Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Rosebay Willowherb (Chamerion angustifolium) in Food Products: Evaluation of the Residual Anti-radical Activity of Polyphenol Compounds and N-acetylcystein

Author(s): Victor Gorbachev, Igor Nikitin*, Daria Velina, Maria Klokonos, Sherzodkhon Mutallibzoda, Svetlana Tefikova, Olga Orlovtseva, Natalia Ivanova, Galina Posnova, Tatyana Bychkova, Yuliya Zabalueva and Olga Matsikova

Volume 20, Issue 2, 2024

Published on: 04 May, 2023

Page: [220 - 226] Pages: 7

DOI: 10.2174/1573401319666230330095521

Price: $65

Abstract

Background: The composition of polyphenolic compounds in various parts of the Rosebay willowherb (Chamerion angustifolium) has been studied in detail and published. A number of these compounds have sufficient antiradical activity (ARA) to create functional foods based on extracts from this plant that are preventive against free-radical pathologies in humans. Part of substances with antiradical activity (e.g., vitamins, polyphenol components) are destroyed during the technological processing of food raw materials, and the values of ARA drop in the finished food product concerning the initial values (before and after technical processing) are not fully evaluated.

Objective: The object of the study is to study the thermal stability of polyphenol components possessing ARA (dried at 60°C and 150°C) and evaluate their residual ARA in the finished food products, N-acetylcysteine (NAC), as one of the known antiradical, was used as a reference substance.

Methods: Spectrophotometric method was used to evaluate the change of ARA in prepared foods. Gas chromatography-mass spectrometry (GC-MS) was used as an additional method to evaluate the difference in the chemical composition of polyphenol components.

Results: The residual ARA in the finished products (for caramel and bakery products) was ≈ 23.9% for rapidly extractable substances, for polyphenol compounds ≈ 46.1%, and for amino acids and easily hydrolyzable substances ≈ 34.5%.

Conclusion: Rosebay willowherb extract and N-acetylcysteine are recommended for increasing the ARA (between 1.6-4.9 times) of foods with low ARA (confectionery, bread, or other heavily processed foods) and for diets and diets preventive of free-radical pathologies by adding polyphenolic plant components and cysteine derivatives.

Graphical Abstract

[1]
White AP, Handler E, Smith R, Hill R, Lehman MG. Principles of Biochemistry New York, NY, USA; Michigan University:. Ann Arbor, MI, USA: McGraw-Hill 1978; p. 1492.
[2]
Thannickal VJ. Oxygen in the evolution of complex life and the price we pay. Am J Respir Cell Mol Biol 2009; 40(5): 507-10.
[http://dx.doi.org/10.1165/rcmb.2008-0360PS] [PMID: 18978299]
[3]
Taverne YJ, Merkus D, Bogers AJ, Halliwell B, Duncker DJ, Lyons TW. Reactive oxygen species: Radical factors in the evolution of animal life: A molecular timescale from earth’s earliest history to the rise of complex life. BioEssays 2018; 40(3): 1700158.
[http://dx.doi.org/10.1002/bies.201700158] [PMID: 29411901]
[4]
Kutsenko SA. Fundamentals of toxicology: Scientific-methodical. Saint Petersburg, Russia: Foliant 2004; p. 637.
[5]
Cash TP, Pan Y, Simon MC. Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med 2007; 43(9): 1219-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.07.001] [PMID: 17893032]
[6]
Brieger K, Schiavone S, Miller J Jr, Krause KH. Reactive oxygen species: From health to disease. Swiss Med Wkly 2012; 142: w13659.
[http://dx.doi.org/10.4414/smw.2012.13659] [PMID: 22903797]
[7]
Kehrer JP, Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Crit Rev Toxicol 2015; 45(9): 765-98.
[http://dx.doi.org/10.3109/10408444.2015.1074159] [PMID: 26610815]
[8]
Steele R, Ed. Understanding and Measuring the Shelf-Life of Food. Boca Raton, FL, USA: CRC Press 2004; p. 407.
[http://dx.doi.org/10.4236/fns.2015.65048]
[9]
Zarkovic N. 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 2003; 24(4-5): 281-91.
[http://dx.doi.org/10.1016/S0098-2997(03)00023-2] [PMID: 12893006]
[10]
Surh J, Lee S, Kwon H. 4-Hydroxy-2-alkenals in polyunsaturated fatty acids-fortified infant formulas and other commercial food products. Food Addit Contam 2007; 24(11): 1209-18.
[http://dx.doi.org/10.1080/02652030701422465] [PMID: 17852396]
[11]
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease.In: Advances in Immunology. Elsevier 2014; 121: pp. 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9]
[12]
Negre-Salvayre A, Auge N, Ayala V, et al. Pathological aspects of lipid peroxidation. Free Radic Res 2010; 44(10): 1125-71.
[http://dx.doi.org/10.3109/10715762.2010.498478] [PMID: 20836660]
[13]
Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol 2007; 102(6): 2379-88.
[http://dx.doi.org/10.1152/japplphysiol.01298.2006] [PMID: 17289907]
[14]
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194(1): 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[15]
Santos EL, Maia BHLNS, Ferriani AP, Teixeira SD. Flavonoids: classification, biosynthesis and chemical ecology. flavonoids - from biosynthesis to human health [internet]. 2017 Aug 23; Available from:
[http://dx.doi.org/10.5772/67861]
[16]
Grassi D, Desideri G, Ferri C. Flavonoids: Antioxidants against atherosclerosis. Nutrients 2010; 2(8): 889-902.
[http://dx.doi.org/10.3390/nu2080889] [PMID: 22254061]
[17]
Berger RG, Lunkenbein S, Ströhle A, Hahn A. Antioxidants in food: Mere myth or magic medicine? Crit Rev Food Sci Nutr 2012; 52(2): 162-71.
[http://dx.doi.org/10.1080/10408398.2010.499481] [PMID: 22059961]
[18]
Jariene E, Lasinskas M, Danilcenko H, et al. Polyphenols, antioxidant activity and volatile compounds in fermented leaves of medicinal plant rosebay willowherb (Chamerion angustifolium (L.) Holub). Plants 2020; 9(12): 1683.
[http://dx.doi.org/10.3390/plants9121683] [PMID: 33271802]
[19]
Wang X, Ouyang YY, Liu J, Zhao G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br J Nutr 2014; 111(1): 1-11.
[http://dx.doi.org/10.1017/S000711451300278X] [PMID: 23953879]
[20]
Savina AA, Feyginova SI. Dynamics in incidence of desiases of the circulatory system among adults in the Russian Federation in 2007-2019. Soc Asp Popul Health 2021; 67(2): 1.
[http://dx.doi.org/10.21045/2071-5021-2021-67-2-1]
[21]
Kontsevaya AN, Drapkina OM, Balanova YuA, et al. Economic burden of cardiovascular diseases in the Russian Federation in 2016. Racionalʹnaâ farmakoterapiâ v kardiologii 2018; 14: 156-66.
[http://dx.doi.org/10.20996/1819-6446-2018-14-2-156-166]
[22]
Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J Agric Food Chem 2002; 50(11): 3122-8.
[http://dx.doi.org/10.1021/jf0116606] [PMID: 12009973]
[23]
Prior RL, Hoang H, Gu L, et al. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL) of plasma and other biological and food samples. J Agric Food Chem 2003; 51(11): 3273-9.
[http://dx.doi.org/10.1021/jf0262256] [PMID: 12744654]
[24]
Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne HD. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 2006; 19(6-7): 669-75.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[25]
Gorbachev V, Klokonos M, Orlovtseva O, Tefikova S, Nikitin I. Analysis of anti-radical activity of some food suitable algae of the sea of Okhotsk. III International Conference “Energy Efficiency and Energy Saving in Technical Systems” (EEESTS-2021). 279: 03007.
[http://dx.doi.org/10.1051/e3sconf/202127903007]
[26]
Lapinskii AG, Gorbachev VV. The antiradical activity of extracts from some wild-growing plants of the Okhotsk Sea northern coastal region. Pharm Chem J 2006; 40(6): 317-9.
[http://dx.doi.org/10.1007/s11094-006-0118-3]
[27]
Gorbachev V, Klokonos M, Mutallibzoda S, et al. Antiradical potential of food products as a comprehensive measure of their quality. Foods 2022; 11(7): 927.
[http://dx.doi.org/10.3390/foods11070927] [PMID: 35407013]
[28]
Volf I, Ignat I, Neamtu M, Popa V. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem Pap 2014; 68(1): 121-9.
[http://dx.doi.org/10.2478/s11696-013-0417-6]
[29]
Goedert JJ, Sampson JN, Moore SC, et al. Fecal metabolomics: Assay performance and association with colorectal cancer. Carcinogenesis 2014; 35(9): 2089-96.
[http://dx.doi.org/10.1093/carcin/bgu131] [PMID: 25037050]
[30]
Yoshida T, Yoshimura M, Amakura Y. Chemical and biological significance of oenothein b and related ellagitannin oligomers with macrocyclic structure. Molecules 2018; 23(3): 552.
[http://dx.doi.org/10.3390/molecules23030552] [PMID: 29498647]
[31]
Glavind J, Jørgensen OB, Røst E, Steffensen A, Munch-Petersen J. Antioxidants in animal tissue. Acta Chem Scand 1963; 17: 1635-40.
[http://dx.doi.org/10.3891/acta.chem.scand.17-1635]
[32]
Kiss AK, Bazylko A, Filipek A, et al. Oenothein B’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomedicine 2011; 18(7): 557-60.
[http://dx.doi.org/10.1016/j.phymed.2010.10.016] [PMID: 21112753]
[33]
Jürgenson S, Matto V, Raal A. Vegetational variation of phenolic compounds in Epilobium angustifolium. Nat Prod Res 2012; 26(20): 1951-3.
[http://dx.doi.org/10.1080/14786419.2011.643310] [PMID: 22149976]
[34]
Kaškonienė V, Stankevičius M, Drevinskas T, et al. Evaluation of phytochemical composition of fresh and dried raw material of introduced Chamerion angustifolium L. using chromatographic, spectrophotometric and chemometric techniques. Phytochemistry 2015; 115: 184-93.
[http://dx.doi.org/10.1016/j.phytochem.2015.02.005] [PMID: 25725961]
[35]
Monschein M, Jaindl K, Buzimkić S, Bucar F. Content of phenolic compounds in wild populations of Epilobium angustifolium growing at different altitudes. Pharm Biol 2015; 53(11): 1576-82.
[http://dx.doi.org/10.3109/13880209.2014.993039] [PMID: 25856698]
[36]
Agnieszka G, Mariola D, Anna P, et al. Qualitative and quantitative analyses of bioactive compounds from ex vitro Chamaenerion angustifolium (L.) (Epilobium augustifolium) herb in different harvest times. Ind Crops Prod 2018; 123: 208-20.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.010]
[37]
Lasinskas M, Jariene E, Vaitkeviciene N, Hallmann E, Najman K. Effect of different durations of solid-phase fermentation for fireweed (Chamerion angustifolium (L.) Holub) leaves on the content of polyphenols and antioxidant activity in vitro. Molecules 2020; 25(4): 1011.
[http://dx.doi.org/10.3390/molecules25041011] [PMID: 32102409]
[38]
Gorbacheva TA. The wealth of the Kolyma land. New Kolyma News 2018; 53(657): 14.
[39]
Tsarev VN, Bazarnova NG, Dubenskii MM. Chamerion angustifolium L chemical composition, biological activity (reviews). JCPRM 2016; pp. 15-26.
[http://dx.doi.org/10.14258/jcprm.2016041549]
[40]
Fazary AE, Awwad NS, Ibrahium HA, Shati AA, Alfaifi MY, Ju YH. Protonation equilibria of N-acetylcysteine. ACS Omega 2020; 5(31): 19598-605.
[http://dx.doi.org/10.1021/acsomega.0c02080] [PMID: 32803054]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy