Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Trends on Production Sources, Biosynthesis Pathways and Antiviral Efficacies of Artemisinin: A Candidate Phytomedicine against SARS-CoV-2

Author(s): Adil Hussain*

Volume 24, Issue 15, 2023

Published on: 10 May, 2023

Page: [1859 - 1880] Pages: 22

DOI: 10.2174/1389201024666230327082051

Price: $65

Abstract

Background: Artemisinin is a lactone sesquiterpenoid with an endo-peroxide bridge in the 1, 2, 3-trioxane structure employed for the treatment and management of lethal viral diseases. In the current review, emphasis has been given on the production of artemisinin from natural sources with biosynthesis pathways and potential antiviral activity.

Methods: A wide-ranging inquiry on artemisinin was made electronically on the basis of articles published in peer-reviewed journals, abstracts, published in conference proceedings, government reports, preprints, books, Master’s and Ph.D. theses, etc. The research was carried out in different International scientific databases like Academic Search, Biological Abstracts, BIOSIS, BioOne Previews, CabDirect, Cochrane Library, Pubmed/Medline, GeoRef, Google Scholar, JSTOR, Journal Citation Reports, Mendeley, Publons, Researchgate, Scopus, SciELO, Springer Link, Science Direct, Web of Science, Taylor and Francis with particular keywords.

Results: The evidence reviewed here indicates that out of the hundreds of species of the genus Artemisia mentioned in the literature, only 37 Artemisia species are reported to possess artemisinin naturally in their extracts with variable concentrations. This review further discusses the biosynthesis pathways and antiviral activities of artemisinin and its derivatives which have been used against more than 12 viral disease categories.

Conclusion: On the whole, it is concluded that the primary natural sources of artemisinin and its derivatives are the Artemisia plants with antiviral activity, which are essential candidates for drug development against SARS-CoV-2 mainly from those Artemisia species screened for SARS-CoV- 2 infection.

Graphical Abstract

[1]
Hudson, J.B. Antiviral compounds from plants; CRC Press: Boca Raton, FL, 1990.
[2]
Soylu, E.M.; Kurt, Ş.; Soylu, S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol., 2010, 143(3), 183-189.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.08.015] [PMID: 20826038]
[3]
Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Comp. Alt. Med, 2016, 2016, 3012462.
[4]
De Logu, A.; Loy, G.; Pellerano, M.L.; Bonsignore, L.; Schivo, M.L. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Res., 2000, 48(3), 177-185.
[http://dx.doi.org/10.1016/S0166-3542(00)00127-3] [PMID: 11164504]
[5]
Baqui, A.A.M.A.; Kelley, J.I.; Jabra-Rizk, M.A.; DePaola, L.G.; Falkler, W.A.; Meiller, T.F. In vitro effect of oral antiseptics on human immunodeficiency virus-1 and herpes simplex virus type 1. J. Clin. Periodontol., 2001, 28(7), 610-616.
[http://dx.doi.org/10.1034/j.1600-051x.2001.028007610.x] [PMID: 11422581]
[6]
Schnitzler, P.; Schön, K.; Reichling, J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie, 2001, 56(4), 343-347.
[PMID: 11338678]
[7]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological cctivities: A critical review. Medicines, 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[8]
Kwon, H.J.; Kim, H.H.; Yoon, S.Y.; Ryu, Y.B.; Chang, J.S.; Cho, K.O.; Rho, M.C.; Park, S.J.; Lee, W.S. In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. Virol. J., 2010, 7(1), 307.
[http://dx.doi.org/10.1186/1743-422X-7-307] [PMID: 21062499]
[9]
Zandi, K.; Taherzadeh, M.; Yaghoubi, R.; Tajbakhsh, S.; Rastian, Z.; Sartavi, K. Antiviral activity of Avicennia marina against herpes simplex virus type 1 and vaccine strain of poliovirus (An in vitro study). J. Med. Plants Res., 2009, 3, 771-775.
[10]
Bremer, K.; Humphries, C. Generic monograph of the Asteraceae-Anthemideae. Bull. Nat. His. Mus., 1993, 23, 71-177.
[11]
Oberprieler, C.H.; Himmelreich, S.; Källersjö, M.; Vallès, J.; Watson, L.E.; Vogt, R. Tribe Anthemideae. In: Systematics, evolution and biogeography of the Compositae; , 2009; pp. 632-666.
[12]
Tu, Y.Y.; Ni, M.Y.; Zhong, Y.R.; Li, L.N.; Cui, S.L.; Zhang, M.Q.; Wang, X.Z.; Liang, X.T. [Studies on the constituents of Artemisia annua L. (author’s transl)]. Yao Xue Xue Bao, 1981, 16(5), 366-370.
[PMID: 7246183]
[13]
Daddy, N.B.; Kalisya, L.M.; Bagire, P.G.; Watt, R.L.; Towler, M.J.; Weathers, P.J. Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: Case reports. Phytomedicine, 2017, 32, 37-40.
[http://dx.doi.org/10.1016/j.phymed.2017.04.006] [PMID: 28732806]
[14]
Mutabingwa, T.K. Artemisinin-based combination therapies (ACTs): Best hope for malaria treatment but inaccessible to the needy! Acta Trop., 2005, 95(3), 305-315.
[http://dx.doi.org/10.1016/j.actatropica.2005.06.009] [PMID: 16098946]
[15]
Li, J.; Zhou, B. Biological actions of artemisinin: Insights from medicinal chemistry studies. Molecules, 2010, 15(3), 1378-1397.
[http://dx.doi.org/10.3390/molecules15031378] [PMID: 20335987]
[16]
Mojarrab, M.; Naderi, R.; Heshmati Afshar, F. Screening of different extracts from Artemisia species for their potential antimalarial activity. Iran. J. Pharm. Res., 2015, 14(2), 603-608.
[PMID: 25901169]
[17]
Covello, P.S. Making artemisinin. Phytochemistry, 2008, 69(17), 2881-2885.
[http://dx.doi.org/10.1016/j.phytochem.2008.10.001] [PMID: 18977499]
[18]
Ikram, N.K.B.K.; Simonsen, H.T. A review of biotechnological artemisin production in plants. Front. Plant Sci., 2017, 8, 1966.
[http://dx.doi.org/10.3389/fpls.2017.01966] [PMID: 29187859]
[19]
Nganthoi, M.; Sanatombi, K. Artemisinin content and DNA profiling of Artemisia species of Manipur. S. Afr. J. Bot., 2019, 125, 9-15.
[http://dx.doi.org/10.1016/j.sajb.2019.06.027]
[20]
Terra, D.A.; Amorim, L.F.; Catanho, M.T.J.A.; Fonseca, A.S.; Santos-Filho, S.D.; Brandão-Neto, J.; Medeiros, A.C.; Bernardo-Filho, M. Effect of an extract of Artemisia vulgaris L. (Mugwort) on the in vitro labeling of red blood cells and plasma proteins with technetium-99m. Braz. Arch. Biol. Technol., 2007, 50(spe), 123-128.
[http://dx.doi.org/10.1590/S1516-89132007000600015]
[21]
Mannan, A.; Ahmed, I.; Arshad, W.; Asim, M.F.; Qureshi, R.A.; Hussain, I.; Mirza, B. Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malar. J., 2010, 9(1), 310.
[http://dx.doi.org/10.1186/1475-2875-9-310] [PMID: 21047440]
[22]
Koul, B.; Taak, P.; Kumar, A.; Khatri, T. The Artemisia genus: A review on traditional uses, phytochemical constituents, pharmacological properties and germplasm conservation. J. Glycomics Lipidomics, 2018, 7(1), 1-7.
[http://dx.doi.org/10.4172/2153-0637.1000142]
[23]
Hussain, A.; Hayat, M.Q.; Sahreen, S.; Ain, Q.U.; Bokhari, S.A.I. Pharmacological promises of Genus Artemisia (Asteraceae): A review. Proceed. Pak. Acad. Sci: B. Life Environ. Sci., 2017, 54, 265-287.
[24]
Pandey, A.K.; Singh, P. The genus Artemisia: a 2012–2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines, 2017, 4(3), 68.
[http://dx.doi.org/10.3390/medicines4030068] [PMID: 28930281]
[25]
Mohammed, M.J.; Anand, U.; Altemimi, A.B.; Tripathi, V.; Guo, Y.; Pratap-Singh, A. Phenolic composition, antioxidant capacity and antibacterial activity of whitewormwood (Artemisia herbaalba). Plants, 2021, 10(1), 164.
[http://dx.doi.org/10.3390/plants10010164] [PMID: 33467047]
[26]
Barradell, L.B.; Fitton, A. Artesunate. Drugs, 1995, 50(4), 714-741.
[http://dx.doi.org/10.2165/00003495-199550040-00009] [PMID: 8536555]
[27]
Efferth, T. Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnol. Adv., 2018, 36(6), 1730-1737.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.001] [PMID: 29305894]
[28]
Efferth, T.; Marschall, M.; Wang, X.; Huong, S.M.; Hauber, I.; Olbrich, A.; Kronschnabl, M.; Stamminger, T.; Huang, E.S. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J. Mol. Med., 2002, 80(4), 233-242.
[http://dx.doi.org/10.1007/s00109-001-0300-8] [PMID: 11976732]
[29]
Romero, M.R.; Efferth, T.; Serrano, M.A.; Castaño, B.; Macias, R.I.R.; Briz, O.; Marin, J.J.G. Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antiviral Res., 2005, 68(2), 75-83.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.005] [PMID: 16122816]
[30]
Naesens, L.; Bonnafous, P.; Agut, H.; De Clercq, E. Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts. J. Clin. Virol., 2006, 37(Suppl. 1), S69-S75.
[http://dx.doi.org/10.1016/S1386-6532(06)70015-4] [PMID: 17276373]
[31]
Romero, M.; Serrano, M.; Vallejo, M.; Efferth, T.; Alvarez, M.; Marin, J. Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med., 2006, 72(13), 1169-1174.
[http://dx.doi.org/10.1055/s-2006-947198] [PMID: 16902856]
[32]
Arav-Boger, R.; He, R.; Chiou, C.J.; Liu, J.; Woodard, L.; Rosenthal, A.; Jones-Brando, L.; Forman, M.; Posner, G. Artemisinin-derived dimers have greatly improved anti-cytomegalovirus activity compared to artemisinin monomers. PLoS One, 2010, 5(4), e10370.
[http://dx.doi.org/10.1371/journal.pone.0010370] [PMID: 20442781]
[33]
Chou, S.; Marousek, G.; Auerochs, S.; Stamminger, T.; Milbradt, J.; Marschall, M. The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Res., 2011, 92(2), 364-368.
[http://dx.doi.org/10.1016/j.antiviral.2011.07.018] [PMID: 21843554]
[34]
Schnepf, N.; Corvo, J.; Pors, M.J.S.L.; Mazeron, M.C. Antiviral activity of ganciclovir and artesunate towards human cytomegalovirus in astrocytoma cells. Antiviral Res., 2011, 89(2), 186-188.
[http://dx.doi.org/10.1016/j.antiviral.2010.12.002] [PMID: 21167209]
[35]
He, R.; Mott, B.T.; Rosenthal, A.S.; Genna, D.T.; Posner, G.H.; Arav-Boger, R. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-cancer activities. PLoS One, 2011, 6(8), e24334.
[http://dx.doi.org/10.1371/journal.pone.0024334] [PMID: 21904628]
[36]
Lubbe, A.; Seibert, I.; Klimkait, T.; van der Kooy, F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of Artemisia annua. J. Ethnopharmacol., 2012, 141(3), 854-859.
[http://dx.doi.org/10.1016/j.jep.2012.03.024] [PMID: 22465592]
[37]
Blazquez, A.G.; Fernandez-Dolon, M.; Sanchez-Vicente, L.; Maestre, A.D.; Gomez-San Miguel, A.B.; Alvarez, M.; Serrano, M.A.; Jansen, H.; Efferth, T.; Marin, J.J.G.; Romero, M.R. Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg. Med. Chem., 2013, 21(14), 4432-4441.
[http://dx.doi.org/10.1016/j.bmc.2013.04.059] [PMID: 23685181]
[38]
He, R.; Forman, M.; Mott, B.T.; Venkatadri, R.; Posner, G.H.; Arav-Boger, R. Unique and highly selective anticytomegalovirus activities of artemisinin-derived dimer diphenyl phosphate stem from combination of dimer unit and a diphenyl phosphate moiety. Antimicrob. Agents Chemother., 2013, 57(9), 4208-4214.
[http://dx.doi.org/10.1128/AAC.00893-13] [PMID: 23774439]
[39]
Obeid, S.; Alen, J.; Nguyen, V.H.; Pham, V.C.; Meuleman, P.; Pannecouque, C.; Le, T.N.; Neyts, J.; Dehaen, W.; Paeshuyse, J. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS One, 2013, 8(12), e81783.
[http://dx.doi.org/10.1371/journal.pone.0081783] [PMID: 24349127]
[40]
Mott, B.T.; He, R.; Chen, X.; Fox, J.M.; Civin, C.I.; Arav-Boger, R.; Posner, G.H. Artemisinin-derived dimer phosphate esters as potent anti-cytomegalovirus (anti-CMV) and anti-cancer agents: A structure–activity study. Bioorg. Med. Chem., 2013, 21(13), 3702-3707.
[http://dx.doi.org/10.1016/j.bmc.2013.04.027] [PMID: 23673218]
[41]
Cai, H.; Kapoor, A.; He, R.; Venkatadri, R.; Forman, M.; Posner, G.H.; Arav-Boger, R. In vitro combination of anti-cytomegalovirus compounds acting through different targets: Role of the slope parameter and insights into mechanisms of Action. Antimicrob. Agents Chemother., 2014, 58(2), 986-994.
[http://dx.doi.org/10.1128/AAC.01972-13] [PMID: 24277030]
[42]
Flobinus, A.; Taudon, N.; Desbordes, M.; Labrosse, B.; Simon, F.; Mazeron, M.C.; Schnepf, N. Stability and antiviral activity against human cytomegalovirus of artemisinin derivatives. J. Antimicrob. Chemother., 2014, 69(1), 34-40.
[http://dx.doi.org/10.1093/jac/dkt346] [PMID: 24003183]
[43]
Mondal, A.; Chatterji, U. Artemisinin represses telomerase subunits and induces apoptosis in HPV-39 infected human cervical cancer cells. J. Cell. Biochem., 2015, 116(9), 1968-1981.
[http://dx.doi.org/10.1002/jcb.25152] [PMID: 25755006]
[44]
Morère, L.; Andouard, D.; Labrousse, F.; Saade, F.; Calliste, C.A.; Cotin, S.; Aubard, Y.; Rawlinson, W.D.; Esclaire, F.; Hantz, S.; Ploy, M.C.; Alain, S. Ex vivo model of congenital cytomegalovirus infection and new combination therapies. Placenta, 2015, 36(1), 41-47.
[http://dx.doi.org/10.1016/j.placenta.2014.11.003] [PMID: 25479789]
[45]
Cao, R.; Hu, H.; Li, Y.; Wang, X.; Xu, M.; Liu, J.; Zhang, H.; Yan, Y.; Zhao, L.; Li, W.; Zhang, T.; Xiao, D.; Guo, X.; Li, Y.; Yang, J.; Hu, Z.; Wang, M.; Zhong, W. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis., 2020, 6(9), 2524-2531.
[http://dx.doi.org/10.1021/acsinfecdis.0c00522] [PMID: 32786284]
[46]
Tomic, N.; Pojskic, L.; Kalajdzic, A.; Ramic, J.; Kadric, N.L.; Ikanovic, T. Screening of preferential binding affinity of selected natural compounds to SARS-CoV-2 proteins using in silico methods. EJMO, 2020, 4(4), 319-323.
[47]
Dogan, K.; Erol, E.; Orhan, M.D.; Degirmenci, Z.; Kan, T.; Gungor, A. Instant determination of the artemisinin from various Artemisia annua L. extracts by LC-ESI-MS/MS and their in-silico modelling and in vitro antiviral activity studies against SARS-CoV2. Phytochem. Anal., 2021, 1-17.
[PMID: 34585460]
[48]
Zhou, Y.; Gilmore, K.; Ramirez, S.; Settels, E.; Gammeltoft, K.A.; Pham, L.V.; Fahnøe, U.; Feng, S.; Offersgaard, A.; Trimpert, J.; Bukh, J.; Osterrieder, K.; Gottwein, J.M.; Seeberger, P.H. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci. Rep., 2021, 11(1), 14571.
[http://dx.doi.org/10.1038/s41598-021-93361-y] [PMID: 34272426]
[49]
Jang, E.; Kim, B.J.; Lee, K.T.; Inn, K.S.; Lee, J.H. A survey of therapeutic effects of Artemisia capillaris in liver diseases. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/728137] [PMID: 26366183]
[50]
Pellicer, J.; Saslis-Lagoudakis, C.H.; Carrió, E.; Ernst, M.; Garnatje, T.; Grace, O.M.; Gras, A.; Mumbrú, M.; Vallès, J.; Vitales, D.; Rønsted, N. A phylogenetic road map to antimalarial Artemisia species. J. Ethnopharmacol., 2018, 225, 1-9.
[http://dx.doi.org/10.1016/j.jep.2018.06.030] [PMID: 29936053]
[51]
Xie, D.Y.; Ma, D.M.; Judd, R.; Jones, A.L. Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives. Phytochem. Rev., 2016, 15(6), 1093-1114.
[http://dx.doi.org/10.1007/s11101-016-9480-2]
[52]
Tu, Y.; Yin, J.; Ji, L.; Huang, M.; Liang, X. Studies on the constituents of Artemisia annua L. (III). Chin. Tradit. Herbal Drugs, 1985, 16, 200-201.
[53]
Tu, Y. Artemisinin - a gift from tradicional Chinese medicine to the World (Nobel Lecture). Angew. Chem. Int. Ed., 2016, 55(35), 10210-10226.
[http://dx.doi.org/10.1002/anie.201601967] [PMID: 27488942]
[54]
Tu, Y. From Artemisia annua L. to artemisinins: The discovery and development of artemisinins and antimalarial agents. 2017.
[55]
Mannan, A.; Shaheen, N.; Arshad, W.; Qureshi, R.A.; Zia, M.; Mirza, B. Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica. Afr. J. Biotechnol., 2008, 7, 3288-3292.
[56]
Normile, D. Nobel for antimalarial drug highlights East-West divide (265–265). Science, 2015, 350.
[57]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[http://dx.doi.org/10.1038/nm.2471] [PMID: 21989013]
[58]
Li, Y.; Wu, J.M.; Shan, F.; Wu, G.S.; Ding, J.; Xiao, D.; Han, J.X.; Atassi, G.; Leonce, S.; Caignard, D.H.; Renard, P. Synthesis and cytotoxicity of dihydroartemisinin ethers containing cyanoarylmethyl group. Bioorg. Med. Chem., 2003, 11(6), 977-984.
[http://dx.doi.org/10.1016/S0968-0896(02)00538-2] [PMID: 12614882]
[59]
Dandan, Z.; Jianjiang, Z. Two cytotoxic sesquiterpenes from hairy root cultures of Artemisia annua L. induced apoptosis of highly metastatic lung carcinoma cell line 95-D. J. Biosci. Bioeng., 2009, 108, S24-S25.
[http://dx.doi.org/10.1016/j.jbiosc.2009.08.108]
[60]
Zhai, D.D.; Supaibulwatana, K.; Zhong, J.J. Inhibition of tumor cell proliferation and induction of apoptosis in human lung carcinoma 95-D cells by a new sesquiterpene from hairy root cultures of Artemisia annua. Phytomedicine, 2010, 17(11), 856-861.
[http://dx.doi.org/10.1016/j.phymed.2010.02.008] [PMID: 20362422]
[61]
Fu, C.; Yu, P.; Wang, M.; Qiu, F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem., 2020, 312, 126070.
[http://dx.doi.org/10.1016/j.foodchem.2019.126070] [PMID: 31911352]
[62]
Nam, W.; Tak, J.; Ryu, J.K.; Jung, M.; Yook, J.I.; Kim, H.J.; Cha, I.H. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck, 2007, 29(4), 335-340.
[http://dx.doi.org/10.1002/hed.20524] [PMID: 17163469]
[63]
ElSohly, H.N.; Croom, E.M.; ElSohly, M.A. Analysis of the antimalarial sesquiterpene artemisinin in Artemisia annua by high-performance liquid chromatography (HPLC) with postcolumn derivatization and ultraviolet detection. Pharm. Res., 1987, 4(3), 258-260.
[http://dx.doi.org/10.1023/A:1016472531527] [PMID: 3509293]
[64]
Singh, A.; Vishwakarma, R.; Husain, A. Evalutation of Artemisia annua strains for higher artemisinin production. Planta Med., 1988, 54(5), 475-476.
[http://dx.doi.org/10.1055/s-2006-962515] [PMID: 17265330]
[65]
Charles, D.J.; Simon, J.E.; Wood, K.V.; Heinstein, P. Germplasm variation in artemisinin content of Artemisa annua using an alternative method of artemisinin analysis from crude plant extracts. J. Nat. Prod., 1990, 53(1), 157-160.
[http://dx.doi.org/10.1021/np50067a021]
[66]
ElSohly, H.N.; Croom, E.M., Jr; El-Feraly, F.S.; El-Sherei, M.M. A large-scale extraction technique of artemisinin from Artemisia annua. J. Nat. Prod., 1990, 53(6), 1560-1564.
[http://dx.doi.org/10.1021/np50072a026]
[67]
Woerdenbag, H.; Pras, N.; Chan, N.; Bang, B.; Bos, R.; van Uden, W.; Van, Y.P.; Van Boi, N.; Batterman, S.; Lugt, C. Artemisinin related sesquiterpenes and essential oil in Artemisia annua during a vegetation period in Vietnam. Planta Med., 1994, 60(3), 272-275.
[http://dx.doi.org/10.1055/s-2006-959474] [PMID: 17236047]
[68]
Tan, R.; Zheng, W.; Tang, H. Biologically active substances from the genus Artemisia. Planta Med., 1998, 64(4), 295-302.
[http://dx.doi.org/10.1055/s-2006-957438] [PMID: 9619108]
[69]
Aryanti, B.M.; Ermayanti, T.M.; Mariska, I. Production of antileukemic agent in untransformed and transformed root cultures of Artemisia cina. Ann Bogoren, 2001, 8(1), 11-16.
[70]
Mannan, A.; Mirza, B. Comparative study of artemisinin content in different species Artemisia available in Pakistan and antibacterial assay of Artemisia vestita. International symposium on medicinal plants: Linkage beyond national boundaries, 2004. INCOMPLETE
[71]
Wang, M.; Park, C.; Wu, Q.; Simon, J.E. Analysis of artemisinin in Artemisia annua L. by LC-MS with selected ion monitoring. J. Agric. Food Chem., 2005, 53(18), 7010-7013.
[http://dx.doi.org/10.1021/jf051061p] [PMID: 16131103]
[72]
Arab, H.A.; Rahbari, S.; Rassouli, A.; Moslemi, M.H.; Khosravirad, F. Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens. Trop. Anim. Health Prod., 2006, 38(6), 497-503.
[http://dx.doi.org/10.1007/s11250-006-4390-8] [PMID: 17243478]
[73]
Hsu, E. The history of qing hao in the Chinese materia medica. Trans. R. Soc. Trop. Med. Hyg., 2006, 100(6), 505-508.
[http://dx.doi.org/10.1016/j.trstmh.2005.09.020] [PMID: 16566952]
[74]
Peng, C.A.; Ferreira, J.F.S.; Wood, A.J. Direct analysis of artemisinin from Artemisia annua L. using high-performance liquid chromatography with evaporative light scattering detector, and gas chromatography with flame ionization detector. J. Chromatogr. A, 2006, 1133(1-2), 254-258.
[http://dx.doi.org/10.1016/j.chroma.2006.08.043] [PMID: 16952365]
[75]
Zhou, A.A.; Zheng, W.X.; Ge, F.H. [Determination of artemisinin in Artemisia annuna by HPLC-ELSD]. Zhong Yao Cai, 2006, 29(3), 242-245.
[PMID: 16850722]
[76]
Liu, C.Z.; Zhou, H.Y.; Zhao, Y. An effective method for fast determination of artemisinin in Artemisia annua L. by high performance liquid chromatography with evaporative light scattering detection. Anal. Chim. Acta, 2007, 581(2), 298-302.
[http://dx.doi.org/10.1016/j.aca.2006.08.038] [PMID: 17386456]
[77]
Zhang, D.; Yang, L.; Yang, L.X.; Wang, M.Y.; Tu, Y.Y. [Determination of artemisinin, arteannuin B and artemisinic acid in Herba Artemisiae Annuae by HPLC-UV-ELSD]. Yao Xue Xue Bao, 2007, 42(9), 978-981.
[PMID: 18050742]
[78]
Zia, M.; Abdul, M.; Chaudhary, M.F. Effect of growth regulators and amino acids on artemisinin production in the callus of Artemisia absinthium. Pak. J. Bot., 2007, 39, 799-805.
[79]
Aryanti. Production of artemisinin in shoot cultures of Artemisia cina irradiated callus. Indian J. Pharm., 2010, 21(1), 27-31.
[80]
Hussain, I.; Khan, F.U.; Khan, L.; Ayaz, S.; Khan, I.U. Analysis of artemisinin in Artemisia species using high performance liquid chromatography. World Appl. Sci. J., 2010, 10(6), 632-636.
[81]
Singh, A.; Sarin, R. Artemisia scoparia-A new source of artemisinin. Bangladesh J. Pharmacol., 2010, 5(1), 17-20.
[http://dx.doi.org/10.3329/bjp.v5i1.4901]
[82]
Bayarmaa, J.; Zorzi, G.D. Determination of artemisinin content in Artemisia annua L. Mong. J. Biol. Sci., 2011, 9, 47-51.
[83]
Mannan, A.; Ahmed, I.; Arshad, W.; Hussain, I.; Mirza, B. Effects of vegetative and flowering stages on the biosynthesis of artemisinin in Artemisia species. Arch. Pharm. Res., 2011, 34(10), 1657-1661.
[http://dx.doi.org/10.1007/s12272-011-1010-6] [PMID: 22076766]
[84]
Suresh, J.; Singh, A.; Vasavi, A.; Ihsanullah, M.; Mary, S. Phytochemical and pharmacological properties of Artemisia pallens. Int. J. Pharm. Sci. Res., 2011, 5, 3081-3090.
[85]
Ghafoori, H.; Sariri, R.; Naghavi, M.R.; Aryakia, E.; Dolatyari, A.; Fazeli, S.A.S.; Ramazani, H.; Farahmand, Z. Analysis of artemisinin isolated from Artemisia Annua L. by TLC and HPLC. J. Liq. Chromatogr. Relat. Technol., 2013, 36(9), 1198-1206.
[http://dx.doi.org/10.1080/10826076.2012.685916]
[86]
Dilshad, E.; Cusido, R.M.; Palazon, J.; Estrada, K.R.; Bonfill, M.; Mirza, B. Enhanced artemisinin yield by expression of rol genes in Artemisia annua. Malar. J., 2015, 14(1), 424.
[http://dx.doi.org/10.1186/s12936-015-0951-5] [PMID: 26510528]
[87]
Dilshad, E.; Cusido, R.M.; Estrada, K.R.; Bonfill, M.; Mirza, B. Genetic transformation of Artemisia carvifolia Buch with rol Genes enhances artemisinin accumulation. PLoS One, 2015, 10(10), e0140266.
[http://dx.doi.org/10.1371/journal.pone.0140266] [PMID: 26444558]
[88]
Ma, C.J.; Lee, J.; Weon, J.B.; Yun, B-R.; Eom, M.R.; Kim, S.; Cha, S.W. Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector. Pharmacogn. Mag., 2015, 11(42), 297-303.
[http://dx.doi.org/10.4103/0973-1296.153082] [PMID: 25829768]
[89]
Ranjbar, M.; Naghavi, M.R.; Alizadeh, H.; Soltanloo, H. Expression of artemisinin biosynthesis genes in eight Artemisia species at three developmental stages. Ind. Crops Prod., 2015, 76(15), 836-843.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.077]
[90]
Liu, C. Discovery and development of artemisinin and related compounds. Chin. Herb. Med., 2017, 9(2), 101-114.
[http://dx.doi.org/10.1016/S1674-6384(17)60084-4]
[91]
Silva, E.O.; Borges, L.L.; Conceição, E.C.; Bara, M.T.F. Box–Behnken experimental design for extraction of artemisinin from Artemisia annua and validation of the assay method. Rev. Bras. Farmacogn., 2017, 27(4), 519-524.
[http://dx.doi.org/10.1016/j.bjp.2017.03.002]
[92]
Hamidi, F.; Karimzadeh, G.; Rashidi Monfared, S.; Salehi, M. Assessment of Iranian endemic Artemisia khorassanica : Karyological, genome size, and gene expressions involved in artemisinin production. Turk. J. Biol., 2018, 42(4), 322-333.
[http://dx.doi.org/10.3906/biy-1802-86] [PMID: 30814896]
[93]
Kayani, W.K.; Kiani, B.H.; Dilshad, E.; Mirza, B. Biotechnological approaches for artemisinin production in Artemisia. World J. Microbiol. Biotechnol., 2018, 34(4), 54.
[http://dx.doi.org/10.1007/s11274-018-2432-9] [PMID: 29589124]
[94]
Salehi, M.; Karimzadeh, G.; Naghavi, M.R.; Naghdi Badi, H.; Rashidi Monfared, S. Expression of key genes affecting artemisinin content in five Artemisia species. Sci. Rep., 2018, 8(1), 12659.
[http://dx.doi.org/10.1038/s41598-018-31079-0] [PMID: 30139985]
[95]
Numonov, S.; Sharopov, F.; Salimov, A.; Sukhrobov, P.; Atolikshoeva, S.; Safarzoda, R.; Habasi, M.; Aisa, H. Assessment of artemisinin contents in selected Artemisia species from Tajikistan (Central Asia). Medicines, 2019, 6(1), 23.
[http://dx.doi.org/10.3390/medicines6010023] [PMID: 30709043]
[96]
Septembre-Malaterre, A.; Lalarizo Rakoto, M.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P.; Selambarom, J.; Gasque, P. Artemisia annua, a traditional plant brought to light. Int. J. Mol. Sci., 2020, 21(14), 4986.
[http://dx.doi.org/10.3390/ijms21144986] [PMID: 32679734]
[97]
Nagy, C.; Pesti, A.; Andrási, M.; Vasas, G.; Gáspár, A. Determination of artemisinin and its analogs in Artemisia annua extracts by capillary electrophoresis – Mass spectrometry. J. Pharm. Biomed. Anal., 2021, 202, 114131.
[http://dx.doi.org/10.1016/j.jpba.2021.114131] [PMID: 34023721]
[98]
Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol., 2011, 49(1), 101-109.
[http://dx.doi.org/10.3109/13880209.2010.497815] [PMID: 20681755]
[99]
Rasool, R.; Ganai, B.A.; Kamili, A.N.; Akbar, S. Antioxidant potential in callus culture of Artemisia amygdalina Decne. Nat. Prod. Res., 2012, 26(22), 2103-2106.
[PMID: 21950614]
[100]
Rasool, R.; Ganai, B.A.; Akbar, S.; Kamili, A.N.; Dar, M.Y.; Masood, A. Variation in bioactive principles of Artemisia amygdalina Decne. in wild and tissue culture regenerants. Pak. J. Pharm. Sci., 2013, 26(3), 623-628.
[PMID: 23625440]
[101]
Udaykumar, P. Discovery of artemisinin: The Chinese wonder drug. Muller J. Med. Sci. Res., 2014, 5(2), 191-192.
[http://dx.doi.org/10.4103/0975-9727.135780]
[102]
Brown, G.D.; Liang, G.Y.; Sy, L.K. Terpenoids from the seeds of Artemisia annua. Phytochemistry, 2003, 64(1), 303-323.
[http://dx.doi.org/10.1016/S0031-9422(03)00294-2] [PMID: 12946429]
[103]
Suberu, J.O.; Gorka, A.P.; Jacobs, L.; Roepe, P.D.; Sullivan, N.; Barker, G.C.; Lapkin, A.A. Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract - possible synergistic and resistance mechanisms. PLoS One, 2013, 8(11), e80790.
[http://dx.doi.org/10.1371/journal.pone.0080790] [PMID: 24244716]
[104]
You-you, T.; Mu-yun, N.; Yu-rong, Z.; Lan-na, L.; Shu-lian, C.; Mu-qun, Z.; Xiu-zhen, W.; Zheng, J.; Xiao-tian, L. Studies on the constituents of Artemisia annua Part II. Planta Med., 1982, 44(3), 143-145.
[http://dx.doi.org/10.1055/s-2007-971424] [PMID: 17402097]
[105]
Acton, N.; Klayman, D.; Rollman, I. Reductive electrochemical HPLC assay for artemisinin (qinghaosu). Planta Med., 1985, 51(5), 445-446.
[http://dx.doi.org/10.1055/s-2007-969545] [PMID: 17342608]
[106]
Delabays, N.; Collet, G.; Benakis, A. Selection and breeding for high artemisinin (Qinghaosu) yielding strains of Artemisia annua. Acta Hortic., 1993, (330), 203-208.
[http://dx.doi.org/10.17660/ActaHortic.1993.330.24]
[107]
Maes, L.; Van Nieuwerburgh, F.C.W.; Zhang, Y.; Reed, D.W.; Pollier, J.; Vande Casteele, S.R.F.; Inzé, D.; Covello, P.S.; Deforce, D.L.D.; Goossens, A. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol., 2011, 189(1), 176-189.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03466.x] [PMID: 20874804]
[108]
Lei, C.; Ma, D.; Pu, G.; Qiu, X.; Du, Z.; Wang, H.; Li, G.; Ye, H.; Liu, B. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Ind. Crops Prod., 2011, 33(1), 176-182.
[http://dx.doi.org/10.1016/j.indcrop.2010.10.001]
[109]
Tian, N.; Li, J.; Liu, S.; Huang, J.; Li, X.; Liu, Z. Simultaneous isolation of artemisinin and its precursors from Artemisia annua L. by preparative RP-HPLC. Biomed. Chromatogr., 2012, 26(6), 708-713.
[http://dx.doi.org/10.1002/bmc.1719] [PMID: 21932380]
[110]
Hallajian, M.T.; Aghamirzaei, M.; Sadat, S. Survey of artemisinin production of Artemisia annua (anti-malarial medicinal plant) bioecotypes available in Iran by HPLC method. Ann. Biol. Res., 2014, 5(1), 88-99.
[111]
Misra, H.; Mehta, D.; Mehta, B.K. Extraction of artemisinin, an active antimalarial phytopharmaceutical from dried leaves of Artemisia annua L., using microwaves and a validated HPTLC-visible method for its quantitative determination. Chromat Res Int, 2014.
[112]
Zime-Diawara, H.; Ganfon, H.; Gbaguidi, F. The antimalarial action of aqueous and hydro alcoholic extracts of Artemisia annua L. cultivated in Benin: In vitro and in vivo studies. J. Chem. Pharm. Res., 2015, 7(8), 817-823.
[113]
R, S.I.; Susilowati, A.; Widyastuti, Y.; Yunus, A. Artemisinin content on Artemisia annua L. treated by Gloriosa superba seeds water extract. Asian J. Pharm. Clin. Res., 2018, 11(8), 147-149.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i8.25738]
[114]
Mwangi, S.; Abuga, K.; Mungai, N. A high-performance liquid chromatography method for the determination of artemisinin in Artemisia annua L. leaf extracts. East Cent. Afr. J. Pharm. Sci., 2020, 23(2), 48-53.
[115]
Simon, J.E.; Charles, D.; Cebert, E.; Artemisia annua, L. A promising aromatic and medicinal. In: Advances in New Crops; Janick, J.; Simon, J.E., Eds.; Timber Press: West Lafayette, 1990; pp. 522-526.
[116]
Qian, G.P.; Yang, Y.W.; Ren, Q.L. Determination of artemisinin in Artemisia annua L. by reversed phase HPLC. J. Liq. Chromatogr. Relat. Technol., 2005, 28(5), 705-712.
[http://dx.doi.org/10.1081/JLC-200048890]
[117]
Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol., 2018, 9, 756.
[http://dx.doi.org/10.3389/fphar.2018.00756] [PMID: 30050443]
[118]
Ryu, JC; Park, SM; Hwangbo, M Methanol extract of Artemisia apiacea Hance attenuates the expression of inflammatory mediators via NF-κB inactivation. Evid Complem Alt Med: eCAM, 2013, 494681.
[119]
Steinegger, E.; Hänsel, R. Lehrbuch der pharmakognosie, 3rd ed; Springer-Verlag: Berlin, 1972, pp. 450-451.
[http://dx.doi.org/10.1007/978-3-662-08316-1]
[120]
Hänsel, R.; Keller, K.; Rimpler, H. Hager’s Handbook of pharmaceutical practice, 5th ed; Springer-Verlag Berlin, 1992, pp. 368-370.
[121]
Yazdani, F.; Noori, A.; Amjad, L. Effect of Artemisia deserti flowering taps extract on liver in male rats. Int. J. Agric. Crop Sci., 2013, 5(13), 1432.
[122]
Aglarova, A.M.; Zilfikarov, I.N.; Severtseva, O.V. Biological characteristics and useful properties of tarragon (Artemisia dracunculus L.) (review). Pharm. Chem. J., 2008, 42(2), 81-86.
[http://dx.doi.org/10.1007/s11094-008-0064-3]
[123]
Uhl, S.R.; Strauss, S. Handbook of spices, seasonings and flavorings; Technomic Publishing: Lancaster, United Kingdom, 2000.
[124]
Senderski, M.E. Almost everything about herbs. Guide. Mateusz E. Senderski. Forest Horseshoe; , 2007.
[125]
Mamedov, N.; Gardner, Z.; Craker, L.E. Medicinal plants used in Russain and Central Asia for the treatment of selected skin conditions. J. Herbs Spices Med. Plants, 2005, 11(1-2), 191-222.
[http://dx.doi.org/10.1300/J044v11n01_07]
[126]
Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J. Agric. Food Chem., 2011, 59(21), 11367-11384.
[http://dx.doi.org/10.1021/jf202277w] [PMID: 21942448]
[127]
Wu, Z.Y.; Raven, P.H. Flora of China; Science Press & Missouri Botanical Garden Press: Beijing, St. Louis, 2011.
[128]
Satyal, P.; Paudel, P.; Kafle, A.; Pokharel, S.K.; Lamichhane, B.; Dosoky, N.S.; Moriarity, D.M.; Setzer, W.N. Bioactivities of volatile components from Nepalese Artemisia species. Nat. Prod. Commun., 2012, 7(12), 1934578X1200701.
[http://dx.doi.org/10.1177/1934578X1200701228] [PMID: 23413575]
[129]
Ali, M.; Kiani, B.H.; Mannan, A. Enhanced production of artemisinin by hairy root cultures of Artemisia dubia. J. Med. Plants Res., 2012, 6(9), 1619-1622.
[http://dx.doi.org/10.5897/JMPR11.1268]
[130]
Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Vasil’eva, A.G.; Gadimli, A.I.; Isaev, J.I.; Vennos, C. Caffeoylquinic acids and flavonoids of fringed sagewort (Artemisia frigida Willd.): HPLC-DAD-ESI-QQQ-MS profile, HPLC-DAD quantification, in vitro digestion stability, and antioxidant capacity. Antioxidants, 2019, 8(8), 307.
[http://dx.doi.org/10.3390/antiox8080307] [PMID: 31416222]
[131]
Mamatova, AS; Korona-Glowniak, I; Skalicka-Woźniak, K Phytochemical composition of wormwood (Artemisia gmelinii) extracts in respect of their antimicrobial activity. BMC compl Alt Med, 2019, 19(1), 288.
[132]
Baasanmunkh, S.; Urgamal, M.; Oyuntsetseg, B.; Sukhorukov, A.P.; Tsegmed, Z.; Son, D.C.; Erst, A.; Oyundelger, K.; Kechaykin, A.A.; Norris, J.; Kosachev, P.; Ma, J.S.; Chang, K.S.; Choi, H.J. Flora of Mongolia: annotated checklist of native vascular plants. PhytoKeys, 2022, 192, 63-169.
[http://dx.doi.org/10.3897/phytokeys.192.79702] [PMID: 35437387]
[133]
Segal, R.; Feuerstein, I.; Danin, A. Chemotypes of Artemisia herba-alba in Israel based on their sesquiterpene lactone and essential oil constitution. Biochem. Syst. Ecol., 1987, 15(4), 411-416.
[http://dx.doi.org/10.1016/0305-1978(87)90054-8]
[134]
Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Dassouli, A.; Serhrouchni, M.; Benjelloun, W. Phytotherapy of hypertension and diabetes in oriental Morocco. J. Ethnopharmacol., 1997, 58(1), 45-54.
[http://dx.doi.org/10.1016/S0378-8741(97)00077-9] [PMID: 9324004]
[135]
Seddiek, S.A.; Ali, M.M.; Khater, H.F. Anthelmintic activity of the white wormwood, Artemisia herba-alba against Heterakis gallinarum infecting turkey poults. J. Med. Plants Res., 2011, 5, 3946-3957.
[136]
El Maggar, E.B. Artemisia herba alba & Artemisia monosperma: The Discovery of the first potential Egyptian plant sources for the pharmaceutical commercial production of artemisinin and some of its related analogues. J. Appl. Pharm. Sci., 2012, 2(7), 77-91.
[137]
Huxley, A. The new RHS dictionary of gardening; MacMillan Press: London, 1992.
[138]
Hussain, A.; Hayat, M.Q.; Bokhari, S.A.I. Some important species of the genus Artemisia L. (Asteraceae) from northeastern (Gilgit-Baltistan) Pakistan and their folk medicinal uses. Proc. Pak. Acad. Sci.: B. Life Environ. Sci., 2020, 57(2), 35-48.
[139]
Tu, Y.; Liu, X.H. The Daur people eating-Artemisia integrifolia. Chin Folk Ther, 2007, 15, 10-11.
[140]
Zhang, J.; Li, S.J.; Xiang, B.P. Modulation effects of Artemisia integrifolia on immue function of mice. Shipin Kexue, 2008, 29, 405-408.
[141]
Hayat, M.Q.; Khan, M.A.; Ashraf, M.; Jabeen, S. Ethnobotany of the genus Artemisia L. (Asteraceae) in Pakistan. Ethnobot. Res. Appl., 2009, 7, 147-162.
[http://dx.doi.org/10.17348/era.7.0.147-162]
[142]
Rashmi, T.R.; Francis, M.S.; Murali, S. Determination of artemisinin in selected Artemisia L. species by HPLC. Indo. Amer. J. Pharm. Res., 2014, 4(5), 1.
[143]
Dudko, V.V. Essential oil from Artemisia macrocephala. Him. Prir. Soedin., 1994, 1, 100.
[144]
Ahmad, S.; Ali, A.; Bibi, S. Ethnobotanical study on some medicinal plants of Ouch District Dir, Pakistan. Pak. J. Pl. Sci., 2006, 12, 65-71.
[145]
Nahrevanian, H.; Sheykhkanlooye Milan, B.; Kazemi, M.; Hajhosseini, R.; Soleymani Mashhadi, S.; Nahrevanian, S. Antimalarial effects of Iranian flora Artemisia sieberi on Plasmodium berghei in vivo in mice and phytochemistry analysis of its herbal extracts. Malar. Res. Treat., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/727032] [PMID: 22315701]
[146]
Seregin, A.P., Ed.;Moscow digital herbarium: Electronic resource; Moscow State University: Moscow, 2021.
[147]
Abu-Niaaj, LF; Katampe, I.; Abdulla, S. The pharmacological properties of Artemisia monosperma (Del.). FASEB J, 2019, 33(S1), 672.
[148]
Hammoda, H.M.; Ela, M.A.; El-Lakany, A.M.; El-Hanbali, O.; Zaki, C.S.; Ghazy, N.M. New constituents of Artemisia monosperma Del. Pharmazie, 2008, 63(8), 611-614.
[PMID: 18771012]
[149]
Stewart, R.; Nasir, E.N.; Ali, S.I. An annotated catalogue of the vascular plants of West Pakistan and Kashmir; Fakhri Print Press, 1972.
[150]
Ling, Y.R. The Chinese Artemisia Linn. the classification, distribution, and application of Artemisia Linn. China. Bull. Bot. Res., 1988, 8(4), 32.
[151]
Sharma, B.D.; Balakrishnan, N.P.; Rao, R.R. Flora of India. (F India).Botanical Survey of India Calcutta; , 1993, p. 1.
[152]
Ashraf, M.; Hayat, M.Q.; Jabeen, S. Artemisia L. species recognized by the local community of northern areas of Pakistan as folk therapeutic plants. J Med Pl Res, 2010, 4(2), 112-119.
[153]
Matthew, K.M. The flora of the Tamilnadu. Carnatic series, volume 1. Rapinat Herbarium., 1983, 3, 1-2154.
[154]
Ahuja, J.; Suresh, J.; Paramakrishnan, N.; Mruthunjaya, K.; Naganandhini, M.N. An ethnomedical, phytochemical and pharmacological profile of Artemisia parviflora Roxb. J. Essent. Oil-Bear. Plants, 2011, 14(6), 647-657.
[http://dx.doi.org/10.1080/0972060X.2011.10643985]
[155]
Rana, V.S.; Juyal, J.P.; Blazquez, M.A.; Bodakhe, S.H. Essential oil composition of Artemisia parviflora aerial parts. Flavour Fragrance J., 2003, 18(4), 342-344.
[http://dx.doi.org/10.1002/ffj.1239]
[156]
Siadat, S.A.; Direkvand-Moghadam, F. Study of phytochemical characteristics Artemisia persica Boiss in Ilam province. Adv Herb Med, 2017, 4(3), 55-63.
[157]
Taghizadeh Rabe, S.Z.; Mahmoudi, M.; Ahi, A.; Emami, S.A. Antiproliferative effects of extracts from Iranian Artemisia species on cancer cell lines. Pharm. Biol., 2011, 49(9), 962-969.
[http://dx.doi.org/10.3109/13880209.2011.559251] [PMID: 21592012]
[158]
Ahmadvand, H.; Amiri, H.; Dalvand, H. Various anti-oxidant properties of essential oil and hydroalcoholic extractof Artemisa persica. J Birjand Univ Med Sci, 2014, 20(4), 416-424.
[159]
Ramezani, M.; Fazli-Bazzaz, B.S.; Saghafi-Khadem, F.; Dabaghian, A. Antimicrobial activity of four Artemisia species of Iran. Fitoterapia, 2004, 75(2), 201-203.
[http://dx.doi.org/10.1016/j.fitote.2003.11.006] [PMID: 15030925]
[160]
Karamoddini, M.K.; Emami, S.A.; Ghannad, M.S.; Sani, E.A.; Sahebkar, A. Antiviral activities of aerial subsets of Artemisia species against Herpes simplex virus type 1 (HSV1) in vitro. Asian Biomed., 2011, 5(1), 63-68.
[http://dx.doi.org/10.5372/1905-7415.0501.007]
[161]
Bicchi, C.; Rubiolo, P.; Marschall, H.; Weyerstahl, P.; Laurent, R. Constituents of Artemisia roxburghiana Besser essential oil. Flavour Fragrance J., 1998, 13(1), 40-46.
[http://dx.doi.org/10.1002/(SICI)1099-1026(199801/02)13:1<40::AID-FFJ688>3.0.CO;2-Z]
[162]
Lee, K.H.; Min, Y.D.; Choi, S.Z.; Kwon, H.C.; Cho, O.R.; Lee, K.C.; Lee, K.R. A new sesquiterpene lactone from Artemisia rubripes nakai. Arch. Pharm. Res., 2004, 27(10), 1016-1019.
[http://dx.doi.org/10.1007/BF02975423] [PMID: 15554256]
[163]
Negahban, M.; Moharramipour, S.; Sefidkon, F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J. Stored Prod. Res., 2007, 43(2), 123-128.
[http://dx.doi.org/10.1016/j.jspr.2006.02.002]
[164]
Shah, N.C. The economic and medicinal Artemisia species in India. Scitech J Sci Technol, 2014, 1, 29-38.
[165]
Hazra, P.K.; Rao, R.R.; Singh, D.K. Flora of India. Asteraceae (Anthemideae-Helmintheae); Botanical Survey of India: Calcutta, 1995.
[166]
Bal, S.N. Catalogue of medicinal plants exhibits. The industrial section of the Indian museum; Government of India Publication: Calcutta, 1932.
[167]
Sharopov, F.S.; Setzer, W.N. The essential oil of Artemisia scoparia from tajikistan is dominated by phenyldiacetylenes. Nat. Prod. Commun., 2011, 6(1), 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600128] [PMID: 21366060]
[168]
Joshi, R.; Satyal, P.; Setzer, W. Himalayan aromatic medicinal plants: A review of their ethnopharmacology, volatile phytochemistry, and biological activities. Medicines, 2016, 3(1), 6.
[http://dx.doi.org/10.3390/medicines3010006] [PMID: 28930116]
[169]
Bramwell, D. Wild flowers of the Canary Islands; London: Stanley Thornes Publishers Ltd, 1974.
[170]
Yin, Y.; Gong, F.Y.; Wu, X.X.; Sun, Y.; Li, Y.H.; Chen, T.; Xu, Q. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol., 2008, 120(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2008.07.029] [PMID: 18721870]
[171]
Sun, Y.; Li, Y.H.; Wu, X.X.; Zheng, W.; Guo, Z.H.; Li, Y.; Chen, T.; Hua, Z.C.; Xu, Q. Ethanol extract from Artemisia vestita, a traditional Tibetan medicine, exerts anti-sepsis action through downregulating the MAPK and NF-κB pathways. Int. J. Mol. Med., 2006, 17(5), 957-962.
[http://dx.doi.org/10.3892/ijmm.17.5.957] [PMID: 16596287]
[172]
Sharopov, F.S.; Numonov, S.R.; Safomuddin, A.; Gulmurodov, I.S.; Valiev, A.K.; Bakri, M.; Sukhrobov, P.; Habasi, M.; Setzer, W.N.; Aisa, H.A. Chemical composition of essential oil from Artemisia vachanica growing in Tajikistan. Chem. Nat. Compd., 2019, 55(5), 965-967.
[http://dx.doi.org/10.1007/s10600-019-02863-9]
[173]
Quisumbing, E. Medicinal plants of the Philippines; Bureau of Printing: Manila, Philippines, 1978.
[174]
Block, K. On the mechanism of squalene biogenesis from mevalonic acid. Proceedings of the IV International Congress of Biochemistry, 1958, pp. 20-22.
[175]
Lynen, F. Ciba Foundation symposium of bio-synthesis of terpenes and sterols;, 1958.
[176]
Zeng, Q.; Qiu, F.; Yuan, L. Production of artemisinin by genetically-modified microbes. Biotechnol. Lett., 2008, 30(4), 581-592.
[http://dx.doi.org/10.1007/s10529-007-9596-y] [PMID: 18008167]
[177]
Schramek, N.; Wang, H.; Römisch-Margl, W.; Keil, B.; Radykewicz, T.; Winzenhörlein, B.; Beerhues, L.; Bacher, A.; Rohdich, F.; Gershenzon, J.; Liu, B.; Eisenreich, W. Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry, 2010, 71(2-3), 179-187.
[http://dx.doi.org/10.1016/j.phytochem.2009.10.015] [PMID: 19932496]
[178]
Han, J.L.; Liu, B.Y.; Ye, H.C.; Wang, H.; Li, Z-Q.; Li, G-F. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol., 2006, 48(4), 482-487.
[http://dx.doi.org/10.1111/j.1744-7909.2006.00208.x]
[179]
Teoh, K.H.; Polichuk, D.R.; Reed, D.W.; Covello, P.S. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute. Botany, 2009, 87(6), 635-642.
[http://dx.doi.org/10.1139/B09-032]
[180]
Alam, P.; Abdin, M.Z. Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep., 2011, 30(10), 1919-1928.
[http://dx.doi.org/10.1007/s00299-011-1099-6] [PMID: 21655998]
[181]
Tang, K.; Shen, Q.; Yan, T.; Fu, X. Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep., 2014, 33(4), 605-615.
[http://dx.doi.org/10.1007/s00299-014-1566-y] [PMID: 24413765]
[182]
Liu, M.; Shi, P.; Fu, X.; Brodelius, P.E.; Shen, Q.; Jiang, W.; He, Q.; Tang, K. Characterization of a trichome-specific promoter of the aldehyde dehydrogenase 1 (ALDH1) gene in Artemisia annua. Plant Cell Tissue Organ Cult., 2016, 126(3), 469-480.
[http://dx.doi.org/10.1007/s11240-016-1015-4]
[183]
Ma, D.; Li, G.; Zhu, Y.; Xie, D.Y. Overexpression and suppression of Artemisia annua 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1 gene (AaHDR1) differentially regulate artemisinin and terpenoid biosynthesis. Front. Plant Sci., 2017, 8(8), 77.
[http://dx.doi.org/10.3389/fpls.2017.00077] [PMID: 28197158]
[184]
Matías-Hernández, L.; Jiang, W.; Yang, K.; Tang, K.; Brodelius, P.E.; Pelaz, S. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J., 2017, 90(3), 520-534.
[http://dx.doi.org/10.1111/tpj.13509] [PMID: 28207974]
[185]
Shen, Q.; Zhang, L.; Liao, Z.; Wang, S.; Yan, T.; Shi, P.; Liu, M.; Fu, X.; Pan, Q.; Wang, Y.; Lv, Z.; Lu, X.; Zhang, F.; Jiang, W.; Ma, Y.; Chen, M.; Hao, X.; Li, L.; Tang, Y.; Lv, G.; Zhou, Y.; Sun, X.; Brodelius, P.E.; Rose, J.K.C.; Tang, K. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Mol. Plant, 2018, 11(6), 776-788.
[http://dx.doi.org/10.1016/j.molp.2018.03.015] [PMID: 29703587]
[186]
Bulgakov, V.P.; Veselova, M.V.; Tchernoded, G.K.; Kiselev, K.V.; Fedoreyev, S.A.; Zhuravlev, Y.N. Inhibitory effect of the Agrobacte-rium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta, 2005, 221(4), 471-478.
[http://dx.doi.org/10.1007/s00425-004-1457-5] [PMID: 15688226]
[187]
Ghosh, B.; Mukherjee, S.; Jha, S. Genetic transformation of Artemisia annua by Agrobacterium tumefaciens and artemisinin synthesis in transformed cultures. Plant Sci., 1997, 122(2), 193-199.
[http://dx.doi.org/10.1016/S0168-9452(96)04558-X]
[188]
Sa, G.; Mi, M.; He-chun, Y.; Ben-ye, L.; Guo-feng, L.; Kang, C. Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. Plant Sci., 2001, 160(4), 691-698.
[http://dx.doi.org/10.1016/S0168-9452(00)00453-2] [PMID: 11448744]
[189]
Shi, P.; Fu, X.; Liu, M.; Shen, Q.; Jiang, W.; Li, L.; Sun, X.; Tang, K. Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell Tissue Organ Cult., 2017, 129(2), 251-259.
[http://dx.doi.org/10.1007/s11240-017-1173-z]
[190]
Yu, Z.X.; Li, J.X.; Yang, C.Q.; Hu, W.L.; Wang, L.J.; Chen, X.Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol. Plant, 2012, 5(2), 353-365.
[http://dx.doi.org/10.1093/mp/ssr087] [PMID: 22104293]
[191]
Ma, D.; Pu, G.; Lei, C.; Ma, L.; Wang, H.; Guo, Y.; Chen, J.; Du, Z.; Wang, H.; Li, G.; Ye, H.; Liu, B. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol., 2009, 50(12), 2146-2161.
[http://dx.doi.org/10.1093/pcp/pcp149] [PMID: 19880398]
[192]
Ji, Y.; Xiao, J.; Shen, Y.; Ma, D.; Li, Z.; Pu, G.; Li, X.; Huang, L.; Liu, B.; Ye, H.; Wang, H. Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant Cell Physiol., 2014, 55(9), 1592-1604.
[http://dx.doi.org/10.1093/pcp/pcu090] [PMID: 24969234]
[193]
Tan, H.; Xiao, L.; Gao, S.; Li, Q.; Chen, J.; Xiao, Y.; Ji, Q.; Chen, R.; Chen, W.; Zhang, L. Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Mol. Plant, 2015, 8(9), 1396-1411.
[http://dx.doi.org/10.1016/j.molp.2015.04.002] [PMID: 25870149]
[194]
Yan, T.; Chen, M.; Shen, Q.; Li, L.; Fu, X.; Pan, Q.; Tang, Y.; Shi, P.; Lv, Z.; Jiang, W.; Ma, Y.; Hao, X.; Sun, X.; Tang, K. Homeodomain protein 1 is required for jasmonate‐mediated glandular trichome initiation in Artemisia annua. New Phytol., 2017, 213(3), 1145-1155.
[http://dx.doi.org/10.1111/nph.14205] [PMID: 27659595]
[195]
Lu, X.; Zhang, L.; Zhang, F.; Jiang, W.; Shen, Q.; Zhang, L.; Lv, Z.; Wang, G.; Tang, K. A a ORA, a trichome‐specific AP 2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance toB otrytis cinerea. New Phytol., 2013, 198(4), 1191-1202.
[http://dx.doi.org/10.1111/nph.12207] [PMID: 23448426]
[196]
Chen, M.; Yan, T.; Shen, Q.; Lu, X.; Pan, Q.; Huang, Y.; Tang, Y.; Fu, X.; Liu, M.; Jiang, W.; Lv, Z.; Shi, P.; Ma, Y.; Hao, X.; Zhang, L.; Li, L.; Tang, K. Glandular trichome ‐ SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol., 2017, 214(1), 304-316.
[http://dx.doi.org/10.1111/nph.14373] [PMID: 28001315]
[197]
Shen, Q.; Lu, X.; Yan, T.; Fu, X.; Lv, Z.; Zhang, F.; Pan, Q.; Wang, G.; Sun, X.; Tang, K. The jasmonate‐responsive Aa MYC 2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol., 2016, 210(4), 1269-1281.
[http://dx.doi.org/10.1111/nph.13874] [PMID: 26864531]
[198]
Lv, Z.; Wang, S.; Zhang, F.; Chen, L.; Hao, X.; Pan, Q.; Fu, X.; Li, L.; Sun, X.; Tang, K. Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol., 2016, 57(9), 1961-1971.
[http://dx.doi.org/10.1093/pcp/pcw118] [PMID: 27388340]
[199]
Zhang, F.; Fu, X.; Lv, Z.; Lu, X.; Shen, Q.; Zhang, L.; Zhu, M.; Wang, G.; Sun, X.; Liao, Z.; Tang, K. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol. Plant, 2015, 8(1), 163-175.
[http://dx.doi.org/10.1016/j.molp.2014.12.004] [PMID: 25578280]
[200]
Shen, Q.; Yan, T.; Fu, X.; Tang, K. Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L. Sci. Bull., 2016, 61(1), 18-25.
[http://dx.doi.org/10.1007/s11434-015-0983-9]
[201]
Zhang, F.; Xiang, L.; Yu, Q.; Zhang, H.; Zhang, T.; Zeng, J.; Geng, C.; Li, L.; Fu, X.; Shen, Q.; Yang, C.; Lan, X.; Chen, M.; Tang, K.; Liao, Z. Artemisinin biosynthesis promoting kinase 1 positively regulates artemisinin biosynthesis through phosphorylating AabZIP1. J. Exp. Bot., 2018, 69(5), 1109-1123.
[http://dx.doi.org/10.1093/jxb/erx444] [PMID: 29301032]
[202]
Ng, D.W.K.; Zhang, C.; Miller, M.; Palmer, G.; Whiteley, M.; Tholl, D.; Chen, Z.J. cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell, 2011, 23(5), 1729-1740.
[http://dx.doi.org/10.1105/tpc.111.083915] [PMID: 21602291]
[203]
Yu, Z.X.; Wang, L.J.; Zhao, B.; Shan, C.M.; Zhang, Y.H.; Chen, D.F.; Chen, X.Y. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol. Plant, 2015, 8(1), 98-110.
[http://dx.doi.org/10.1016/j.molp.2014.11.002] [PMID: 25578275]
[204]
Khan, S.; Ali, A.; Saifi, M.; Saxena, P.; Ahlawat, S.; Abdin, M.Z. Identification and the potential involvement of miRNAs in the regulation of artemisinin biosynthesis in A. annua. Sci. Rep., 2020, 10(1), 13614.
[http://dx.doi.org/10.1038/s41598-020-69707-3] [PMID: 32788629]
[205]
Qian, R.S.; Li, Z.L.; Yu, J.L.; Ma, D.J. The immunologic and antiviral effect of qinghaosu. J. Tradit. Chin. Med., 1982, 2(4), 271-276.
[PMID: 6765722]
[206]
D’Alessandro, S.; Scaccabarozzi, D.; Signorini, L.; Perego, F.; Ilboudo, D.P.; Ferrante, P.; Delbue, S. The use of antimalarial drugs against viral infection. Microorganisms, 2020, 8(1), 85.
[http://dx.doi.org/10.3390/microorganisms8010085] [PMID: 31936284]
[207]
Kaptein, S.; Efferth, T.; Leis, M.; Rechter, S.; Auerochs, S.; Kalmer, M.; Bruggeman, C.; Vink, C.; Stamminger, T.; Marschall, M. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Res., 2006, 69(2), 60-69.
[http://dx.doi.org/10.1016/j.antiviral.2005.10.003] [PMID: 16325931]
[208]
Crespo-Ortiz, M.P.; Wei, M.Q. Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol., 2012, 2012, 1-18.
[http://dx.doi.org/10.1155/2012/247597] [PMID: 22174561]
[209]
Paeshuyse, J.; Coelmont, L.; Vliegen, I.; hemel, J.V.; Vandenkerckhove, J.; Peys, E.; Sas, B.; Clercq, E.D.; Neyts, J. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem. Biophys. Res. Commun., 2006, 348(1), 139-144.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.014] [PMID: 16875675]
[210]
Rolta, R.; Salaria, D.; Kumar, V. Phytocompounds of Rheum emodi, Thymus serpyllum and Artemisia annua inhibit COVID-19 binding to ACE2 receptor: In silico approach. Curr. Pharmacol. Rep., 2020, 15, 1-15.
[211]
Sharma, S.; Deep, S. In silico drug repurposing for targeting SARS-CoV-2 Mpro. J. Biomol. Struct. Dyn., 2020, 1-8.
[PMID: 33179568]
[212]
Nie, C.; Trimpert, J.; Moon, S.; Haag, R.; Gilmore, K.; Kaufer, B.B.; Seeberger, P.H. In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virol. J., 2021, 18(1), 182.
[http://dx.doi.org/10.1186/s12985-021-01651-8] [PMID: 34496903]
[213]
Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 2020, 328, 109211.
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[214]
Sehailia, M.; Chemat, S. Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: Potential repurposing of artenimol for COVID-19. J. Biomol. Struct. Dyn., 2021, 39(16), 6184-6194.
[http://dx.doi.org/10.1080/07391102.2020.1796809] [PMID: 32696720]
[215]
Nair, M.S.; Huang, Y.; Fidock, D.A.; Towler, M.J.; Weathers, P.J. Artemisia annua L. hot-water extracts show potent activity in vitro against COVID-19 variants including delta. J. Ethnopharmacol., 2022, 284, 114797.
[http://dx.doi.org/10.1016/j.jep.2021.114797] [PMID: 34737005]
[216]
Hu, Y.; Liu, M.; Qin, H.; Lin, H.; An, X.; Shi, Z.; Song, L.; Yang, X.; Fan, H.; Tong, Y. Artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide effectively inhibit SARS-CoV-2 and related viruses in vitro. Front. Cell. Infect. Microbiol., 2021, 11, 680127.
[http://dx.doi.org/10.3389/fcimb.2021.680127] [PMID: 34527599]
[217]
Firestone, T.M.; Oyewole, O.O.; Reid, S.P.; Ng, C.L. Repurposing quinoline and artemisinin antimalarials as therapeutics for SARS-CoV-2: rationale and implications. ACS Pharmacol. Transl. Sci., 2021, 4(2), 613-623.
[http://dx.doi.org/10.1021/acsptsci.0c00222] [PMID: 33855275]
[218]
Gendrot, M.; Duflot, I.; Boxberger, M.; Delandre, O.; Jardot, P.; Le Bideau, M.; Andreani, J.; Fonta, I.; Mosnier, J.; Rolland, C.; Hutter, S.; La Scola, B.; Pradines, B. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int. J. Infect. Dis., 2020, 99, 437-440.
[http://dx.doi.org/10.1016/j.ijid.2020.08.032] [PMID: 32805422]
[219]
de Oliveira, V.M.; da Rocha, M.N.; Magalhães, E.P.; da Silva Mendes, F.R.; Marinho, M.M.; de Menezes, R.R.P.P.B.; Sampaio, T.L.; dos Santos, H.S.; Martins, A.M.C.; Marinho, E.S. Computational approach towards the design of artemisinin–thymoquinone hybrids against main protease of SARS-CoV-2. Future J. Pharm. Sci, 2021, 7(1), 185.
[http://dx.doi.org/10.1186/s43094-021-00334-z] [PMID: 34514004]
[220]
Hussain, A. A phylogenetic perspective of antiviral species of the genus Artemisia (Asteraceae-Anthemideae): A proposal of anti SARS-CoV-2 (COVID-19) candidate taxa. J. Herb. Med., 2022, 36(36), 100601.
[http://dx.doi.org/10.1016/j.hermed.2022.100601] [PMID: 36188629]
[221]
Qi, F.; Wang, Z.X.; Cai, P.P.; Zhao, L.; Gao, J.J.; Kokudo, N.; Li, A.Y.; Han, J.Q.; Tang, W. Traditional Chinese medicine and related active compounds: A review of their role on hepatitis B virus infection. Drug Discov. Ther., 2013, 7(6), 212-224.
[http://dx.doi.org/10.5582/ddt.2013.v7.6.212] [PMID: 24423652]
[222]
Batty, K.T.; Davis, T.M.E.; Thu, L.T.A.; Quang Binh, T.; Kim Anh, T.; Ilett, K.F. Selective high-performance liquid chromatographic determination of artesunate and α- and β-dihydroartemisinin in patients with falciparum malaria. J. Chromatogr., Biomed. Appl., 1996, 677(2), 345-350.
[http://dx.doi.org/10.1016/0378-4347(95)00428-9] [PMID: 8704940]
[223]
Sharma, B.N.; Marschall, M.; Henriksen, S.; Rinaldo, C.H. Antiviral effects of artesunate on polyomavirus BK replication in primary human kidney cells. Antimicrob. Agents Chemother., 2014, 58(1), 279-289.
[http://dx.doi.org/10.1128/AAC.01800-13] [PMID: 24145549]
[224]
Disbrow, G.L.; Baege, A.C.; Kierpiec, K.A.; Yuan, H.; Centeno, J.A.; Thibodeaux, C.A.; Hartmann, D.; Schlegel, R. Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res., 2005, 65(23), 10854-10861.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1216] [PMID: 16322232]
[225]
Reiter, C.; Fröhlich, T.; Gruber, L.; Hutterer, C.; Marschall, M.; Voigtländer, C.; Friedrich, O.; Kappes, B.; Efferth, T.; Tsogoeva, S.B. Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorg. Med. Chem., 2015, 23(17), 5452-5458.
[http://dx.doi.org/10.1016/j.bmc.2015.07.048] [PMID: 26260339]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy