/10.1056/NEJMoa1908483] [PMID: 31633894]
[36]
Nedelsky, N.B.; Taylor, J.P. Bridging biophysics and neurology: Aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(5), 272-286.
[http://dx.doi.org/10.1038/s41582-019-0157-5] [PMID: 30890779]
[37]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[38]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/2105607]
[39]
Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther., 2020, 37(1), 113-139.
[http://dx.doi.org/10.1007/s12325-019-01148-5] [PMID: 31782132]
[40]
Chang, K.H.; Cheng, M.L.; Chiang, M.C.; Chen, C.M. Lipophilic antioxidants in neurodegenerative diseases. Clin. Chim. Acta, 2018, 485, 79-87.
[http://dx.doi.org/10.1016/j.cca.2018.06.031] [PMID: 29940147]
[41]
Clark, I.A.; Vissel, B. Broader insights into understanding tumor necrosis factor and neurodegenerative disease pathogenesis infer new therapeutic approaches. J. Alzheimers Dis., 2021, 79(3), 931-948.
[http://dx.doi.org/10.3233/JAD-201186] [PMID: 33459706]
[42]
McCarty, M.F.; Lerner, A. The second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Rev. Neurother., 2021, 21(5), 559-570.
[http://dx.doi.org/10.1080/14737175.2021.1907182] [PMID: 33749495]
[43]
Lin, M.; Liu, N.; Qin, Z.; Wang, Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol. Sin., 2022, 43(10), 2439-2447.
[http://dx.doi.org/10.1038/s41401-022-00879-6] [PMID: 35233090]
[44]
Goodfellow, M.J.; Borcar, A.; Proctor, J.L.; Greco, T.; Rosenthal, R.E.; Fiskum, G. Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp. Neurol., 2020, 328, 113247.
[http://dx.doi.org/10.1016/j.expneurol.2020.113247] [PMID: 32061629]
[45]
Lim, H.S.; Kim, Y.J.; Kim, B.Y.; Park, G.; Jeong, S.J. The anti-neuroinflammatory activity of tectorigenin pretreatment via downregulated NF-κB and ERK/JNK pathways in BV-2 microglial and microglia inactivation in mice with lipopolysaccharide. Front. Pharmacol., 2018, 9, 462.
[http://dx.doi.org/10.3389/fphar.2018.00462]
[46]
Singh, S.; Singh, T.G. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach. Curr. Neuropharmacol., 2020, 18(10), 918-935.
[http://dx.doi.org/10.2174/1570159X18666200207120949] [PMID: 32031074]
[47]
Lage-Rupprecht, V.; Schultz, B.; Dick, J.; Namysl, M.; Zaliani, A.; Gebel, S.; Pless, O.; Reinshagen, J.; Ellinger, B.; Ebeling, C.; Esser, A.; Jacobs, M.; Claussen, C.; Hofmann-Apitius, M. A hybrid approach unveils drug repurposing candidates targeting an Alzheimer pathophysiology mechanism. Patterns, 2022, 3(3), 100433.
[http://dx.doi.org/10.1016/j.patter.2021.100433] [PMID: 35510183]
[48]
Arranz, A.M.; De Strooper, B. The role of astroglia in Alzheimer’s disease: Pathophysiology and clinical implications. Lancet Neurol., 2019, 18(4), 406-414.
[http://dx.doi.org/10.1016/S1474-4422(18)30490-3] [PMID: 30795987]
[49]
Olajide, O.J.; Gbadamosi, I.T.; Yawson, E.O.; Arogundade, T.; Lewu, F.S.; Ogunrinola, K.Y.; Adigun, O.O.; Bamisi, O.; Lambe, E.; Arietarhire, L.O.; Oluyomi, O.O.; Idowu, O.K.; Kareem, R.; Asogwa, N.T.; Adeniyi, P.A. Hippocampal degeneration and behavioral impairment during alzheimer-like pathogenesis involves glutamate excitotoxicity. J. Mol. Neurosci., 2021, 71(6), 1205-1220.
[http://dx.doi.org/10.1007/s12031-020-01747-w] [PMID: 33420680]
[50]
Siedlecki-Wullich, D.; Català-Solsona, J.; Fábregas, C.; Hernández, I.; Clarimon, J.; Lleó, A.; Boada, M.; Saura, C.A.; Rodríguez-Álvarez, J.; Miñano-Molina, A.J. Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 46.
[http://dx.doi.org/10.1186/s13195-019-0501-4] [PMID: 31092279]
[51]
Richetin, K.; Steullet, P.; Pachoud, M.; Perbet, R.; Parietti, E.; Maheswaran, M.; Eddarkaoui, S.; Bégard, S.; Pythoud, C.; Rey, M.; Caillierez, R.; Q Do, K.; Halliez, S.; Bezzi, P.; Buée, L.; Leuba, G.; Colin, M.; Toni, N.; Déglon, N. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat. Neurosci., 2020, 23(12), 1567-1579.
[http://dx.doi.org/10.1038/s41593-020-00728-x] [PMID: 33169029]
[52]
Hamidi, N.; Nozad, A.; Sheikhkanloui Milan, H.; Salari, A.A.; Amani, M. Effect of ceftriaxone on paired-pulse response and long-term potentiation of hippocampal dentate gyrus neurons in rats with Alzheimer-like disease. Life Sci., 2019, 238, 116969.
[http://dx.doi.org/10.1016/j.lfs.2019.116969] [PMID: 31628912]
[53]
Gosztyla, M.L.; Brothers, H.M.; Robinson, S.R. Alzheimer’s amyloid-β is an antimicrobial peptide: A review of the evidence. J. Alzheimer's Dis., 2018, 62(4), 1495-1506.
[http://dx.doi.org/10.3233/JAD-171133] [PMID: 29504537]
[54]
Sahoo, B.R.; Genjo, T.; Bekier, M.; Cox, S.J.; Stoddard, A.K.; Ivanova, M.; Yasuhara, K.; Fierke, C.A.; Wang, Y.; Ramamoorthy, A. Alzheimer’s amyloid-beta intermediates generated using polymer-nanodiscs. Chem. Commun. (Camb.), 2018, 54(91), 12883-12886.
[http://dx.doi.org/10.1039/C8CC07921H] [PMID: 30379172]
[55]
Kabir, M.T.; Sufian, M.A.; Uddin, M.S.; Begum, M.M.; Akhter, S.; Islam, A.; Mathew, B.; Islam, M.S.; Amran, M.S.; Md Ashraf, G. NMDA receptor antagonists: Repositioning of memantine as a multitargeting agent for Alzheimer’s therapy. Curr. Pharm. Des., 2019, 25(33), 3506-3518.
[http://dx.doi.org/10.2174/1381612825666191011102444] [PMID: 31604413]
[56]
Zhang, L.; Qi, Z.; Li, J.; Li, M.; Du, X.; Wang, S.; Zhou, G.; Xu, B.; Liu, W.; Xi, S.; Xu, Z.; Deng, Y. Roles and mechanisms of axon-guidance molecules in Alzheimer’s disease. Mol. Neurobiol., 2021, 58(7), 3290-3307.
[http://dx.doi.org/10.1007/s12035-021-02311-2] [PMID: 33675023]
[57]
Area-Gomez, E.; de Groof, A.; Bonilla, E.; Montesinos, J.; Tanji, K.; Boldogh, I.; Pon, L.; Schon, E.A. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis., 2018, 9(3), 335.
[http://dx.doi.org/10.1038/s41419-017-0215-0] [PMID: 29491396]
[58]
Surmeier, D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J., 2018, 285(19), 3657-3668.
[http://dx.doi.org/10.1111/febs.14607] [PMID: 30028088]
[59]
Joshi, N.; Singh, S. Updates on immunity and inflammation in Parkinson disease pathology. J. Neurosci. Res., 2018, 96(3), 379-390.
[http://dx.doi.org/10.1002/jnr.24185] [PMID: 29072332]
[60]
Ramazani, E. YazdFazeli, M.; Emami, S.A.; Mohtashami, L.; Javadi, B.; Asili, J.; Tayarani-Najaran, Z. Protective effects of Cinnamomum verum, Cinnamomum cassia and cinnamaldehyde against 6-OHDA-induced apoptosis in PC12 cells. Mol. Biol. Rep., 2020, 47(4), 2437-2445.
[http://dx.doi.org/10.1007/s11033-020-05284-y] [PMID: 32166553]
[61]
Riederer, P.; Müller, T. Monoamine oxidase-B inhibitors in the treatment of Parkinson’s disease: Clinical–pharmacological aspects. J. Neural Transm., 2018, 125(11), 1751-1757.
[http://dx.doi.org/10.1007/s00702-018-1876-2] [PMID: 29569037]
[62]
Masilamoni, G.J.; Smith, Y. Metabotropic glutamate receptors: Targets for neuroprotective therapies in Parkinson disease. Curr. Opin. Pharmacol., 2018, 38, 72-80.
[http://dx.doi.org/10.1016/j.coph.2018.03.004] [PMID: 29605730]
[63]
Tayarani-Najaran, Z.; Rashidi, R.; Rashedinia, M.; Khoshbakht, S.; Javadi, B. The protective effect of Lavandula officinalis extract on 6-hydroxydopamine-induced reactive oxygen species and apoptosis in PC12 cells. Eur. J. Integr. Med., 2021, 41, 101233.
[http://dx.doi.org/10.1016/j.eujim.2020.101233]
[64]
Domingues, A.V.; Pereira, I.M.; Vilaça-Faria, H.; Salgado, A.J.; Rodrigues, A.J.; Teixeira, F.G. Glial cells in Parkinson's disease: Protective or deleterious? Cell. Mol. Life Sci., 2020, 77(24), 5171-5188.
[http://dx.doi.org/10.1007/s00018-020-03584-x] [PMID: 32617639]
[65]
Tayarani-Najaran, Z.; Hadipour, E.; Seyed Mousavi, S.M.; Emami, S.A.; Mohtashami, L.; Javadi, B. Protective effects of Lavandula stoechas L. methanol extract against 6-OHDA-induced apoptosis in PC12 cells. J. Ethnopharmacol., 2021, 273, 114023.
[http://dx.doi.org/10.1016/j.jep.2021.114023] [PMID: 33716081]
[66]
Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673.
[http://dx.doi.org/10.1038/s41577-022-00684-6] [PMID: 35246670]
[67]
Chen, L.; Mo, M.; Li, G.; Cen, L.; Wei, L.; Xiao, Y.; Chen, X.; Li, S.; Yang, X.; Qu, S.; Xu, P. The biomarkers of immune dysregulation and inflammation response in Parkinson disease. Transl. Neurodegener., 2016, 5(1), 16.
[http://dx.doi.org/10.1186/s40035-016-0063-3] [PMID: 27570618]
[68]
Henchcliffe, C.; Beal, M.F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol., 2008, 4(11), 600-609.
[http://dx.doi.org/10.1038/ncpneuro0924] [PMID: 18978800]
[69]
Sanders, L.H.; Timothy Greenamyre, J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med., 2013, 62, 111-120.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.003] [PMID: 23328732]
[70]
Shasaltaneh, M.D.; Naghdi, N.; Ramezani, S.; Alizadeh, L.; Riazi, G.H. Protection of beta boswellic acid against streptozotocin-induced Alzheimer's model by reduction of tau phosphorylation level and enhancement of reelin expression. Planta Med., 2022, 88(5), 367-379.
[http://dx.doi.org/10.1055/a-1502-7083] [PMID: 34116571]
[71]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[PMID: 25774178]
[72]
Rajabian, A.; Sadeghnia, H.R.; Hosseini, A.; Mousavi, S.H.; Boroushaki, M.T. 3‐Acetyl‐11‐keto‐β‐boswellic acid attenuated oxidative glutamate toxicity in neuron‐like cell lines by apoptosis inhibition. J. Cell. Biochem., 2020, 121(2), 1778-1789.
[http://dx.doi.org/10.1002/jcb.29413] [PMID: 31642100]
[73]
Sadeghnia, H.R.; Arjmand, F.; Ghorbani, A. Neuroprotective effect of boswellia serrata and its active constituent acetyl 11-keto-β-boswellic acid against oxygen-glucose-serum deprivation-induced cell injury. Acta Pol. Pharm., 2017, 74(3), 911-920.
[PMID: 29513961]
[74]
Hosseinzadeh, H.; Ebrahimpour, S.; Fazeli, M.; Mehri, S.; Taherianfard, M. Boswellic acid improves cognitive function in a rat model through its antioxidant activity:-Neuroprotective effect of boswellic acid. J. Pharmacopuncture, 2017, 20(1), 10-17.
[http://dx.doi.org/10.3831/KPI.2017.20.001] [PMID: 28392957]
[75]
Ahmad, S.; Khan, S.A.; Kindelin, A.; Mohseni, T.; Bhatia, K.; Hoda, M.N.; Ducruet, A.F. Acetyl-11-keto-β-boswellic acid (AKBA) attenuates oxidative stress, inflammation, complement activation and cell death in brain endothelial cells following OGD/reperfusion. Neuromol. Med., 2019, 21(4), 505-516.
[http://dx.doi.org/10.1007/s12017-019-08569-z] [PMID: 31515728]
[76]
Mohammadi, H.; Ghassemi-Barghi, N.; Malakshah, O.; Ashari, S. Pyrethroid exposure and neurotoxicity: A mechanistic approach. Arh. Hig. Rada Toksikol., 2019, 70(2), 74-89.
[http://dx.doi.org/10.2478/aiht-2019-70-3263] [PMID: 31246571]
[77]
Ding, Y.; Chen, M.; Wang, M.; Li, Y.; Wen, A. Posttreatment with 11-keto-β-boswellic acid ameliorates cerebral ischemia–reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism. Mol. Neurobiol., 2015, 52(3), 1430-1439.
[http://dx.doi.org/10.1007/s12035-014-8929-9] [PMID: 25452227]
[78]
Ding, Y.; Chen, M.; Wang, M.; Wang, M.; Zhang, T.; Park, J.; Zhu, Y.; Guo, C.; Jia, Y.; Li, Y.; Wen, A. Neuroprotection by acetyl-11-keto-β-Boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Sci. Rep., 2014, 4(1), 7002.
[http://dx.doi.org/10.1038/srep07002] [PMID: 25384416]
[79]
Marefati, N.; Beheshti, F.; Memarpour, S.; Bayat, R.; Naser Shafei, M.; Sadeghnia, H.R.; Ghazavi, H.; Hosseini, M. The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine, 2020, 131, 155107.
[http://dx.doi.org/10.1016/j.cyto.2020.155107] [PMID: 32380425]
[80]
Sayed, A.S.; Gomaa, I.E.O.; Bader, M.; El Sayed, N.S.E.D. Role of 3-acetyl-11-keto-beta-boswellic acid in counteracting LPS-induced neuroinflammation via modulation of miRNA-155. Mol. Neurobiol., 2018, 55(7), 5798-5808.
[http://dx.doi.org/10.1007/s12035-017-0801-2] [PMID: 29079998]
[81]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[82]
Iranshahy, M.; Javadi, B. Diet therapy for the treatment of Alzheimer’s disease in view of traditional Persian medicine: A review. Iran. J. Basic Med. Sci., 2019, 22(10), 1102-1117.
[PMID: 31998450]
[83]
Winslow, B.T.; Onysko, M.K.; Stob, C.M.; Hazlewood, K.A. Treatment of Alzheimer disease. Am. Fam. Physician, 2011, 83(12), 1403-1412.
[PMID: 21671540]
[84]
Mohamed, E.A.; Ahmed, H.I.; Zaky, H.S.; Badr, A.M. Boswellic acids ameliorate neurodegeneration induced by AlCl3: The implication of Wnt/β-catenin pathway. Environ. Sci. Pollut. Res. Int., 2022, 29(50), 76135-76143.
[http://dx.doi.org/10.1007/s11356-022-20611-5] [PMID: 35668264]
[85]
Fathi, E.; Katouli, F.H.; Riazi, G.H.; Shasaltaneh, M.D.; Parandavar, E.; Bayati, S.; Afrasiabi, A.; Nazari, R. The effects of alpha boswellic acid on reelin expression and tau phosphorylation in human astrocytes. Neuromol. Med., 2017, 19(1), 136-146.
[http://dx.doi.org/10.1007/s12017-016-8437-3] [PMID: 27567921]
[86]
Mohamed, T.M.; Youssef, M.A.M.; Bakry, A.A.; El-Keiy, M.M. Alzheimer’s disease improved through the activity of mitochondrial chain complexes and their gene expression in rats by boswellic acid. Metab. Brain Dis., 2021, 36(2), 255-264.
[http://dx.doi.org/10.1007/s11011-020-00639-7] [PMID: 33159653]
[87]
Cenini, G.; Voos, W. Mitochondria as potential targets in Alzheimer disease therapy: An update. Front. Pharmacol., 2019, 10, 902.
[http://dx.doi.org/10.3389/fphar.2019.00902] [PMID: 31507410]
[88]
Obulesu, M.; Lakshmi, M.J. Apoptosis in Alzheimer’s disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochem. Res., 2014, 39(12), 2301-2312.
[http://dx.doi.org/10.1007/s11064-014-1454-4] [PMID: 25322820]
[89]
Wei, C.; Fan, J.; Sun, X.; Yao, J.; Guo, Y.; Zhou, B.; Shang, Y. Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free Radic. Biol. Med., 2020, 150, 96-108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.022] [PMID: 32109514]
[90]
Forner, S.; Baglietto-Vargas, D.; Martini, A.C.; Trujillo-Estrada, L.; LaFerla, F.M. Synaptic impairment in Alzheimer’s disease: A dysregulated symphony. Trends Neurosci., 2017, 40(6), 347-357.
[http://dx.doi.org/10.1016/j.tins.2017.04.002] [PMID: 28494972]
[91]
Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother., 2017, 88, 754-761.
[http://dx.doi.org/10.1016/j.biopha.2017.01.123] [PMID: 28157651]
[92]
Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J. Cell. Physiol., 2019, 234(1), 23-32.
[http://dx.doi.org/10.1002/jcp.26865] [PMID: 30078201]
[93]
Ameen, A.M.; Elkazaz, A.Y.; Mohammad, H.M.F.; Barakat, B.M. Anti-inflammatory and neuroprotective activity of boswellic acids in rotenone parkinsonian rats. Cancer J. Physiol. Pharmacol., 2017, 95(7), 819-829.
[http://dx.doi.org/10.1139/cjpp-2016-0158] [PMID: 28249117]
[94]
Kheradmand, H.; Babaloo, H.; Vojgani, Y.; Mirzakhanlouei, S.; Bayat, N. PCL /gelatin scaffolds and BETA‐BOSWELLIC ACID synergistically increase the efficiency of CGR8 stem cells differentiation into dopaminergic neuron: A new paradigm of Parkinson’s disease cell therapy. J. Biomed. Mater. Res. A, 2021, 109(4), 562-571.
[http://dx.doi.org/10.1002/jbm.a.37040] [PMID: 32588502]
[95]
Abasi, M.; Massumi, M.; Riazi, G.; Amini, H. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells. Neuroscience, 2012, 222, 404-416.
[http://dx.doi.org/10.1016/j.neuroscience.2012.07.009] [PMID: 22800564]
[96]
Cunha-Oliveira, T.; Montezinho, L.; Mendes, C.; Firuzi, O.; Saso, L.; Oliveira, P.J. Oxidative stress in amyotrophic lateral sclerosis: Pathophysiology and opportunities for pharmacological intervention. Oxi. Med. Cell. Longe., 2020, 2020, 1-29.
[http://dx.doi.org/10.1155/2020/5021694]
[97]
Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers, 2017, 3(1), 1-19.
[98]
Minj, E.; Upadhayay, S.; Mehan, S. Nrf2/HO-1 signaling activator acetyl-11-keto-beta Boswellic acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-induced experimental model of ALS. Neurochem. Res., 2021, 46(11), 2867-2884.
[http://dx.doi.org/10.1007/s11064-021-03366-2] [PMID: 34075522]
[99]
Ammon, H.P.T.; Safayhi, H.; Mack, T.; Sabieraj, J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J. Ethnopharmacol., 1993, 38(2-3), 105-112.
[http://dx.doi.org/10.1016/0378-8741(93)90005-P] [PMID: 8510458]
[100]
Badria, F.A.; Mikhaeil, B.R.; Maatooq, G.T.; Amer, M.M.A. Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood. Z. Naturforsch. C J. Biosci., 2003, 58(7-8), 505-516.
[http://dx.doi.org/10.1515/znc-2003-7-811] [PMID: 12939036]
[101]
Ammon, H.P.T.; Mack, T.; Singh, G.; Safayhi, H. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Med., 1991, 57(3), 203-207.
[http://dx.doi.org/10.1055/s-2006-960074] [PMID: 1654575]
[102]
Sharma, T.; Jana, S. Investigation of molecular properties that influence the permeability and oral bioavailability of major β-boswellic acids. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(2), 243-255.
[http://dx.doi.org/10.1007/s13318-019-00599-z] [PMID: 31786725]
[103]
Khayyal, M.T.; El-Hazek, R.M.; El-Sabbagh, W.A.; Frank, J.; Behnam, D.; Abdel-Tawab, M. Micellar solubilisation enhances the antiinflammatory activities of curcumin and boswellic acids in rats with adjuvant-induced arthritis. Nutrition, 2018, 54, 189-196.
[http://dx.doi.org/10.1016/j.nut.2018.03.055] [PMID: 30048884]
[104]
Gerbeth, K.; Hüsch, J.; Fricker, G.; Werz, O.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fitoterapia, 2013, 84, 99-106.
[http://dx.doi.org/10.1016/j.fitote.2012.10.009] [PMID: 23103296]
[105]
Han, L.; Xia, Q.; Zhang, L.; Zhang, X.; Li, X.; Zhang, S.; Wang, L.; Liu, C.; Liu, K. Induction of developmental toxicity and cardiotoxicity in zebrafish embryos/larvae by acetyl-11-keto-β-boswellic acid (AKBA) through oxidative stress. Drug Chem. Toxicol., 2022, 45(1), 143-150.
[http://dx.doi.org/10.1080/01480545.2019.1663865] [PMID: 31656113]
[106]
Majeed, M.; Majeed, S.; Narayanan, N.K.; Nagabhushanam, K. A pilot, randomized, double-blind, placebo-controlled trial to assess the safety and efficacy of a novel boswellia Serrata extract in the management of osteoarthritis of the knee. Phytother. Res., 2019, 33(5), 1457-1468.
[http://dx.doi.org/10.1002/ptr.6338] [PMID: 30838706]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy