Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Identification of Important Genes Associated with the Development of Atherosclerosis

Author(s): Stanislav Kotlyarov*

Volume 24, Issue 1, 2024

Published on: 14 April, 2023

Page: [29 - 45] Pages: 17

DOI: 10.2174/1566523223666230330091241

Price: $65

Abstract

Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.

Graphical Abstract

[1]
Mozaffarian D. Global scourge of cardiovascular disease. J Am Coll Cardiol 2017; 70(1): 26-8.
[http://dx.doi.org/10.1016/j.jacc.2017.05.007] [PMID: 28527667]
[2]
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol 2020; 76(25): 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[3]
Chen G, Farris MS, Cowling T, et al. Prevalence of atherosclerotic cardiovascular disease and subsequent major adverse cardiovascular events in Alberta, Canada: A real‐world evidence study. Clin Cardiol 2021; 44(11): 1613-20.
[http://dx.doi.org/10.1002/clc.23732] [PMID: 34585767]
[4]
Kim H, Kim S, Han S, et al. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: A nationwide population-based study. BMC Public Health 2019; 19(1): 1112.
[http://dx.doi.org/10.1186/s12889-019-7439-0] [PMID: 31412823]
[5]
Khera R, Valero-Elizondo J, Nasir K. Financial toxicity in atherosclerotic cardiovascular disease in the United States: Current state and future directions. J Am Heart Assoc 2020; 9(19): e017793.
[http://dx.doi.org/10.1161/JAHA.120.017793] [PMID: 32924728]
[6]
Kumar A, Siddharth V, Singh SI, Narang R. Cost analysis of treating cardiovascular diseases in a super-specialty hospital. PLoS One 2022; Jan 5; 17(1): e0262190.
[http://dx.doi.org/10.1371/journal.pone.0262190IF:3.752Q2.] [PMID: 34986193] [PMCID: PMC8730466]
[7]
Costa J, Alarcão J, Amaral-Silva A, et al. Atherosclerosis: The cost of illness in Portugal. Revista Portuguesa de Cardiologia (English Edition) 2021; 40(6): 409-19.
[http://dx.doi.org/10.1016/j.repce.2020.08.003] [PMID: 34274081]
[8]
Kotlyarov S. Genetic and epigenetic regulation of lipoxygenase pathways and reverse cholesterol transport in atherogenesis. Genes (Basel) 2022; 13(8): 1474.
[http://dx.doi.org/10.3390/genes13081474] [PMID: 36011386]
[9]
Kalinin RE, Suchkov IA, Chobanyan AA, Nikiforov AA, Shumskaya EI. Genetic predictors of an unfavorable course of obliterating atherosclerosis of lower limb arteries I.P. Pavlov Russian Medical Biological Herald 2021; 29(2): 251-6.
[http://dx.doi.org/10.17816/PAVLOVJ65383]
[10]
Fava C, Montagnana M. Atherosclerosis is an inflammatory disease which lacks a common anti-inflammatory therapy: How human genetics can help to this issue. A narrative review. Front Pharmacol 2018; 9: 55.
[http://dx.doi.org/10.3389/fphar.2018.00055] [PMID: 29467655]
[11]
Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet 2004; 5(1): 189-218.
[http://dx.doi.org/10.1146/annurev.genom.5.061903.175930] [PMID: 15485348]
[12]
Aherrahrou R, Guo L, Nagraj VP, et al. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ Res 2020; 127(12): 1552-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317415] [PMID: 33040646]
[13]
Abi Khalil C. The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis 2014; 5(4): 178-87.
[http://dx.doi.org/10.1177/2040622314529325] [PMID: 24982752]
[14]
Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7(1): 200.
[http://dx.doi.org/10.1038/s41392-022-01055-2] [PMID: 35752619]
[15]
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic biomarkers in cardiovascular diseases. Front Genet 2019; 10: 950.
[http://dx.doi.org/10.3389/fgene.2019.00950] [PMID: 31649728]
[16]
Zhang W, Song M, Qu J, Liu GH. Epigenetic modifications in cardiovascular aging and diseases. Circ Res 2018; 123(7): 773-86.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312497] [PMID: 30355081]
[17]
Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455(7209): 64-71.
[http://dx.doi.org/10.1038/nature07242] [PMID: 18668037]
[18]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[19]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[20]
Nisar S, Bhat AA, Singh M, et al. Insights into the role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol 2021; 9: 617281.
[http://dx.doi.org/10.3389/fcell.2021.617281] [PMID: 33614648]
[21]
Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis 2021; 12(5): 468.
[http://dx.doi.org/10.1038/s41419-021-03743-3] [PMID: 33976116]
[22]
Panda AC. Circular RNAs act as miRNA sponges. Adv Exp Med Biol 2018; 1087: 67-79.
[http://dx.doi.org/10.1007/978-981-13-1426-1_6] [PMID: 30259358]
[23]
Fang Y. Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA 2018; 4(7): FSO314.
[http://dx.doi.org/10.4155/fsoa-2018-0036] [PMID: 30112184]
[24]
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2017; 18(4): 558-76.
[http://dx.doi.org/10.1093/bib/bbw060] [PMID: 27345524] [PMCID: PMC5862301]
[25]
Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[26]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145-66.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[27]
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11(1): 59.
[http://dx.doi.org/10.1186/1741-7007-11-59] [PMID: 23721193]
[28]
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20(3): 300-7.
[http://dx.doi.org/10.1038/nsmb.2480] [PMID: 23463315]
[29]
Buja LM, Nikolai N. Anitschkow and the lipid hypothesis of atherosclerosis. Cardiovasc Pathol 2014; 23(3): 183-4.
[http://dx.doi.org/10.1016/j.carpath.2013.12.004] [PMID: 24484612]
[30]
Konstantinov IE, Mejevoi N, Anichkov NM, Nikolai N. Anichkov and his theory of atherosclerosis. Tex Heart Inst J 2006; 33(4): 417-23.
[PMID: 17215962] [PMID: 17215962]
[31]
Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111-88.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[32]
Catapano AL, Ray KK, Tokgözoglu L. Prevention guidelines and EAS/ESC guidelines for the treatment of dyslipidaemias: A look to the future. Atherosclerosis 2022; 340: 51-2.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.11.021] [PMID: 34863532]
[33]
Kotlyarov S, Kotlyarova A. Anti-inflammatory function of fatty acids and involvement of their metabolites in the resolution of inflammation in chronic obstructive pulmonary disease. Int J Mol Sci 2021; 22(23): 12803.
[http://dx.doi.org/10.3390/ijms222312803] [PMID: 34884621]
[34]
Kotlyarov S, Kotlyarova A. Involvement of fatty acids and their metabolites in the development of inflammation in atherosclerosis. Int J Mol Sci 2022; 23(3): 1308.
[http://dx.doi.org/10.3390/ijms23031308] [PMID: 35163232]
[35]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[36]
Frangos SG, Gahtan V, Sumpio B. Localization of atherosclerosis. Arch Surg 1999; 134(10): 1142-9.
[http://dx.doi.org/10.1001/archsurg.134.10.1142] [PMID: 10522862]
[37]
Texon M. A hemodynamic concept of atherosclerosis, with particular reference to coronary occlusion. Arch Intern Med 1957; 99(3): 418-27.
[http://dx.doi.org/10.1001/archinte.1957.00260030100010] [PMID: 13402247]
[38]
Prado CM, Ramos SG, Elias J Jr, Rossi MA. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int J Exp Pathol 2008; 89(1): 72-80.
[http://dx.doi.org/10.1111/j.1365-2613.2007.00564.x] [PMID: 18197872]
[39]
Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91(1): 327-87.
[http://dx.doi.org/10.1152/physrev.00047.2009] [PMID: 21248169]
[40]
Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5(3): 293-302.
[http://dx.doi.org/10.1161/01.ATV.5.3.293] [PMID: 3994585]
[41]
Butler PJ. Mechanobiology of dynamic enzyme systems. APL Bioeng 2020; 4(1): 010907.
[http://dx.doi.org/10.1063/1.5133645] [PMID: 32161834]
[42]
Saqr KM, Tupin S, Rashad S, et al. Physiologic blood flow is turbulent. Sci Rep 2020; 10(1): 15492.
[http://dx.doi.org/10.1038/s41598-020-72309-8] [PMID: 32968087]
[43]
Papaioannou TG, Stefanadis C. Vascular wall shear stress: Basic principles and methods. Hellenic J Cardiol 2005; 46(1): 9-15.
[PMID: 15807389]
[44]
Nigro P, Abe J, Berk BC. Flow shear stress and atherosclerosis: A matter of site specificity. Antioxid Redox Signal 2011; 15(5): 1405-14.
[http://dx.doi.org/10.1089/ars.2010.3679] [PMID: 21050140]
[45]
Ni CW, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 2010; 116(15): e66-73.
[http://dx.doi.org/10.1182/blood-2010-04-278192] [PMID: 20551377]
[46]
Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282(21): 2035-42.
[http://dx.doi.org/10.1001/jama.282.21.2035] [PMID: 10591386]
[47]
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75(3): 519-60.
[http://dx.doi.org/10.1152/physrev.1995.75.3.519] [PMID: 7624393]
[48]
Barakat AI. Blood flow and arterial endothelial dysfunction: Mechanisms and implications. C R Phys 2013; 14(6): 479-96.
[http://dx.doi.org/10.1016/j.crhy.2013.05.003]
[49]
Campinho P, Vilfan A, Vermot J. Blood flow forces in shaping the vascular system: A focus on endothelial cell behavior. Front Physiol 2020; 11: 552.
[http://dx.doi.org/10.3389/fphys.2020.00552] [PMID: 32581842]
[50]
Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 1981; 103(3): 177-85.
[http://dx.doi.org/10.1115/1.3138276] [PMID: 7278196]
[51]
Wechezak AR, Viggers RF, Sauvage LR. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab Invest 1985; 53(6): 639-47.
[PMID: 4068668]
[52]
White GE, Fujiwara K. Expression and intracellular distribution of stress fibers in aortic endothelium. J Cell Biol 1986; 103(1): 63-70.
[http://dx.doi.org/10.1083/jcb.103.1.63] [PMID: 3722269]
[53]
Langille BL, Graham JJ, Kim D, Gotlieb AI. Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler Thromb 1991; 11(6): 1814-20.
[http://dx.doi.org/10.1161/01.ATV.11.6.1814] [PMID: 1931883]
[54]
Wojciak-Stothard B, Ridley AJ. Shear stress–induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 2003; 161(2): 429-39.
[http://dx.doi.org/10.1083/jcb.200210135] [PMID: 12719476]
[55]
Noria S, Xu F, McCue S, Jones M, Gotlieb AI, Langille BL. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am J Pathol 2004; 164(4): 1211-23.
[http://dx.doi.org/10.1016/S0002-9440(10)63209-9] [PMID: 15039210]
[56]
Sriram K, Laughlin JG, Rangamani P, Tartakovsky DM. Shear-induced nitric oxide production by endothelial cells. Biophys J 2016; 111(1): 208-21.
[http://dx.doi.org/10.1016/j.bpj.2016.05.034] [PMID: 27410748]
[57]
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10: 1568.
[http://dx.doi.org/10.3389/fphar.2019.01568] [PMID: 32038245]
[58]
Boulanger CM. Endothelium. Arterioscler Thromb Vasc Biol 2016; 36(4): e26-31.
[http://dx.doi.org/10.1161/ATVBAHA.116.306940] [PMID: 27010027]
[59]
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci 2021; 22(8): 3850.
[http://dx.doi.org/10.3390/ijms22083850] [PMID: 33917744]
[60]
Linton MF, Yancey PG, Davies SS, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext. South Dartmouth (MA): MDText.com, Inc. 2000.
[61]
Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Front Cardiovasc Med 2021; 8: 707529.
[http://dx.doi.org/10.3389/fcvm.2021.707529] [PMID: 34552965]
[62]
Kotlyarov S. Diversity of lipid function in atherogenesis: A focus on endothelial mechanobiology. Int J Mol Sci 2021; 22(21): 11545.
[http://dx.doi.org/10.3390/ijms222111545] [PMID: 34768974]
[63]
Kotlyarov S. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Biomol Concepts 2022; 13(1): 34-54.
[http://dx.doi.org/10.1515/bmc-2022-0001] [PMID: 35189051]
[64]
Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 2005; 98(12): 845-56.
[http://dx.doi.org/10.1093/qjmed/hci136] [PMID: 16258026]
[65]
Rohatgi A. Reverse cholesterol transport and atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39(1): 2-4.
[http://dx.doi.org/10.1161/ATVBAHA.118.311978] [PMID: 30586333]
[66]
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol Rev 2020; 72(1): 152-90.
[http://dx.doi.org/10.1124/pr.119.017897] [PMID: 31831519]
[67]
Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364(2): 127-35.
[http://dx.doi.org/10.1056/NEJMoa1001689] [PMID: 21226578]
[68]
Wang J, Xiao Q, Wang L, Wang Y, Wang D, Ding H. Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12(6): 1010.
[http://dx.doi.org/10.3390/jpm12061010] [PMID: 35743794]
[69]
Yu XH, Tang CK. ABCA1, ABCG1, and cholesterol homeostasis. Adv Exp Med Biol 2022; 1377: 95-107.
[http://dx.doi.org/10.1007/978-981-19-1592-5_7] [PMID: 35575923]
[70]
Yvan-Charvet L, Welch C, Pagler TA, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: Free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 2008; 118(18): 1837-47.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.793869] [PMID: 18852364]
[71]
Iatan I, Alrasadi K, Ruel I, Alwaili K, Genest J. Effect of ABCA1 mutations on risk for myocardial infarction. Curr Atheroscler Rep 2008; 10(5): 413-26.
[http://dx.doi.org/10.1007/s11883-008-0064-5] [PMID: 18706283]
[72]
Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the human lipid exporter ABCA1. Cell 2017; 169(7): 1228-39. e1210
[http://dx.doi.org/10.1016/j.cell.2017.05.020]
[73]
Chai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Respir Res 2017; 18(1): 41.
[http://dx.doi.org/10.1186/s12931-017-0526-9] [PMID: 28241820]
[74]
Brunham LR, Singaraja RR, Hayden MR. Variations on a gene: Rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr 2006; 26(1): 105-29.
[http://dx.doi.org/10.1146/annurev.nutr.26.061505.111214] [PMID: 16704350]
[75]
Porchay I, Péan F, Bellili N, et al. ABCA1 single nucleotide polymorphisms on high-density lipoprotein-cholesterol and overweight: the D.E.S.I.R. study. Obesity 2006; 14(11): 1874-9.
[http://dx.doi.org/10.1038/oby.2006.217] [PMID: 17135600]
[76]
Mokuno J, Hishida A, Morita E, et al. ATP-binding cassette transporter A1 (ABCA1) R219K (G1051A, rs2230806) polymorphism and serum high-density lipoprotein cholesterol levels in a large Japanese population: Cross-sectional data from the Daiko Study. Endocr J 2015; 62(6): 543-9.
[http://dx.doi.org/10.1507/endocrj.EJ14-0577] [PMID: 25877294]
[77]
Shi Z, Tian Y, Zhao Z, et al. Association between the ABCA1 (R219K) polymorphism and lipid profiles: A meta-analysis. Sci Rep 2021; 11(1): 21718.
[http://dx.doi.org/10.1038/s41598-021-00961-9] [PMID: 34741058]
[78]
Karimian M, Momeni A, Farmohammadi A, Behjati M, Jafari M, Raygan F. Common gene polymorphism in ATP‐binding cassette transporter A1 and coronary artery disease: A genetic association study and a structural analysis. J Cell Biochem 2020; 121(5-6): 3345-57.
[http://dx.doi.org/10.1002/jcb.29606] [PMID: 31943326]
[79]
Wang F, Ji Y, Chen X, et al. ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease. J Clin Lab Anal 2019; 33(6): e22896.
[http://dx.doi.org/10.1002/jcla.22896] [PMID: 31006134]
[80]
Abdel-Razek O, Sadananda SN, Li X, Cermakova L, Frohlich J, Brunham LR. Increased prevalence of clinical and subclinical atherosclerosis in patients with damaging mutations in ABCA1 or APOA1. J Clin Lipidol 2018; 12(1): 116-21.
[http://dx.doi.org/10.1016/j.jacl.2017.10.010] [PMID: 29150341]
[81]
Song J, Jiang X, Cao Y, Juan J, Wu T, Hu Y. Interaction between an ATP-binding cassette A1 (ABCA1) variant and egg consumption for the risk of ischemic stroke and carotid atherosclerosis: A Family-based study in the Chinese Population. J Atheroscler Thromb 2019; 26(9): 835-45.
[http://dx.doi.org/10.5551/jat.46615] [PMID: 30828007]
[82]
Kyriakou T, Hodgkinson C, Pontefract DE, et al. Genotypic effect of the -565C>T polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25(2): 418-23.
[http://dx.doi.org/10.1161/01.ATV.0000149379.72018.20] [PMID: 15528481]
[83]
Cenarro A, Artieda M, Castillo S, et al. A common variant in the ABCA1 gene is associated with a lower risk for premature coronary heart disease in familial hypercholesterolaemia. J Med Genet 2003; 40(3): 163-8.
[http://dx.doi.org/10.1136/jmg.40.3.163] [PMID: 12624133]
[84]
Ghaznavi H, Aali E, Soltanpour MS. Association study of the ATP - Binding Cassette Transporter A1 (ABCA1) Rs2230806 genetic variation with lipid profile and coronary artery disease risk in an Iranian population. Open Access Maced J Med Sci 2018; 6(2): 274-9.
[http://dx.doi.org/10.3889/oamjms.2018.063] [PMID: 29531587]
[85]
Ceccanti M, Cambieri C, Frasca V, et al. A novel mutation in ABCA1 gene causing tangier disease in an Italian family with uncommon neurological presentation. Front Neurol 2016; 7: 185.
[http://dx.doi.org/10.3389/fneur.2016.00185] [PMID: 27853448]
[86]
Dash R, Ali MC, Rana ML, et al. Computational SNP analysis and molecular simulation revealed the most deleterious missense variants in the NBD1 domain of human ABCA1 transporter. Int J Mol Sci 2020; 21(20): 7606.
[http://dx.doi.org/10.3390/ijms21207606] [PMID: 33066695]
[87]
MacLeod MJ, De Lange RP, Breen G, Meiklejohn D, Lemmon H, St Clair D. Lack of association between apolipoprotein E genoype and ischaemic stroke in a Scottish population. Eur J Clin Invest 2001; 31(7): 570-3.
[http://dx.doi.org/10.1046/j.1365-2362.2001.00851.x] [PMID: 11454010]
[88]
Li J, Wang LF, Li ZQ, Pan W. Effect of R219K polymorphism of the ABCA1 gene on the lipid-lowering effect of pravastatin in Chinese patients with coronary heart disease. Clin Exp Pharmacol Physiol 2009; 36(5-6): 567-70.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05119.x] [PMID: 19673941]
[89]
Akao H, Polisecki E, Schaefer EJ, et al. ABCA1 gene variation and heart disease risk reduction in the elderly during pravastatin treatment. Atherosclerosis 2014; 235(1): 176-81.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.030] [PMID: 24854628]
[90]
Benton JL, Ding J, Tsai MY, et al. Associations between two common polymorphisms in the ABCA1 gene and subclinical atherosclerosis: Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2007; 193(2): 352-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.06.024] [PMID: 16879828]
[91]
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21(1): 250.
[http://dx.doi.org/10.1186/s12931-020-01515-9] [PMID: 32977800]
[92]
Matsuo M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J Pharmacol Sci 2022; 148(2): 197-203.
[http://dx.doi.org/10.1016/j.jphs.2021.11.005] [PMID: 35063134]
[93]
An F, Liu C, Wang X, et al. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc Disord 2021; 21(1): 78.
[http://dx.doi.org/10.1186/s12872-021-01894-x] [PMID: 33557767]
[94]
Guay SP, Légaré C, Houde AA, Mathieu P, Bossé Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenetics 2014; 6(1): 14.
[http://dx.doi.org/10.1186/1868-7083-6-14] [PMID: 25093045]
[95]
Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328(5985): 1566-9.
[http://dx.doi.org/10.1126/science.1189123] [PMID: 20466882]
[96]
Rayner KJ, Suárez Y, Dávalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328(5985): 1570-3.
[http://dx.doi.org/10.1126/science.1189862] [PMID: 20466885]
[97]
Horie T, Baba O, Kuwabara Y, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc 2012; 1(6): e003376-6.
[http://dx.doi.org/10.1161/JAHA.112.003376] [PMID: 23316322]
[98]
Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011; 121(7): 2921-31.
[http://dx.doi.org/10.1172/JCI57275] [PMID: 21646721]
[99]
Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478(7369): 404-7.
[http://dx.doi.org/10.1038/nature10486] [PMID: 22012398]
[100]
Rottiers V, Obad S, Petri A, et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci Transl Med 2013; 5(212): 212ra162.
[http://dx.doi.org/10.1126/scitranslmed.3006840]
[101]
Price NL, Rotllan N, Canfrán-Duque A, et al. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep 2017; 21(5): 1317-30.
[http://dx.doi.org/10.1016/j.celrep.2017.10.023] [PMID: 29091769]
[102]
Marquart TJ, Allen RM, Ory DS, Baldán Á. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010; 107(27): 12228-32.
[http://dx.doi.org/10.1073/pnas.1005191107] [PMID: 20566875]
[103]
Adlakha YK, Khanna S, Singh R, Singh VP, Agrawal A, Saini N. Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 2013; 4(8): e780-0.
[http://dx.doi.org/10.1038/cddis.2013.301] [PMID: 23990020]
[104]
Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis 2013; 4(3): e542-2.
[http://dx.doi.org/10.1038/cddis.2013.46] [PMID: 23492773]
[105]
Hu YW, Hu YR, Zhao JY, et al. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One 2014; 9(4): e94997-7.
[http://dx.doi.org/10.1371/journal.pone.0094997] [PMID: 24733347]
[106]
Wang Z, Zhang J, Zhang S, et al. MiR 30e and miR 92a are related to atherosclerosis by targeting ABCA1. Mol Med Rep 2019; 19(4): 3298-304.
[http://dx.doi.org/10.3892/mmr.2019.9983] [PMID: 30816508]
[107]
Tan L, Liu L, Jiang Z, Hao X. Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis. J Pharmacol Sci 2019; 139(4): 280-8.
[http://dx.doi.org/10.1016/j.jphs.2018.11.012] [PMID: 30850242]
[108]
Xu F, Shen L, Chen H, et al. circDENND1B participates in the antiatherosclerotic effect of IL-1β monoclonal antibody in mouse by promoting cholesterol Efflux via miR-17-5p/Abca1 Axis. Front Cell Dev Biol 2021; 9: 652032-2.
[http://dx.doi.org/10.3389/fcell.2021.652032] [PMID: 33996813]
[109]
Nguyen MA, Hoang HD, Rasheed A, et al. miR-223 exerts translational control of proatherogenic genes in macrophages. Circ Res 2022; 131(1): 42-58.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319120] [PMID: 35611698]
[110]
Wang J, Bai X, Song Q, et al. miR-223 inhibits lipid deposition and inflammation by suppressing toll-like receptor 4 signaling in macrophages. Int J Mol Sci 2015; 16(10): 24965-82.
[http://dx.doi.org/10.3390/ijms161024965] [PMID: 26492242]
[111]
Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 2012; 189(8): 4175-81.
[http://dx.doi.org/10.4049/jimmunol.1201516] [PMID: 22984082]
[112]
Zhang S, Li L, Wang J, et al. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516: 100-10.
[http://dx.doi.org/10.1016/j.cca.2021.01.019] [PMID: 33545111]
[113]
Liu L, Tan L, Yao J, Yang L. Long non coding RNA MALAT1 regulates cholesterol accumulation in ox LDL induced macrophages via the microRNA 17 5p/ABCA1 axis. Mol Med Rep 2020; 21(4): 1761-70.
[http://dx.doi.org/10.3892/mmr.2020.10987] [PMID: 32319624]
[114]
Zhou Q, Run Q, Li CY, Xiong XY, Wu XL. LncRNA MALAT1 promotes STAT3-mediated endothelial inflammation by counteracting the function of miR-590. Cytogenet Genome Res 2020; 160(10): 565-78.
[http://dx.doi.org/10.1159/000509811] [PMID: 33022677]
[115]
Zhao ZW, Zhang M, Liao LX, et al. Long non-coding RNA PCA3 inhibits lipid accumulation and atherosclerosis through the miR-140-5p/RFX7/ABCA1 axis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866(5): 158904.
[http://dx.doi.org/10.1016/j.bbalip.2021.158904] [PMID: 33578049]
[116]
Cai C, Zhu H, Ning X, et al. LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway. Atherosclerosis 2019; 285: 31-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.04.204] [PMID: 31003090]
[117]
Sangwung P, Zhou G, Nayak L, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2017; 2(4): e91700.
[http://dx.doi.org/10.1172/jci.insight.91700] [PMID: 28239661]
[118]
Atkins GB, Jain MK. Role of Krüppel-like transcription factors in endothelial biology. Circ Res 2007; 100(12): 1686-95.
[http://dx.doi.org/10.1161/01.RES.0000267856.00713.0a] [PMID: 17585076]
[119]
Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood 2002; 100(5): 1689-98.
[http://dx.doi.org/10.1182/blood-2002-01-0046] [PMID: 12176889]
[120]
Parmar KM, Larman HB, Dai G, et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 2005; 116(1): 49-58.
[http://dx.doi.org/10.1172/JCI24787] [PMID: 16341264]
[121]
Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 2007; 282(18): 13769-79.
[http://dx.doi.org/10.1074/jbc.M700078200] [PMID: 17339326]
[122]
Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 2005; 96(5): e48-57.
[http://dx.doi.org/10.1161/01.RES.0000159707.05637.a1] [PMID: 15718498]
[123]
SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 2004; 199(10): 1305-15.
[http://dx.doi.org/10.1084/jem.20031132] [PMID: 15136591]
[124]
Dekker RJ, Boon RA, Rondaij MG, et al. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 2006; 107(11): 4354-63.
[http://dx.doi.org/10.1182/blood-2005-08-3465] [PMID: 16455954]
[125]
Fledderus JO, van Thienen JV, Boon RA, et al. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 2007; 109(10): 4249-57.
[http://dx.doi.org/10.1182/blood-2006-07-036020] [PMID: 17244683]
[126]
Yoshida T, Yamashita M, Horimai C, Hayashi M. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury. J Am Heart Assoc 2014; 3(1): e000622.
[http://dx.doi.org/10.1161/JAHA.113.000622] [PMID: 24470523]
[127]
Zhang X, Wang L, Han Z, et al. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 2020; 17(1): 107.
[http://dx.doi.org/10.1186/s12974-020-01780-x] [PMID: 32264912]
[128]
Rasouli SJ, El-Brolosy M, Tsedeke AT, et al. The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 2018; 7: e38889.
[http://dx.doi.org/10.7554/eLife.38889] [PMID: 30592462]
[129]
Fontijn RD, Volger OL, van der Pouw-Kraan TC, et al. Expression of nitric oxide-transporting aquaporin-1 Is controlled by KLF2 and marks non-activated endothelium in vivo. PLoS One 2015; 10(12): e0145777.
[http://dx.doi.org/10.1371/journal.pone.0145777] [PMID: 26717516]
[130]
Lee JS, Yu Q, Shin JT, et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 2006; 11(6): 845-57.
[http://dx.doi.org/10.1016/j.devcel.2006.09.006] [PMID: 17141159]
[131]
Denis JF, Diagbouga MR, Molica F, et al. KLF4-induced connexin40 expression contributes to arterial endothelial quiescence. Front Physiol 2019; 10: 80.
[http://dx.doi.org/10.3389/fphys.2019.00080] [PMID: 30809154]
[132]
Hsieh PN, Zhou G, Yuan Y, et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat Commun 2017; 8(1): 914.
[http://dx.doi.org/10.1038/s41467-017-00899-5] [PMID: 29030550]
[133]
Sweet DR, Lam C, Jain MK. Evolutionary protection of krüppel-like factors 2 and 4 in the development of the mature hemovascular system. Front Cardiovasc Med 2021; 8: 645719.
[http://dx.doi.org/10.3389/fcvm.2021.645719] [PMID: 34079826]
[134]
Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32(4): 979-87.
[http://dx.doi.org/10.1161/ATVBAHA.111.244053] [PMID: 22267480]
[135]
Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, García-Cardeña G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 2010; 391(1): 984-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.002] [PMID: 19968965]
[136]
Wu W, Xiao H, Laguna-Fernandez A, et al. Flow-dependent regulation of krüppel-like factor 2 is mediated by MicroRNA-92a. Circulation 2011; 124(5): 633-41.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.005108] [PMID: 21768538]
[137]
Loyer X, Potteaux S, Vion AC, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 2014; 114(3): 434-43.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302213] [PMID: 24255059]
[138]
Chang YJ, Li YS, Wu CC, et al. Extracellular MicroRNA-92a mediates endothelial cell–macrophage communication. Arterioscler Thromb Vasc Biol 2019; 39(12): 2492-504.
[http://dx.doi.org/10.1161/ATVBAHA.119.312707] [PMID: 31597449]
[139]
Liu Y, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional MicroRNA-92a-3p into endothelial microvesicles. Circ Res 2019; 124(4): 575-87.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314010] [PMID: 30582459]
[140]
Napoli C, Ignarro LJ. Polymorphisms in endothelial nitric oxide synthase and carotid artery atherosclerosis. J Clin Pathol 2006; 60(4): 341-4.
[http://dx.doi.org/10.1136/jcp.2006.040550] [PMID: 16837626]
[141]
Cozma A, Fodor A, Orasan OH, et al. Pharmacogenetic implications of eNOS polymorphisms (Glu298Asp, T786C, 4b/4a) in cardiovascular drug therapy. In Vivo 2019; 33(4): 1051-8.
[http://dx.doi.org/10.21873/invivo.11573] [PMID: 31280192]
[142]
Antoniades C, Tousoulis D, Vasiliadou C, et al. Genetic polymorphisms G894T on the eNOS gene is associated with endothelial function and vWF levels in premature myocardial infarction survivors. Int J Cardiol 2006; 107(1): 95-100.
[http://dx.doi.org/10.1016/j.ijcard.2005.02.039] [PMID: 16337503]
[143]
Joshi MS, Mineo C, Shaul PW, Bauer JA. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB J 2007; 21(11): 2655-63.
[http://dx.doi.org/10.1096/fj.06-7088com] [PMID: 17449720]
[144]
Cam SF, Sekuri C, Tengiz I, et al. The G894T polymorphism on endothelial nitric oxide synthase gene is associated with premature coronary artery disease in a Turkish population. Thromb Res 2005; 116(4): 287-92.
[http://dx.doi.org/10.1016/j.thromres.2004.12.002] [PMID: 16038712]
[145]
Diakite B, Hamzi K, Slassi I, et al. G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco. Meta Gene 2014; 2: 349-57.
[http://dx.doi.org/10.1016/j.mgene.2014.04.003] [PMID: 25606419]
[146]
Nassereddine S, Idrissi H, Habbal R, et al. The polymorphism G894 T of endothelial nitric oxide synthase (eNOS) gene is associated with susceptibility to essential hypertension (EH) in Morocco. BMC Med Genet 2018; 19(1): 127.
[http://dx.doi.org/10.1186/s12881-018-0638-1] [PMID: 30053839]
[147]
Fatini C, Sofi F, Sticchi E, et al. eNOS G894T polymorphism as a mild predisposing factor for abdominal aortic aneurysm. J Vasc Surg 2005; 42(3): 415-9.
[http://dx.doi.org/10.1016/j.jvs.2005.05.044] [PMID: 16171581]
[148]
Shyu HY, Chen MH, Hsieh YH, et al. Association of eNOS and Cav-1 gene polymorphisms with susceptibility risk of large artery atherosclerotic stroke. PLoS One 2017; 12(3): e0174110.
[http://dx.doi.org/10.1371/journal.pone.0174110] [PMID: 28346478]
[149]
Abolhalaj M, Amoli MM, Amiri P. eNOS gene variant in patients with coronary artery disease. J Biomark 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/403783] [PMID: 26317015]
[150]
Vasilakou M, Votteas V, Kasparian C, et al. Lack of association between endothelial nitric oxide synthase gene polymorphisms and risk of premature coronary artery disease in the Greek population. Acta Cardiol 2008; 63(5): 609-14.
[http://dx.doi.org/10.2143/AC.63.5.2033229] [PMID: 19014005]
[151]
Qin J, Wang S, Xia C. microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3. J Thromb Thrombolysis 2018; 46(3): 275-82.
[http://dx.doi.org/10.1007/s11239-018-1684-4] [PMID: 29948755]
[152]
Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 2012; 60(6): 1407-14.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.197301] [PMID: 23108656]
[153]
Peng Q, Yin R, Zhu X, et al. miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE−/− mice. J Physiol Biochem 2022; 78(2): 365-75.
[http://dx.doi.org/10.1007/s13105-022-00871-y] [PMID: 35079982]
[154]
Yin R, Zhu X, Wang J, et al. MicroRNA-155 promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the ERK1/2 pathway in THP-1 macrophages and aggravates atherosclerosis in ApoE−/− mice. Ann Palliat Med 2019; 8(5): 676-89.
[http://dx.doi.org/10.21037/apm.2019.10.11] [PMID: 31865729]
[155]
Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2014; 34(4): 759-67.
[http://dx.doi.org/10.1161/ATVBAHA.113.302701] [PMID: 24504735]
[156]
Li X, Kong D, Chen H, et al. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep 2016; 6(1): 21789-9.
[http://dx.doi.org/10.1038/srep21789] [PMID: 26899994]
[157]
Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev 2016; 68(2): 357-418.
[http://dx.doi.org/10.1124/pr.115.011833] [PMID: 26956245]
[158]
Kowalczyk A, Kleniewska P, Kolodziejczyk M, Skibska B, Goraca A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp 2015; 63(1): 41-52.
[http://dx.doi.org/10.1007/s00005-014-0310-1] [PMID: 25288367]
[159]
Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 1993; 264(1 Pt 2): H150-6.
[http://dx.doi.org/10.1152/ajpheart.1993.264.1.H150] [PMID: 8381608]
[160]
Achmad HT, Rao GS. Chemotaxis of human blood monocytes toward endothelin-1 and the influence of calcium channel blockers. Biochem Biophys Res Commun 1992; 189(2): 994-1000.
[http://dx.doi.org/10.1016/0006-291X(92)92302-E] [PMID: 1472072]
[161]
Cunningham ME, Huribal M, Bala RJ, McMillen MA. Endothelin-1 and endothelin-4 stimulate monocyte production of cytokines. Crit Care Med 1997; 25(6): 958-64.
[http://dx.doi.org/10.1097/00003246-199706000-00011] [PMID: 9201047]
[162]
McMillen MA, Huribal M, Cunningham ME, Kumar R, Sumpio BE. Endothelin-1 increases intracellular calcium in human monocytes and causes production of interleukin-6. Crit Care Med 1995; 23(1): 34-40.
[http://dx.doi.org/10.1097/00003246-199501000-00009] [PMID: 8001384]
[163]
Vargas-Alarcon G, Vallejo M, Posadas-Romero C, et al. The −974C>A (rs3087459) gene polymorphism in the endothelin gene (EDN1) is associated with risk of developing acute coronary syndrome in Mexican patients. Gene 2014; 542(2): 258-62.
[http://dx.doi.org/10.1016/j.gene.2013.09.003] [PMID: 24035903]
[164]
Ahmed M, Rghigh A. Polymorphism in Endothelin-1 gene: An overview. Curr Clin Pharmacol 2016; 11(3): 191-210.
[http://dx.doi.org/10.2174/1574884711666160701000900] [PMID: 27397091]
[165]
Chalghoum A, Noichri Y, Dandana A, et al. Relationship between the A(8002)G intronic polymorphism of pre-pro-endothelin-1 gene and the endothelin-1 concentration among Tunisian coronary patients. BMC Cardiovasc Disord 2015; 15(1): 152.
[http://dx.doi.org/10.1186/s12872-015-0142-x] [PMID: 26573609]
[166]
Li D, Yang P, Xiong Q, et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens 2010; 28(8): 1646-54.
[http://dx.doi.org/10.1097/HJH.0b013e32833a4922] [PMID: 20531225]
[167]
Hao L, Wang X, Cheng J, et al. The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery. Cardiovasc Pathol 2014; 23(4): 217-23.
[http://dx.doi.org/10.1016/j.carpath.2014.03.009] [PMID: 24877885]
[168]
Li H, Sun B. Toll-like receptor 4 in atherosclerosis. J Cell Mol Med 2007; 11(1): 88-95.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00011.x] [PMID: 17367503]
[169]
Vink A, Schoneveld AH, van der Meer JJ, et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002; 106(15): 1985-90.
[http://dx.doi.org/10.1161/01.CIR.0000032146.75113.EE] [PMID: 12370224]
[170]
Edfeldt K, Swedenborg J, Hansson GK, Yan Z. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002; 105(10): 1158-61.
[http://dx.doi.org/10.1161/circ.105.10.1158] [PMID: 11889007]
[171]
Otsui K, Inoue N, Kobayashi S, et al. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 2007; 22(6): 416-22.
[http://dx.doi.org/10.1007/s00380-007-1001-1] [PMID: 18044001]
[172]
Sasu S, LaVerda D, Qureshi N, Golenbock DT, Beasley D. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 2001; 89(3): 244-50.
[http://dx.doi.org/10.1161/hh1501.094184] [PMID: 11485974]
[173]
Stoll LL, Denning GM, Li W-G, et al. Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: Expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. J Immun 2004; 173(2): 1336-43.
[http://dx.doi.org/10.4049/jimmunol.173.2.1336]
[174]
Faure E, Thomas L, Xu H, Medvedev AE, Equils O, Arditi M. Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 2001; 166(3): 2018-24.
[http://dx.doi.org/10.4049/jimmunol.166.3.2018] [PMID: 11160251]
[175]
Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001; 104(25): 3103-8.
[http://dx.doi.org/10.1161/hc5001.100631] [PMID: 11748108]
[176]
Ruysschaert JM, Lonez C. Role of lipid microdomains in TLRmediated signalling. Biochim Biophys Acta Biomembr 2015; 1848(9): 1860-7.
[http://dx.doi.org/10.1016/j.bbamem.2015.03.014]
[177]
Lai L, Azzam KM, Lin WC, et al. MicroRNA-33 regulates the innate immune response via atp binding cassette transporter-mediated remodeling of membrane microdomains. J Biol Chem 2016; 291(37): 19651-60.
[http://dx.doi.org/10.1074/jbc.M116.723056] [PMID: 27471270]
[178]
Takeishi Y, Kubota I. Role of Toll-like receptor mediated signaling pathway in ischemic heart. Front Biosci 2009; 14(7): 2553-8.
[http://dx.doi.org/10.2741/3397] [PMID: 19273219]
[179]
Kolek MJ, Carlquist JF, Muhlestein JB, et al. Toll–like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am Heart J 2004; 148(6): 1034-40.
[http://dx.doi.org/10.1016/j.ahj.2004.05.049] [PMID: 15632890]
[180]
Incalcaterra E, Caruso M, Balistreri CR, et al. Role of genetic polymorphisms in myocardial infarction at young age. Clin Hemorheol Microcirc 2010; 46(4): 291-8.
[http://dx.doi.org/10.3233/CH-2010-1353] [PMID: 21187577]
[181]
Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002; 347(3): 185-92.
[http://dx.doi.org/10.1056/NEJMoa012673] [PMID: 12124407]
[182]
Zee RYL, Hegener HH, Gould J, Ridker PM. Toll-like receptor 4 Asp299Gly gene polymorphism and risk of atherothrombosis. Stroke 2005; 36(1): 154-7.
[http://dx.doi.org/10.1161/01.STR.0000149948.31879.f0] [PMID: 15576653]
[183]
Koch W, Hoppmann P, Pfeufer A, Schömig A, Kastrati A. Toll-like receptor 4 gene polymorphisms and myocardial infarction: No association in a Caucasian population. Eur Heart J 2006; 27(21): 2524-9.
[http://dx.doi.org/10.1093/eurheartj/ehl231] [PMID: 16954131]
[184]
Nebel A, Flachsbart F, Schäfer A, et al. Role of the toll-like receptor 4 polymorphism Asp299Gly in longevity and myocardial infarction in German men. Mech Ageing Dev 2007; 128(5-6): 409-11.
[http://dx.doi.org/10.1016/j.mad.2007.04.001] [PMID: 17493663]
[185]
Džumhur A, Zibar L, Wagner J. Šimundić T, Dembić Z, Barbić J. Association studies of gene polymorphisms in toll-like receptors 2 and 4 in Croatian patients with acute myocardial infarction. Scand J Immunol 2012; 75(5): 517-23.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02681.x] [PMID: 22229967]
[186]
Zhou L, Zheng D, Wang S, et al. Genetic association of Toll-like receptor 4 gene and coronary artery disease in a Chinese Han population. Springerplus 2016; 5(1): 1533-3.
[http://dx.doi.org/10.1186/s40064-016-3177-2] [PMID: 27652106]
[187]
Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett 2011; 585(6): 854-60.
[http://dx.doi.org/10.1016/j.febslet.2011.02.009] [PMID: 21329689]
[188]
Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: Effect of renin–angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci 2010; 119(9): 395-405.
[http://dx.doi.org/10.1042/CS20100003] [PMID: 20524934]
[189]
Cheng HS, Sivachandran N, Lau A, et al. Micro RNA ‐146 represses endothelial activation by inhibiting pro‐inflammatory pathways. EMBO Mol Med 2013; 5(7): 1017-34.
[http://dx.doi.org/10.1002/emmm.201202318] [PMID: 23733368]
[190]
Jiang M, Xiang Y, Wang D, et al. Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell 2012; 11(1): 29-40.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00757.x] [PMID: 21981419]
[191]
Wang X, Sun Q, Hu W. Carvedilol protects against the H2O2-induced cell damages in rat myoblasts by regulating the Circ_NFIX/miR-125b-5p/TLR4 signal axis. J Cardiovasc Pharmacol 2021; 78(4): 604-14.
[http://dx.doi.org/10.1097/FJC.0000000000001095] [PMID: 34173813]
[192]
Curtale G, Renzi TA, Mirolo M, et al. Multi-step regulation of the TLR4 pathway by the miR-125a~99b~let-7e cluster. Front Immunol 2018; 9: 2037-7.
[http://dx.doi.org/10.3389/fimmu.2018.02037] [PMID: 30245693]
[193]
Subbarao K, Jala VR, Mathis S, et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol 2004; 24(2): 369-75.
[http://dx.doi.org/10.1161/01.ATV.0000110503.16605.15] [PMID: 14656734]
[194]
van den Borne P, van der Laan SW, Bovens SM, et al. Leukotriene B4 levels in human atherosclerotic plaques and abdominal aortic aneurysms. PLoS One 2014; 9(1): e86522-2.
[http://dx.doi.org/10.1371/journal.pone.0086522] [PMID: 24475136]
[195]
Fredman G, Hellmann J, Proto JD, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 2016; 7(1): 12859.
[http://dx.doi.org/10.1038/ncomms12859] [PMID: 27659679]
[196]
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573(1): 1-32.
[http://dx.doi.org/10.1016/j.gene.2015.07.073] [PMID: 26216303]
[197]
Ivanov I, Heydeck D, Hofheinz K, et al. Molecular enzymology of lipoxygenases. Arch Biochem Biophys 2010; 503(2): 161-74.
[http://dx.doi.org/10.1016/j.abb.2010.08.016] [PMID: 20801095]
[198]
Brock TG, Maydanski E, McNish RW, Peters-Golden M. Co-localization of leukotriene a4 hydrolase with 5-lipoxygenase in nuclei of alveolar macrophages and rat basophilic leukemia cells but not neutrophils. J Biol Chem 2001; 276(37): 35071-7.
[http://dx.doi.org/10.1074/jbc.M105676200] [PMID: 11451962]
[199]
Luo M, Jones SM, Peters-Golden M, Brock TG. Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B 4 synthetic capacity. Proc Natl Acad Sci USA 2003; 100(21): 12165-70.
[http://dx.doi.org/10.1073/pnas.2133253100] [PMID: 14530386]
[200]
Fredman G, Ozcan L, Spolitu S, et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc Natl Acad Sci USA 2014; 111(40): 14530-5.
[http://dx.doi.org/10.1073/pnas.1410851111] [PMID: 25246560]
[201]
Qiu H, Gabrielsen A, Agardh HE, et al. Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci 2006; 103(21): 8161-6.
[http://dx.doi.org/10.1073/pnas.0602414103] [PMID: 16698924]
[202]
Spanbroek R, Gräbner R, Lötzer K, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci 2003; 100(3): 1238-43.
[http://dx.doi.org/10.1073/pnas.242716099] [PMID: 12552108]
[203]
Cipollone F, Mezzetti A, Fazia ML, et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscler Thromb Vasc Biol 2005; 25(8): 1665-70.
[http://dx.doi.org/10.1161/01.ATV.0000172632.96987.2d] [PMID: 15933245]
[204]
Mehrabian M, Allayee H, Wong J, et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 2002; 91(2): 120-6.
[http://dx.doi.org/10.1161/01.RES.0000028008.99774.7F] [PMID: 12142344]
[205]
Mehrabian M, Schulthess FT, Nebohacova M, et al. Identification of ALOX5 as a gene regulating adiposity and pancreatic function. Diabetologia 2008; 51(6): 978-88.
[http://dx.doi.org/10.1007/s00125-008-1002-3] [PMID: 18421434]
[206]
Kain V, Halade GV. Abstract 14092: Arachidonate 5 lipoxygenase deficiency drives age-related obesity, macrophage dysfunction in cardiac repair, and omnipresence of inflammation. Circulation 2021; 144(S1): A14092-2.
[http://dx.doi.org/10.1161/circ.144.suppl_1.14092]
[207]
Blömer N, Pachel C, Hofmann U, et al. 5-Lipoxygenase facilitates healing after myocardial infarction. Basic Res Cardiol 2013; 108(4): 367-7.
[http://dx.doi.org/10.1007/s00395-013-0367-8] [PMID: 23812248]
[208]
Adamek A, Jung S, Dienesch C, et al. Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. Eur J Pharmacol 2007; 571(1): 51-4.
[http://dx.doi.org/10.1016/j.ejphar.2007.05.040] [PMID: 17586489]
[209]
Tsai MY, Cao J, Steffen BT, et al. 5‐lipoxygenase gene variants are not associated with atherosclerosis or incident coronary heart disease in the multi‐ethnic study of atherosclerosis Cohort. J Am Heart Assoc 2016; 5(3): e002814.
[http://dx.doi.org/10.1161/JAHA.115.002814] [PMID: 27025886]
[210]
Maznyczka A, Braund P, Mangino M, Samani NJ. Arachidonate 5-lipoxygenase (5-LO) promoter genotype and risk of myocardial infarction: A case–control study. Atherosclerosis 2008; 199(2): 328-32.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.11.027] [PMID: 18179798]
[211]
González P, Reguero JR, Lozano I, Morís C, Coto E. A functional Sp1/Egr1-tandem repeat polymorphism in the 5-lipoxygenase gene is not associated with myocardial infarction. Int J Immunogenet 2007; 34(2): 127-30.
[http://dx.doi.org/10.1111/j.1744-313X.2007.00671.x] [PMID: 17373938]
[212]
Carlson CS, Heagerty PJ, Nord AS, et al. TagSNP evaluation for the association of 42 inflammation loci and vascular disease: evidence of IL6, FGB, ALOX5, NFKBIA, and IL4R loci effects. Hum Genet 2007; 121(1): 65-75.
[http://dx.doi.org/10.1007/s00439-006-0289-8] [PMID: 17115186]
[213]
Dwyer JH, Allayee H, Dwyer KM, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 2004; 350(1): 29-37.
[http://dx.doi.org/10.1056/NEJMoa025079] [PMID: 14702425]
[214]
Dincbas-Renqvist V, Pépin G, Rakonjac M, et al. Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochim Biophys Acta Gene Regul Mech 2009; 1789(2): 99-108.
[http://dx.doi.org/10.1016/j.bbagrm.2008.10.002] [PMID: 19022417]
[215]
Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: Regulation of expression and enzyme activity. Trends Biochem Sci 2007; 32(7): 332-41.
[http://dx.doi.org/10.1016/j.tibs.2007.06.002] [PMID: 17576065]
[216]
Uebbing S, Kreiß M, Scholl F, et al. Modulation of microRNA processing by 5‐lipoxygenase. FASEB J 2021; 35(2): e21193.
[http://dx.doi.org/10.1096/fj.202002108R] [PMID: 33205517]
[217]
Pan Q, Ma C, Wang Y, et al. Microvesicles‐mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR‐125a‐5p. J Cell Biochem 2019; 120(3): 3160-72.
[http://dx.doi.org/10.1002/jcb.27581] [PMID: 30272818]
[218]
Wang J, Wu Q, Yu J, Cao X, Xu Z. miR 125a 5p inhibits the expression of NLRP3 by targeting CCL4 in human vascular smooth muscle cells treated with ox LDL. Exp Ther Med 2019; 18(3): 1645-52.
[http://dx.doi.org/10.3892/etm.2019.7717] [PMID: 31410121]
[219]
Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009; 83(1): 131-9.
[http://dx.doi.org/10.1093/cvr/cvp121] [PMID: 19377067]
[220]
Pan Q, Liao X, Liu H, et al. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am J Physiol Cell Physiol 2017; 312(2): C119-30.
[http://dx.doi.org/10.1152/ajpcell.00296.2016] [PMID: 27903586]
[221]
Busch S, Auth E, Scholl F, et al. 5-Lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J Immunol 2015; 194(4): 1646-53.
[http://dx.doi.org/10.4049/jimmunol.1402163] [PMID: 25589070]
[222]
Jia K, Shi P, Han X, Chen T, Tang H, Wang J. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep 2016; 14(1): 184-94.
[http://dx.doi.org/10.3892/mmr.2016.5246] [PMID: 27176713]
[223]
Araujo NNF, Lin-Wang HT, Germano JF, et al. Dysregulation of microRNAs and target genes networks in human abdominal aortic aneurysm tissues. PLoS One 2019; 14(9): e0222782.
[http://dx.doi.org/10.1371/journal.pone.0222782] [PMID: 31539405]
[224]
Wang W, Wang Y, Piao H, et al. Bioinformatics analysis reveals MicroRNA-193a-3p regulates ACTG2 to control phenotype switch in human vascular smooth muscle cells. Front Genet 2021; 11: 572707.
[http://dx.doi.org/10.3389/fgene.2020.572707] [PMID: 33510768]
[225]
Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. MicroRNAs in resolution of acute inflammation: Identification of novel resolvin Dl‐miRNA circuits. FASEB J 2011; 25(2): 544-60.
[http://dx.doi.org/10.1096/fj.10-169599] [PMID: 20956612]
[226]
Ochs MJ, Steinhilber D, Suess B. MicroRNA involved in inflammation: Control of eicosanoid pathway. Front Pharmacol 2011; 2: 39-9.
[http://dx.doi.org/10.3389/fphar.2011.00039] [PMID: 21811464]
[227]
Fredman G, Li Y, Dalli J, Chiang N, Serhan CN. Self-limited versus delayed resolution of acute inflammation: Temporal regulation of pro-resolving mediators and microRNA. Sci Rep 2012; 2(1): 639-9.
[http://dx.doi.org/10.1038/srep00639] [PMID: 22957142]
[228]
Ouimet M, Ediriweera HN, Gundra UM, et al. MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 2015; 125(12): 4334-48.
[http://dx.doi.org/10.1172/JCI81676] [PMID: 26517695]
[229]
Runtsch MC, Nelson MC, Lee SH, et al. Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease. PLoS Genet 2019; 15(2): e1007970.
[http://dx.doi.org/10.1371/journal.pgen.1007970] [PMID: 30768595]
[230]
Duroux-Richard I, Roubert C, Ammari M, et al. miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 2016; 128(26): 3125-36.
[http://dx.doi.org/10.1182/blood-2016-02-697003] [PMID: 27702798]
[231]
Chaudhuri AA, So AYL, Sinha N, et al. MicroRNA-125b potentiates macrophage activation. J Immunol 2011; 187(10): 5062-8.
[http://dx.doi.org/10.4049/jimmunol.1102001] [PMID: 22003200]
[232]
Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 2021; 22(1): 485-96.
[http://dx.doi.org/10.1093/bib/bbz159] [PMID: 31927572]
[233]
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23(5): bbac358.
[http://dx.doi.org/10.1093/bib/bbac358] [PMID: 36056743]
[234]
Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2019; 20(2): 515-39.
[http://dx.doi.org/10.1093/bib/bbx130] [PMID: 29045685]
[235]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[236]
Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 2016; 44(W1): W135-41.
[http://dx.doi.org/10.1093/nar/gkw288] [PMID: 27105848]
[237]
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127-31.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[238]
McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science 2019; 366(6472): eaav1741.
[http://dx.doi.org/10.1126/science.aav1741] [PMID: 31806698]
[239]
Huang HY, Lin YCD, Cui S, et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2022; 50(D1): D222-30.
[http://dx.doi.org/10.1093/nar/gkab1079] [PMID: 34850920]
[240]
Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res 2011; 39(S1): D146-51.
[http://dx.doi.org/10.1093/nar/gkq1138] [PMID: 21112873]
[241]
Zhao L, Wang J, Li Y, et al. NONCODEV6: An updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res 2021; 49(D1): D165-71.
[http://dx.doi.org/10.1093/nar/gkaa1046] [PMID: 33196801]
[242]
Volders PJ, Anckaert J, Verheggen K, et al. LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res 2019; 47(D1): D135-9.
[http://dx.doi.org/10.1093/nar/gky1031] [PMID: 30371849]
[243]
Seifuddin F, Singh K, Suresh A, et al. lncRNAKB, a knowledgebase of tissue-specific functional annotation and trait association of long noncoding RNA. Sci Data 2020; 7(1): 326.
[http://dx.doi.org/10.1038/s41597-020-00659-z] [PMID: 33020484]
[244]
Li Z, Liu L, Jiang S, et al. LncExpDB: An expression database of human long non-coding RNAs. Nucleic Acids Res 2021; 49(D1): D962-8.
[http://dx.doi.org/10.1093/nar/gkaa850] [PMID: 33045751]
[245]
Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q, Dong D. LncRNADisease 2.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 2019; 47(D1): D1034-7.
[http://dx.doi.org/10.1093/nar/gky905] [PMID: 30285109]
[246]
Zhou B, Ji B, Liu K, et al. EVLncRNAs 2.0: An updated database of manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 2021; 49(D1): D86-91.
[http://dx.doi.org/10.1093/nar/gkaa1076] [PMID: 33221906]
[247]
Gao Y, Li X, Shang S, et al. LincSNP 3.0: An updated database for linking functional variants to human long non-coding RNAs, circular RNAs and their regulatory elements. Nucleic Acids Res 2021; 49(D1): D1244-50.
[http://dx.doi.org/10.1093/nar/gkaa1037] [PMID: 33219661]
[248]
Wu W, Ji P, Zhao F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 2020; 21(1): 101.
[http://dx.doi.org/10.1186/s13059-020-02018-y] [PMID: 32345360]
[249]
Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol 2019; 16(7): 899-905.
[http://dx.doi.org/10.1080/15476286.2019.1600395] [PMID: 31023147]
[250]
Nunnally MH, Stull JT. Mammalian skeletal muscle myosin light chain kinases. A comparison by antiserum cross-reactivity. J Biol Chem 1984; 259(3): 1776-80.
[http://dx.doi.org/10.1016/S0021-9258(17)43475-2] [PMID: 6546381]
[251]
Zhang W, Liu Y, Min Z, et al. circMine: A comprehensive database to integrate, analyze and visualize human disease–related circRNA transcriptome. Nucleic Acids Res 2022; 50(D1): D83-92.
[http://dx.doi.org/10.1093/nar/gkab809] [PMID: 34530446]
[252]
Rophina M, Sharma D, Poojary M, Scaria V. Circad: A comprehensive manually curated resource of circular RNA associated with diseases. Database 2020; 2020: baaa019.
[http://dx.doi.org/10.1093/database/baaa019]
[253]
Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics 2018; 16(4): 226-33.
[http://dx.doi.org/10.1016/j.gpb.2018.08.001] [PMID: 30172046]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy