Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Exploring Scoring Function Space: Developing Computational Models for Drug Discovery

Author(s): Gabriela Bitencourt-Ferreira, Marcos A. Villarreal, Rodrigo Quiroga, Nadezhda Biziukova, Vladimir Poroikov, Olga Tarasova* and Walter F. de Azevedo Junior*

Volume 31, Issue 17, 2024

Published on: 08 June, 2023

Page: [2361 - 2377] Pages: 17

DOI: 10.2174/0929867330666230321103731

Price: $65

Abstract

Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery.

Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity.

Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space.

Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces.

Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.

[1]
Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Exploring the scoring function space. Methods Mol. Biol., 2019, 2053, 275-281.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_17] [PMID: 31452111]
[2]
Heck, G.S.; Pintro, V.O.; Pereira, R.R.; de Ávila, M.B.; Levin, N.M.B.; de Azevedo, W.F. Supervised machine learning methods applied to predict ligand- binding affinity. Curr. Med. Chem., 2017, 24(23), 2459-2470.
[PMID: 28641555]
[3]
Ross, G.A.; Morris, G.M.; Biggin, P.C. One size does not fit all: The limits of structure-based models in drug discovery. J. Chem. Theory Comput., 2013, 9(9), 4266-4274.
[http://dx.doi.org/10.1021/ct4004228] [PMID: 24124403]
[4]
Aghamiri, S.S.; Amin, R.; Helikar, T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J. Pharmacokinet. Pharmacodyn., 2022, 49(1), 19-37.
[http://dx.doi.org/10.1007/s10928-021-09790-9] [PMID: 34671863]
[5]
Abbasi, K.; Razzaghi, P.; Poso, A.; Ghanbari-Ara, S.; Masoudi-Nejad, A. Deep learning in drug target interaction prediction: Current and future perspectives. Curr. Med. Chem., 2021, 28(11), 2100-2113.
[http://dx.doi.org/10.2174/1875533XMTA5qNzU62] [PMID: 32895036]
[6]
Gkeka, P.; Stoltz, G.; Barati Farimani, A.; Belkacemi, Z.; Ceriotti, M.; Chodera, J.D.; Dinner, A.R.; Ferguson, A.L.; Maillet, J.B.; Minoux, H.; Peter, C.; Pietrucci, F.; Silveira, A.; Tkatchenko, A.; Trstanova, Z.; Wiewiora, R.; Lelièvre, T. Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials and biological systems. J. Chem. Theory Comput., 2020, 16(8), 4757-4775.
[http://dx.doi.org/10.1021/acs.jctc.0c00355] [PMID: 32559068]
[7]
Bitencourt-Ferreira, G.; Duarte da Silva, A.; Filgueira de Azevedo, W., J.r. Application of machine learning techniques to predict binding affinity for drug targets: A study of cyclin-dependent kinase 2. Curr. Med. Chem., 2021, 28(2), 253-265.
[http://dx.doi.org/10.2174/1875533XMTAy4MDQm4] [PMID: 31729287]
[8]
Xie, L.; Draizen, E.J.; Bourne, P.E. Harnessing big data for systems pharmacology. Annu. Rev. Pharmacol. Toxicol., 2017, 57(1), 245-262.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104659] [PMID: 27814027]
[9]
Kandoi, G.; Acencio, M.L.; Lemke, N. Prediction of druggable proteins using machine learning and systems biology: A mini-review. Front. Physiol., 2015, 6, 366.
[http://dx.doi.org/10.3389/fphys.2015.00366] [PMID: 26696900]
[10]
Abedi, M.; Marateb, H.R.; Mohebian, M.R.; Aghaee-Bakhtiari, S.H.; Nassiri, S.M.; Gheisari, Y. Systems biology and machine learning approaches identify drug targets in diabetic nephropathy. Sci. Rep., 2021, 11(1), 23452.
[http://dx.doi.org/10.1038/s41598-021-02282-3] [PMID: 34873190]
[11]
Huang, Y.W.; Hsu, Y.C.; Chuang, Y.H.; Chen, Y.T.; Lin, X.Y.; Fan, Y.W.; Pathak, N.; Yang, J.M. Discovery of moiety preference by Shapley value in protein kinase family using random forest models. BMC Bioinformatics, 2022, 23(S4), 130.
[http://dx.doi.org/10.1186/s12859-022-04663-5] [PMID: 35428180]
[12]
Goldman, S.; Das, R.; Yang, K.K.; Coley, C.W. Machine learning modeling of family wide enzyme-substrate specificity screens. PLOS Comput. Biol., 2022, 18(2), e1009853.
[http://dx.doi.org/10.1371/journal.pcbi.1009853] [PMID: 35143485]
[13]
Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res. Rev., 1996, 16(1), 3-50.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6] [PMID: 8788213]
[14]
Dobson, C.M. Chemical space and biology. Nature, 2004, 432(7019), 824-828.
[http://dx.doi.org/10.1038/nature03192] [PMID: 15602547]
[15]
Kirkpatrick, P.; Ellis, C. Chemical space. Nature, 2004, 432(7019), 823.
[http://dx.doi.org/10.1038/432823a]
[16]
Lipinski, C.; Hopkins, A. Navigating chemical space for biology and medicine. Nature, 2004, 432(7019), 855-861.
[http://dx.doi.org/10.1038/nature03193] [PMID: 15602551]
[17]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[18]
Stockwell, B.R. Exploring biology with small organic molecules. Nature, 2004, 432(7019), 846-854.
[http://dx.doi.org/10.1038/nature03196] [PMID: 15602550]
[19]
Maynard Smith, J. Natural selection and the concept of a protein space. Nature, 1970, 225(5232), 563-564.
[http://dx.doi.org/10.1038/225563a0] [PMID: 5411867]
[20]
Hou, J.; Jun, S.R.; Zhang, C.; Kim, S.H. Global mapping of the protein structure space and application in structure-based inference of protein function. Proc. Natl. Acad. Sci., 2005, 102(10), 3651-3656.
[http://dx.doi.org/10.1073/pnas.0409772102] [PMID: 15705717]
[21]
Bepler, T.; Berger, B. Learning the protein language: Evolution, structure, and function. Cell Syst., 2021, 12(6), 654-669.e3.
[http://dx.doi.org/10.1016/j.cels.2021.05.017] [PMID: 34139171]
[22]
Vila, J.A. About the protein space vastness. Protein J., 2020, 39(5), 472-475.
[http://dx.doi.org/10.1007/s10930-020-09939-4] [PMID: 33130957]
[23]
Hecht, N.; Monteil, C.L.; Perrière, G.; Vishkautzan, M.; Gur, E. Exploring protein space: From hydrolase to ligase by substitution. Mol. Biol. Evol., 2021, 38(3), 761-776.
[http://dx.doi.org/10.1093/molbev/msaa215] [PMID: 32870983]
[24]
Ogbunugafor, C.B. A Reflection on 50 Years of John Maynard Smith’s “Protein Space”. Genetics, 2020, 214(4), 749-754.
[http://dx.doi.org/10.1534/genetics.119.302764] [PMID: 32291354]
[25]
Ogbunugafor, C.B.; Hartl, D.L. A New Take on John Maynard Smith’s concept of protein space for understanding molecular evolution. PLOS Comput. Biol., 2016, 12(10), e1005046.
[http://dx.doi.org/10.1371/journal.pcbi.1005046] [PMID: 27736867]
[26]
Gorse, A.D. Diversity in medicinal chemistry space. Curr. Top. Med. Chem., 2006, 6(1), 3-18.
[http://dx.doi.org/10.2174/156802606775193310] [PMID: 16454754]
[27]
Langdon, S.R.; Brown, N.; Blagg, J. Scaffold diversity of exemplified medicinal chemistry space. J. Chem. Inf. Model., 2011, 51(9), 2174-2185.
[http://dx.doi.org/10.1021/ci2001428] [PMID: 21877753]
[28]
Westerhoff, H.V.; Palsson, B.O. The evolution of molecular biology into systems biology. Nat. Biotechnol., 2004, 22(10), 1249-1252.
[http://dx.doi.org/10.1038/nbt1020] [PMID: 15470464]
[29]
Limbu, S.; Dakshanamurthy, S. A new hybrid neural network deep learning method for protein–ligand binding affinity prediction and de novo drug design. Int. J. Mol. Sci., 2022, 23(22), 13912.
[http://dx.doi.org/10.3390/ijms232213912] [PMID: 36430386]
[30]
Hahn, D.F.; Bayly, C.I.; Boby, M.L.; Bruce Macdonald, H.E.; Chodera, J.D.; Gapsys, V.; Mey, A.S.J.S.; Mobley, D.L.; Benito, L.P.; Schindler, C.E.M.; Tresadern, G.; Warren, G.L. Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks. Living J. Comput. Mol. Sci., 2022, 4(1), 1497.
[http://dx.doi.org/10.33011/livecoms.4.1.1497] [PMID: 36382113]
[31]
Scott, O.B.; Gu, J.; Chan, A.W.E. Classification of protein-binding sites using a spherical convolutional neural network. J. Chem. Inf. Model., 2022, 62(22), 5383-5396.
[http://dx.doi.org/10.1021/acs.jcim.2c00832] [PMID: 36341715]
[32]
Sauer, S.; Matter, H.; Hessler, G.; Grebner, C. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods. Front Chem., 2022, 10, 1012507.
[http://dx.doi.org/10.3389/fchem.2022.1012507] [PMID: 36339033]
[33]
Bieniek, M.K.; Cree, B.; Pirie, R.; Horton, J.T.; Tatum, N.J.; Cole, D.J. An open-source molecular builder and free energy preparation workflow. Commun. Chem., 2022, 5(1), 136.
[http://dx.doi.org/10.1038/s42004-022-00754-9] [PMID: 36320862]
[34]
Mudedla, S.K.; Braka, A.; Wu, S. Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules. Front. Mol. Biosci., 2022, 9, 1002535.
[http://dx.doi.org/10.3389/fmolb.2022.1002535] [PMID: 36304919]
[35]
Ballester, P.J.; Mitchell, J.B.O. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics, 2010, 26(9), 1169-1175.
[http://dx.doi.org/10.1093/bioinformatics/btq112] [PMID: 20236947]
[36]
Ballester, P.J.; Schreyer, A.; Blundell, T.L. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J. Chem. Inf. Model., 2014, 54(3), 944-955.
[http://dx.doi.org/10.1021/ci500091r] [PMID: 24528282]
[37]
Li, H.; Leung, K-S.; Wong, M-H.; Ballester, P.J. The impact of docking pose generation error on the prediction of binding affinity. In: Computational intelligence methods for bioinformatics and biostatistics, 11th International Meeting, CIBB, Cambridge, UK, June 26-28, 2014, Springer: Cambridge, UK2015, pp. 231-241.
[http://dx.doi.org/10.1007/978-3-319-24462-4_20]
[38]
Li, H.; Leung, K.S.; Ballester, P.J.; Wong, M.H. istar: A web platform for large-scale protein-ligand docking. PLoS One, 2014, 9(1), e85678.
[http://dx.doi.org/10.1371/journal.pone.0085678] [PMID: 24475049]
[39]
Murugan, N.A.; Muvva, C.; Jeyarajpandian, C.; Jeyakanthan, J.; Subramanian, V. Performance of force-field- and machine learning-based scoring functions in ranking MAO-B protein–inhibitor complexes in relevance to developing Parkinson’s therapeutics. Int. J. Mol. Sci., 2020, 21(20), 7648.
[http://dx.doi.org/10.3390/ijms21207648] [PMID: 33081086]
[40]
Mohanan, A.; Melge, A.R.; Mohan, C.G. Predicting the molecular mechanism of EGFR domain II dimer binding interface by machine learning to identify potent small molecule inhibitor for treatment of cancer. J. Pharm. Sci., 2021, 110(2), 727-737.
[http://dx.doi.org/10.1016/j.xphs.2020.10.015] [PMID: 33058896]
[41]
Decherchi, S.; Cavalli, A. Thermodynamics and kinetics of drug-target binding by molecular simulation. Chem. Rev., 2020, 120(23), 12788-12833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00534] [PMID: 33006893]
[42]
Barra, C.; Ackaert, C.; Reynisson, B.; Schockaert, J.; Jessen, L.E.; Watson, M.; Jang, A.; Comtois-Marotte, S.; Goulet, J.P.; Pattijn, S.; Paramithiotis, E.; Nielsen, M. Immunopeptidomic data integration to artificial neural networks enhances protein-drug immunogenicity prediction. Front. Immunol., 2020, 11, 1304.
[http://dx.doi.org/10.3389/fimmu.2020.01304] [PMID: 32655572]
[43]
Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Improving detection of protein-ligand binding sites with 3D segmentation. Sci. Rep., 2020, 10(1), 5035.
[http://dx.doi.org/10.1038/s41598-020-61860-z] [PMID: 32193447]
[44]
D’Souza, S.; Prema, K.V.; Balaji, S. Machine learning models for drug–target interactions: Current knowledge and future directions. Drug Discov. Today, 2020, 25(4), 748-756.
[http://dx.doi.org/10.1016/j.drudis.2020.03.003] [PMID: 32171918]
[45]
Boyles, F.; Deane, C.M.; Morris, G.M. Learning from the ligand: using ligand-based features to improve binding affinity prediction. Bioinformatics, 2020, 36(3), 758-764.
[PMID: 31598630]
[46]
Aranha, M.P.; Spooner, C.; Demerdash, O.; Czejdo, B.; Smith, J.C.; Mitchell, J.C. Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets. Biochim. Biophys. Acta, 2020, 1864(4), 129535.
[http://dx.doi.org/10.1016/j.bbagen.2020.129535] [PMID: 31954798]
[47]
Zhao, L.; Wang, J.; Pang, L.; Liu, Y.; Zhang, J. GANsDTA: Predicting drug-target binding affinity using GANs. Front. Genet., 2020, 10, 1243.
[http://dx.doi.org/10.3389/fgene.2019.01243] [PMID: 31993067]
[48]
Miyazaki, Y.; Ono, N.; Huang, M.; Altaf-Ul-Amin, M.; Kanaya, S. Comprehensive exploration of target-specific ligands using a graph convolution neural network. Mol. Inform., 2020, 39(1-2), 1900095.
[http://dx.doi.org/10.1002/minf.201900095] [PMID: 31815371]
[49]
Zheng, L.; Fan, J.; Mu, Y. OnionNet: A multiple-layer intermolecular-contact-based convolutional neural network for protein–ligand binding affinity prediction. ACS Omega, 2019, 4(14), 15956-15965.
[http://dx.doi.org/10.1021/acsomega.9b01997] [PMID: 31592466]
[50]
Smith, C.C.; Chai, S.; Washington, A.R.; Lee, S.J.; Landoni, E.; Field, K.; Garness, J.; Bixby, L.M.; Selitsky, S.R.; Parker, J.S.; Savoldo, B.; Serody, J.S.; Vincent, B.G. Machine-learning prediction of tumor antigen immunogenicity in the selection of therapeutic epitopes. Cancer Immunol. Res., 2019, 7(10), 1591-1604.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0155] [PMID: 31515258]
[51]
Vincenzi, M.; Mercurio, F.A.; Leone, M. Protein interaction domains and post-translational modifications: Structural features and drug discovery applications. Curr. Med. Chem., 2020, 27(37), 6306-6355.
[http://dx.doi.org/10.2174/0929867326666190620101637] [PMID: 31250750]
[52]
Vincenzi, M.; Mercurio, F.A.; Leone, M. Protein interaction domains: Structural features and drug discovery applications (Part 2). Curr. Med. Chem., 2021, 28(5), 854-892.
[http://dx.doi.org/10.2174/0929867327666200114114142] [PMID: 31942846]
[53]
Guzenko, D.; Burley, S.K.; Duarte, J.M. Real time structural search of the protein data bank. PLOS Comput. Biol., 2020, 16(7), e1007970.
[http://dx.doi.org/10.1371/journal.pcbi.1007970] [PMID: 32639954]
[54]
Bittrich, S.; Burley, S.K.; Rose, A.S. Real-time structural motif searching in proteins using an inverted index strategy. PLOS Comput. Biol., 2020, 16(12), e1008502.
[http://dx.doi.org/10.1371/journal.pcbi.1008502] [PMID: 33284792]
[55]
Sehnal, D.; Bittrich, S.; Velankar, S.; Koča, J.; Svobodová, R.; Burley, S.K.; Rose, A.S. BinaryCIF and CIFTools—Lightweight, efficient and extensible macromolecular data management. PLOS Comput. Biol., 2020, 16(10), e1008247.
[http://dx.doi.org/10.1371/journal.pcbi.1008247] [PMID: 33075050]
[56]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[57]
Berman, H.M.; Vallat, B.; Lawson, C.L. The data universe of structural biology. IUCrJ, 2020, 7(4), 630-638.
[http://dx.doi.org/10.1107/S205225252000562X] [PMID: 32695409]
[58]
Sehnal, D.; Svobodová, R.; Berka, K.; Rose, A.S.; Burley, S.K.; Velankar, S.; Koča, J. High-performance macromolecular data delivery and visualization for the web. Acta Crystallogr. D Struct. Biol., 2020, 76(12), 1167-1173.
[http://dx.doi.org/10.1107/S2059798320014515] [PMID: 33263322]
[59]
Rose, Y.; Duarte, J.M.; Lowe, R.; Segura, J.; Bi, C.; Bhikadiya, C.; Chen, L.; Rose, A.S.; Bittrich, S.; Burley, S.K.; Westbrook, J.D. RCSB Protein Data Bank: Architectural advances towards integrated searching and efficient access to macromolecular structure data from the PDB archive. J. Mol. Biol., 2021, 433(11), 166704.
[http://dx.doi.org/10.1016/j.jmb.2020.11.003] [PMID: 33186584]
[60]
Canduri, F.; de Azevedo, W., J.r. Protein crystallography in drug discovery. Curr. Drug Targets, 2008, 9(12), 1048-1053.
[http://dx.doi.org/10.2174/138945008786949423] [PMID: 19128214]
[61]
Coates, L.; Myles, D.A. Prospects for atomic resolution and neutron crystallography in drug design. Curr. Drug Targets, 2004, 5(2), 173-178.
[http://dx.doi.org/10.2174/1389450043490613] [PMID: 15011950]
[62]
Van Drie, J.H.; Tong, L. Cryo-EM as a powerful tool for drug discovery. Bioorg. Med. Chem. Lett., 2020, 30(22), 127524.
[http://dx.doi.org/10.1016/j.bmcl.2020.127524] [PMID: 32890683]
[63]
Shimada, I.; Ueda, T.; Kofuku, Y.; Eddy, M.T.; Wüthrich, K. GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov., 2019, 18(1), 59-82.
[http://dx.doi.org/10.1038/nrd.2018.180] [PMID: 30410121]
[64]
Fadel, V.; Bettendorff, P.; Herrmann, T.; de Azevedo, W.F., J.r. ; Oliveira, E.B.; Yamane, T.; Wüthrich, K. Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon, 2005, 46(7), 759-767.
[http://dx.doi.org/10.1016/j.toxicon.2005.07.018] [PMID: 16185738]
[65]
Behzadi, P.; Gajdács, M. Worldwide Protein Data Bank (wwPDB): A virtual treasure for research in biotechnology. Eur. J. Microbiol. Immunol., 2022, 11(4), 77-86.
[http://dx.doi.org/10.1556/1886.2021.00020] [PMID: 34908533]
[66]
Perez, M.A.S.; Cuendet, M.A.; Röhrig, U.F.; Michielin, O.; Zoete, V. Structural prediction of Peptide–MHC binding modes. Methods Mol. Biol., 2022, 2405, 245-282.
[http://dx.doi.org/10.1007/978-1-0716-1855-4_13] [PMID: 35298818]
[67]
Dey, S.; Prilusky, J.; Levy, E.D. QSalignWeb: A server to predict and analyze protein quaternary structure. Front. Mol. Biosci., 2022, 8, 787510.
[http://dx.doi.org/10.3389/fmolb.2021.787510] [PMID: 35071324]
[68]
Christoffer, C.; Bharadwaj, V.; Luu, R.; Kihara, D. LZerD protein-protein docking webserver enhanced with de novo structure prediction. Front. Mol. Biosci., 2021, 8, 724947.
[http://dx.doi.org/10.3389/fmolb.2021.724947] [PMID: 34466411]
[69]
Westbrook, J.D.; Soskind, R.; Hudson, B.P.; Burley, S.K. Impact of the Protein Data Bank on antineoplastic approvals. Drug Discov. Today, 2020, 25(5), 837-850.
[http://dx.doi.org/10.1016/j.drudis.2020.02.002] [PMID: 32068073]
[70]
Ionescu, M.I. An overview of the crystallized structures of the SARS-CoV-2. Protein J., 2020, 39(6), 600-618.
[http://dx.doi.org/10.1007/s10930-020-09933-w] [PMID: 33098476]
[71]
Goodsell, D.S.; Burley, S.K. RCSB Protein Data Bank tools for 3D structure-guided cancer research: Human papillomavirus (HPV) case study. Oncogene, 2020, 39(43), 6623-6632.
[http://dx.doi.org/10.1038/s41388-020-01461-2] [PMID: 32939013]
[72]
Di Costanzo, L.; Geremia, S. Atomic details of carbon-based nanomolecules interacting with proteins. Molecules, 2020, 25(15), 3555.
[http://dx.doi.org/10.3390/molecules25153555] [PMID: 32759758]
[73]
Wang, J.; Yazdani, S.; Han, A.; Schapira, M. Structure-based view of the druggable genome. Drug Discov. Today, 2020, 25(3), 561-567.
[http://dx.doi.org/10.1016/j.drudis.2020.02.006] [PMID: 32084498]
[74]
Copoiu, L.; Malhotra, S. The current structural glycome landscape and emerging technologies. Curr. Opin. Struct. Biol., 2020, 62, 132-139.
[http://dx.doi.org/10.1016/j.sbi.2019.12.020] [PMID: 32006784]
[75]
Haas, D.J. The early history of cryo-cooling for macromolecular crystallography. IUCrJ, 2020, 7(2), 148-157.
[http://dx.doi.org/10.1107/S2052252519016993] [PMID: 32148843]
[76]
Bascos, N.A.D.; Landry, S.J. A history of molecular chaperone structures in the Protein Data Bank. Int. J. Mol. Sci., 2019, 20(24), 6195.
[http://dx.doi.org/10.3390/ijms20246195] [PMID: 31817979]
[77]
Weber, P.; Pissis, C.; Navaza, R.; Mechaly, A.E.; Saul, F.; Alzari, P.M.; Haouz, A. High-throughput crystallization pipeline at the crystallography core facility of the institut pasteur. Molecules, 2019, 24(24), 4451.
[http://dx.doi.org/10.3390/molecules24244451] [PMID: 31817305]
[78]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[79]
Heberlé, G.; de Azevedo, W.F., J.r. Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem., 2011, 18(9), 1339-1352.
[http://dx.doi.org/10.2174/092986711795029573] [PMID: 21366530]
[80]
Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Molegro virtual docker for docking. Methods Mol. Biol., 2019, 2053, 149-167.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_10] [PMID: 31452104]
[81]
Sterling, T.; Irwin, J.J. ZINC 15 – ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[82]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[83]
Irwin, J.J.; Shoichet, B.K. ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[84]
Anwar, F.; Naqvi, S.; Al-Abbasi, F.A.; Neelofar, N.; Kumar, V.; Sahoo, A.; Kamal, M.A. Targeting COVID-19 in Parkinson’s patients: Drugs repurposed. Curr. Med. Chem., 2021, 28(12), 2392-2408.
[PMID: 32881656]
[85]
Wang, N.; Qiu, P.; Cui, W.; Yan, X.; Zhang, B.; He, S. Recent advances in multi-target anti-alzheimer disease compounds (2013 Up to the Present). Curr. Med. Chem., 2019, 26(30), 5684-5710.
[http://dx.doi.org/10.2174/0929867326666181203124102] [PMID: 30501591]
[86]
Konreddy, A.K.; Rani, G.U.; Lee, K.; Choi, Y. Recent drug-repurposing-driven advances in the discovery of novel antibiotics. Curr. Med. Chem., 2019, 26(28), 5363-5388.
[http://dx.doi.org/10.2174/0929867325666180706101404] [PMID: 29984648]
[87]
Mernea, M.; Martin, E.C.; Petrescu, A.J.; Avram, S. Deep learning in the quest for compound nomination for fighting COVID-19. Curr. Med. Chem., 2021, 28(28), 5699-5732.
[http://dx.doi.org/10.2174/0929867328666210113170222] [PMID: 33441063]
[88]
Grassi, G.; Grassi, M. Drug repurposing in human cancers. Curr. Med. Chem., 2020, 27(42), 7213.
[http://dx.doi.org/10.2174/092986732742201105104417] [PMID: 33342397]
[89]
Musella, S.; Verna, G.; Fasano, A.; Di Micco, S. New perspectives on machine learning in drug discovery. Curr. Med. Chem., 2021, 28(32), 6704-6728.
[http://dx.doi.org/10.2174/0929867327666201111144048] [PMID: 33176630]
[90]
Schcolnik-Cabrera, A.; Juárez-López, D.; Duenas-Gonzalez, A. Perspectives on drug repurposing. Curr. Med. Chem., 2021, 28(11), 2085-2099.
[http://dx.doi.org/10.2174/0929867327666200831141337] [PMID: 32867630]
[91]
Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Molecular docking simulations with arguslab. Methods Mol. Biol., 2019, 2053, 203-220.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_13] [PMID: 31452107]
[92]
Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Docking with SwissDock. Methods Mol. Biol., 2019, 2053, 189-202.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_12]
[93]
Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. How docking programs work. Methods Mol. Biol., 2019, 2053, 35-50.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_3] [PMID: 31452097]
[94]
Bitencourt-Ferreira, G.; Pintro, V.O.; de Azevedo, W.F., J.r. Docking with AutoDock4. Methods Mol. Biol., 2019, 2053, 125-148.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_9] [PMID: 31452103]
[95]
Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Docking with GemDock. Methods Mol. Biol., 2019, 2053, 169-188.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_11] [PMID: 31452105]
[96]
Pintro, V.O.; de Azevedo, W.F., J.r. Optimized virtual screening workflow: Towards target-based polynomial scoring functions for HIV-1 protease. Comb. Chem. High Throughput Screen., 2018, 20(9), 820-827.
[http://dx.doi.org/10.2174/1386207320666171121110019] [PMID: 29165067]
[97]
Santana Azevedo, L.; Pretto Moraes, F.; Morrone Xavier, M.; Ozorio Pantoja, E.; Villavicencio, B.; Aline Finck, J.; Menegaz Proenca, A.; Beiestorf Rocha, K.; Filgueira de Azevedo, W. Recent progress of molecular docking simulations applied to development of drugs. Curr. Bioinform., 2012, 7(4), 352-365.
[http://dx.doi.org/10.2174/157489312803901063]
[98]
De Azevedo, W.F., J.r. Structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 261-263.
[PMID: 20214598]
[99]
De Azevedo, W., J.r. MolDock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334.
[http://dx.doi.org/10.2174/138945010790711941] [PMID: 20210757]
[100]
Breda, A.; Basso, L.; Santos, D.; de Azevedo, W., J.r. Virtual screening of drugs: Score functions, docking, and drug design. Curr. Computeraided Drug Des., 2008, 4(4), 265-272.
[http://dx.doi.org/10.2174/157340908786786047]
[101]
Jimenez, M.; Campillo, N.E.; Canelles, M. COVID-19 vaccine race: Analysis of age-dependent immune responses against SARS-CoV-2 indicates that more than just one strategy may be needed. Curr. Med. Chem., 2021, 28(20), 3964-3979.
[http://dx.doi.org/10.2174/1875533XMTEwBOTYhx] [PMID: 33109026]
[102]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942.
[http://dx.doi.org/10.2174/1875533XMTA5rMDYp5] [PMID: 32787752]
[103]
Tarasova, O.; Ivanov, S.; Filimonov, D.A.; Poroikov, V. Data and text mining help identify key proteins involved in the molecular mechanisms shared by SARS-CoV-2 and HIV-1. Molecules, 2020, 25(12), 2944.
[http://dx.doi.org/10.3390/molecules25122944] [PMID: 32604797]
[104]
Luan, B.; Huynh, T.; Cheng, X.; Lan, G.; Wang, H.R. Targeting proteases for treating COVID-19. J. Proteome Res., 2020, 19(11), 4316-4326.
[http://dx.doi.org/10.1021/acs.jproteome.0c00430] [PMID: 33090793]
[105]
Li, J.; Zhou, X.; Zhang, Y.; Zhong, F.; Lin, C.; McCormick, P.J.; Jiang, F.; Luo, J.; Zhou, H.; Wang, Q.; Fu, Y.; Duan, J.; Zhang, J. Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a unique binding mode. Sci. Bull., 2021, 66(7), 661-663.
[http://dx.doi.org/10.1016/j.scib.2020.10.018] [PMID: 33163253]
[106]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[107]
Mengist, H.M.; Fan, X.; Jin, T. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct. Target. Ther., 2020, 5(1), 67.
[http://dx.doi.org/10.1038/s41392-020-0178-y] [PMID: 32388537]
[108]
Hussein, R.K.; Elkhair, H.M. Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19. J. Mol. Struct., 2021, 1231, 129979.
[http://dx.doi.org/10.1016/j.molstruc.2021.129979] [PMID: 33518801]
[109]
Ronsisvalle, S.; Panarello, F.; Di Mauro, R.; Bernardini, R.; Volti, G.L.; Cantarella, G. Anti-malarial drugs are not created equal for SARS-CoV-2 treatment: A computational analysis evidence. Curr. Pharm. Des., 2021, 27(10), 1323-1329.
[http://dx.doi.org/10.2174/1381612826666201210092736] [PMID: 33302855]
[110]
Li, Z.; Li, X.; Huang, Y.Y.; Wu, Y.; Liu, R.; Zhou, L.; Lin, Y.; Wu, D.; Zhang, L.; Liu, H.; Xu, X.; Yu, K.; Zhang, Y.; Cui, J.; Zhan, C.G.; Wang, X.; Luo, H.B. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc. Natl. Acad. Sci. USA, 2020, 117(44), 27381-27387.
[http://dx.doi.org/10.1073/pnas.2010470117] [PMID: 33051297]
[111]
Achutha, A.S.; Pushpa, V.L.; Suchitra, S. Theoretical insights into the Anti-SARS-CoV-2 activity of chloroquine and its analogs and in silico screening of main protease inhibitors. J. Proteome Res., 2020, 19(11), 4706-4717.
[http://dx.doi.org/10.1021/acs.jproteome.0c00683] [PMID: 32960061]
[112]
Tripathi, P.K.; Upadhyay, S.; Singh, M.; Raghavendhar, S.; Bhardwaj, M.; Sharma, P.; Patel, A.K. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int. J. Biol. Macromol., 2020, 164, 2622-2631.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.166] [PMID: 32853604]
[113]
Nandi, S.; Kumar, M.; Saxena, M.; Saxena, A.K. The antiviral and antimalarial drug repurposing in quest of chemotherapeutics to combat COVID-19 utilizing structure-based molecular docking. Comb. Chem. High Throughput Screen., 2021, 24(7), 1055-1068.
[http://dx.doi.org/10.2174/1386207323999200824115536] [PMID: 32838713]
[114]
Baildya, N.; Ghosh, N.N.; Chattopadhyay, A.P. Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies. J. Mol. Struct., 2020, 1219, 128595.
[http://dx.doi.org/10.1016/j.molstruc.2020.128595] [PMID: 32834108]
[115]
Mukherjee, S.; Dasgupta, S.; Adhikary, T.; Adhikari, U.; Panja, S.S. Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: Inhibitor modelling study through molecular docking and MD-simulation study. J. Biomol. Struct. Dyn., 2021, 39(18), 7322-7334.
[http://dx.doi.org/10.1080/07391102.2020.1804458] [PMID: 32772895]
[116]
Braz, H.L.B.; Silveira, J.A.M.; Marinho, A.D.; de Moraes, M.E.A.; Moraes Filho, M.O.; Monteiro, H.S.A.; Jorge, R.J.B. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020, 56(3), 106119.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106119] [PMID: 32738306]
[117]
Silva Arouche, T.D.; Reis, A.F.; Martins, A.Y.; S Costa, J.F.; Carvalho Junior, R.N.; J C Neto, A.M. Interactions between remdesivir, ribavirin, favipiravir, galidesivir, hydroxychloroquine and chloroquine with fragment molecular of the COVID-19 main protease with inhibitor N3 complex (PDB ID:6LU7) using molecular docking. J. Nanosci. Nanotechnol., 2020, 20(12), 7311-7323.
[http://dx.doi.org/10.1166/jnn.2020.18955] [PMID: 32711596]
[118]
Marinho, E.M.; Batista de Andrade Neto, J.; Silva, J.; Rocha da Silva, C.; Cavalcanti, B.C.; Marinho, E.S.; Nobre Júnior, H.V. Virtual screening based on molecular docking of possible inhibitors of COVID-19 main protease. Microb. Pathog., 2020, 148, 104365.
[http://dx.doi.org/10.1016/j.micpath.2020.104365] [PMID: 32619669]
[119]
Fantini, J.; Chahinian, H.; Yahi, N. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int. J. Antimicrob. Agents, 2020, 56(2), 106020.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106020]
[120]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2020, 5, 1-7.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
[121]
Hagar, M.; Ahmed, H.A.; Aljohani, G.; Alhaddad, O.A. Investigation of some antiviral N-heterocycles as COVID 19 drug: Molecular docking and DFT calculations. Int. J. Mol. Sci., 2020, 21(11), 3922.
[http://dx.doi.org/10.3390/ijms21113922] [PMID: 32486229]
[122]
Rehman, M.T.; AlAjmi, M.F.; Hussain, A. Natural compounds as inhibitors of SARS-CoV-2 main protease (3CLpro): A molecular docking and simulation approach to combat COVID-19. Curr. Pharm. Des., 2021, 27(33), 3577-3589.
[http://dx.doi.org/10.2174/18734286MTEx9NTUg2] [PMID: 33200697]
[123]
Hoffmann, M.; Mösbauer, K.; Hofmann-Winkler, H.; Kaul, A.; Kleine-Weber, H.; Krüger, N.; Gassen, N.C.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585(7826), 588-590.
[http://dx.doi.org/10.1038/s41586-020-2575-3] [PMID: 32698190]
[124]
Kupferschmidt, K. Big studies dim hopes for hydroxychloroquine. Science, 2020, 368(6496), 1166-1167.
[http://dx.doi.org/10.1126/science.368.6496.1166] [PMID: 32527806]
[125]
Kuhn, D.; Weskamp, N.; Hüllermeier, E.; Klebe, G. Functional classification of protein kinase binding sites using Cavbase. ChemMedChem, 2007, 2(10), 1432-1447.
[http://dx.doi.org/10.1002/cmdc.200700075] [PMID: 17694525]
[126]
Cao, D.S.; Zhou, G.H.; Liu, S.; Zhang, L.X.; Xu, Q.S.; He, M.; Liang, Y.Z. Large-scale prediction of human kinase–inhibitor interactions using protein sequences and molecular topological structures. Anal. Chim. Acta, 2013, 792, 10-18.
[http://dx.doi.org/10.1016/j.aca.2013.07.003] [PMID: 23910962]
[127]
Rask-Andersen, M.; Masuram, S.; Schiöth, H.B. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol., 2014, 54(1), 9-26.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135943] [PMID: 24016212]
[128]
Carles, F.; Bourg, S.; Meyer, C.; Bonnet, P. PKIDB: A curated, annotated and updated database of protein kinase inhibitors in clinical trials. Molecules, 2018, 23(4), 908.
[http://dx.doi.org/10.3390/molecules23040908] [PMID: 29662024]
[129]
Li, L.; Koh, C.C.; Reker, D.; Brown, J.B.; Wang, H.; Lee, N.K.; Liow, H.; Dai, H.; Fan, H.M.; Chen, L.; Wei, D.Q. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees. Sci. Rep., 2019, 9(1), 7703.
[http://dx.doi.org/10.1038/s41598-019-43125-6] [PMID: 31118426]
[130]
Mathai, N.; Stork, C.; Kirchmair, J. BonMOLière: Small-sized libraries of readily purchasable compounds, optimized to produce genuine hits in biological screens across the protein space. Int. J. Mol. Sci., 2021, 22(15), 7773.
[http://dx.doi.org/10.3390/ijms22157773] [PMID: 34360558]
[131]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[132]
Stern, J.; Hedelius, B.; Fisher, O.; Billings, W.M.; Della Corte, D. Evaluation of deep neural network prospr for accurate protein distance predictions on CASP14 targets. Int. J. Mol. Sci., 2021, 22(23), 12835.
[http://dx.doi.org/10.3390/ijms222312835] [PMID: 34884640]
[133]
Roche, R.; Bhattacharya, S.; Bhattacharya, D. Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins. PLOS Comput. Biol., 2021, 17(2), e1008753.
[http://dx.doi.org/10.1371/journal.pcbi.1008753] [PMID: 33621244]
[134]
Cretin, G.; Galochkina, T.; de Brevern, A.G.; Gelly, J.C. PYTHIA: Deep learning approach for local protein conformation prediction. Int. J. Mol. Sci., 2021, 22(16), 8831.
[http://dx.doi.org/10.3390/ijms22168831] [PMID: 34445537]
[135]
Callaway, E. What’s next for AlphaFold and the AI protein-folding revolution. Nature, 2022, 604(7905), 234-238.
[http://dx.doi.org/10.1038/d41586-022-00997-5] [PMID: 35418629]
[136]
Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.J.; Dannenfelser, R.; Dun, C.; Edrisi, M.; Elworth, R.A.L.; Kille, B.; Kyrillidis, A.; Nakhleh, L.; Wolfe, C.R.; Yan, Z.; Yao, V.; Treangen, T.J. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun., 2022, 13(1), 1728.
[http://dx.doi.org/10.1038/s41467-022-29268-7] [PMID: 35365602]
[137]
Bayly-Jones, C.; Whisstock, J.C. Mining folded proteomes in the era of accurate structure prediction. PLOS Comput. Biol., 2022, 18(3), e1009930.
[http://dx.doi.org/10.1371/journal.pcbi.1009930] [PMID: 35333855]
[138]
Ornes, S. Researchers turn to deep learning to decode protein structures. Proc. Natl. Acad. Sci. USA, 2022, 119(10), e2202107119.
[http://dx.doi.org/10.1073/pnas.2202107119] [PMID: 35235461]
[139]
Orlando, G.; Raimondi, D.; Duran-Romaña, R.; Moreau, Y.; Schymkowitz, J.; Rousseau, F. PyUUL provides an interface between biological structures and deep learning algorithms. Nat. Commun., 2022, 13(1), 961.
[http://dx.doi.org/10.1038/s41467-022-28327-3] [PMID: 35181656]
[140]
Lee, D.; Xiong, D.; Wierbowski, S.; Li, L.; Liang, S.; Yu, H. Deep learning methods for 3D structural proteome and interactome modeling. Curr. Opin. Struct. Biol., 2022, 73, 102329.
[http://dx.doi.org/10.1016/j.sbi.2022.102329] [PMID: 35139457]
[141]
Pakhrin, S.C.; Shrestha, B.; Adhikari, B.; Kc, D.B. Deep learning-based advances in protein structure prediction. Int. J. Mol. Sci., 2021, 22(11), 5553.
[http://dx.doi.org/10.3390/ijms22115553] [PMID: 34074028]
[142]
Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876.
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]
[143]
Anderson, E.; Havener, T.M.; Zorn, K.M.; Foil, D.H.; Lane, T.R.; Capuzzi, S.J.; Morris, D.; Hickey, A.J.; Drewry, D.H.; Ekins, S. Synergistic drug combinations and machine learning for drug repurposing in chordoma. Sci. Rep., 2020, 10(1), 12982.
[http://dx.doi.org/10.1038/s41598-020-70026-w] [PMID: 32737414]
[144]
Noor, A.; Bindal, P.; Ramirez, M.; Vredenburgh, J. Chordoma: A case report and review of literature. Am. J. Case Rep., 2020, 21, e918927.
[http://dx.doi.org/10.12659/AJCR.918927] [PMID: 31969553]
[145]
Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. Methods Mol. Biol., 2019, 2053, 1-12.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_1] [PMID: 31452095]
[146]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F., J.r. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[PMID: 27686428]
[147]
da Silva, A.D.; Bitencourt-Ferreira, G.; Azevedo, W.F., J.r. Taba: A tool to analyze the binding affinity. J. Comput. Chem., 2020, 41(1), 69-73.
[http://dx.doi.org/10.1002/jcc.26048] [PMID: 31410856]
[148]
McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular docking with deep learning. J. Cheminform., 2021, 13(1), 43.
[http://dx.doi.org/10.1186/s13321-021-00522-2] [PMID: 34108002]
[149]
Sunseri, J.; Koes, D.R. Virtual Screening with Gnina 1.0. Molecules, 2021, 26(23), 7369.
[http://dx.doi.org/10.3390/molecules26237369] [PMID: 34885952]
[150]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370]
[151]
Baumgartner, M.P.; Evans, D.A. Lessons learned in induced fit docking and metadynamics in the drug design data resource grand challenge 2. J. Comput. Aided Mol. Des., 2018, 32(1), 45-58.
[http://dx.doi.org/10.1007/s10822-017-0081-y] [PMID: 29127581]
[152]
Canduri, F.; Teodoro, L.G.V.L.; Fadel, V.; Lorenzi, C.C.B.; Hial, V.; Gomes, R.A.S.; Neto, J.R.; de Azevedo, W.F., J.r. Structure of human uropepsin at 2.45 Å resolution. Acta Crystallogr. D Biol. Crystallogr., 2001, 57(11), 1560-1570.
[http://dx.doi.org/10.1107/S0907444901013865] [PMID: 11679720]
[153]
de Azevedo, W.F., J.r. ; Canduri, F.; dos Santos, D.M.; Silva, R.G.; de Oliveira, J.S.; de Carvalho, L.P.S.; Basso, L.A.; Mendes, M.A.; Palma, M.S.; Santos, D.S. Crystal structure of human purine nucleoside phosphorylase at 2.3Å resolution. Biochem. Biophys. Res. Commun., 2003, 308(3), 545-552.
[http://dx.doi.org/10.1016/S0006-291X(03)01431-1] [PMID: 12914785]
[154]
Pereira, J.H.; de Oliveira, J.S.; Canduri, F.; Dias, M.V.; Palma, M.S.; Basso, L.A.; Santos, D.S.; de Azevedo, W.F., J.r. Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 12), 2310-2319.
[155]
Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human CDK2 complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-2), 518-526.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
[156]
Dias, M.V.B.; Vasconcelos, I.B.; Prado, A.M.X.; Fadel, V.; Basso, L.A.; de Azevedo, W.F., J.r. ; Santos, D.S. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. J. Struct. Biol., 2007, 159(3), 369-380.
[http://dx.doi.org/10.1016/j.jsb.2007.04.009] [PMID: 17588773]
[157]
Bezerra, G.A.; Oliveira, T.M.; Moreno, F.B.M.B.; de Souza, E.P.; da Rocha, B.A.M.; Benevides, R.G.; Delatorre, P.; de Azevedo, W.F., J.r. ; Cavada, B.S. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: New insights into the understanding of the structure–biological activity relationship in legume lectins. J. Struct. Biol., 2007, 160(2), 168-176.
[http://dx.doi.org/10.1016/j.jsb.2007.07.012] [PMID: 17881248]
[158]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[159]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[160]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[161]
Ain, Q.U.; Aleksandrova, A.; Roessler, F.D.; Ballester, P.J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2015, 5(6), 405-424.
[http://dx.doi.org/10.1002/wcms.1225] [PMID: 27110292]
[162]
Quiroga, R.; Villarreal, M.A. Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One, 2016, 11(5), e0155183.
[http://dx.doi.org/10.1371/journal.pone.0155183] [PMID: 27171006]
[163]
Shulga, D.A.; Ivanov, N.N.; Palyulin, V.A. In silico structure-based approach for group efficiency estimation in fragment-based drug design using evaluation of fragment contributions. Molecules, 2022, 27(6), 1985.
[http://dx.doi.org/10.3390/molecules27061985] [PMID: 35335347]
[164]
Wang, D.D.; Chan, M.T. Protein-ligand binding affinity prediction based on profiles of intermolecular contacts. Comput. Struct. Biotechnol. J., 2022, 20, 1088-1096.
[http://dx.doi.org/10.1016/j.csbj.2022.02.004] [PMID: 35317230]
[165]
Singh, N.; Chaput, L.; Villoutreix, B.O. Fast rescoring protocols to improve the performance of structure-based virtual screening performed on protein–protein interfaces. J. Chem. Inf. Model., 2020, 60(8), 3910-3934.
[http://dx.doi.org/10.1021/acs.jcim.0c00545] [PMID: 32786511]
[166]
Lu, H.; Wei, Z.; Wang, C.; Guo, J.; Zhou, Y.; Wang, Z.; Liu, H. Redesigning Vina@QNLM for ultra-large-scale molecular docking and screening on a sunway supercomputer. Front Chem., 2021, 9, 750325.
[http://dx.doi.org/10.3389/fchem.2021.750325] [PMID: 34778205]
[167]
Sharma, P.; Vijayan, V.; Pant, P.; Sharma, M.; Vikram, N.; Kaur, P.; Singh, T.P.; Sharma, S. Identification of potential drug candidates to combat COVID-19: A structural study using the main protease (mpro) of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(17), 6649-6659.
[http://dx.doi.org/10.1080/07391102.2020.1798286] [PMID: 32741313]
[168]
Gupta, A.; Rani, C.; Pant, P.; Vijayan, V.; Vikram, N.; Kaur, P.; Singh, T.P.; Sharma, S.; Sharma, P. Structure-based virtual screening and biochemical validation to discover a potential inhibitor of the SARS-CoV-2 main protease. ACS Omega, 2020, 5(51), 33151-33161.
[http://dx.doi.org/10.1021/acsomega.0c04808] [PMID: 33398250]
[169]
Shytaj, I.L.; Fares, M.; Gallucci, L.; Lucic, B.; Tolba, M.M.; Zimmermann, L.; Adler, J.M.; Xing, N.; Bushe, J.; Gruber, A.D.; Ambiel, I.; Taha Ayoub, A.; Cortese, M.; Neufeldt, C.J.; Stolp, B.; Sobhy, M.H.; Fathy, M.; Zhao, M.; Laketa, V.; Diaz, R.S.; Sutton, R.E.; Chlanda, P.; Boulant, S.; Bartenschlager, R.; Stanifer, M.L.; Fackler, O.T.; Trimpert, J.; Savarino, A.; Lusic, M. The FDA-approved drug cobicistat synergizes with remdesivir to inhibit SARS-CoV-2 replication in vitro and decreases viral titers and disease progression in Syrian Hamsters. MBio, 2022, 13(2), e03705-21.
[http://dx.doi.org/10.1128/mbio.03705-21] [PMID: 35229634]
[170]
Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S.D.; Kousoulas, K.G. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J. Med. Virol., 2020, 92(10), 2087-2095.
[http://dx.doi.org/10.1002/jmv.25985] [PMID: 32374457]
[171]
Jalalvand, A.; Khatouni, S.B.; Najafi, Z.B.; Fatahinia, F.; Ismailzadeh, N.; Farahmand, B. Computational drug repurposing study of antiviral drugs against main protease, RNA polymerase, and spike proteins of SARS-CoV-2 using molecular docking method. J. Basic Clin. Physiol. Pharmacol., 2022, 33(1), 85-95.
[http://dx.doi.org/10.1515/jbcpp-2020-0369] [PMID: 34265888]
[172]
Ohashi, H.; Watashi, K.; Saso, W.; Shionoya, K.; Iwanami, S.; Hirokawa, T.; Shirai, T.; Kanaya, S.; Ito, Y.; Kim, K.S.; Nomura, T.; Suzuki, T.; Nishioka, K.; Ando, S.; Ejima, K.; Koizumi, Y.; Tanaka, T.; Aoki, S.; Kuramochi, K.; Suzuki, T.; Hashiguchi, T.; Maenaka, K.; Matano, T.; Muramatsu, M.; Saijo, M.; Aihara, K.; Iwami, S.; Takeda, M.; McKeating, J.A.; Wakita, T. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience, 2021, 24(4), 102367.
[http://dx.doi.org/10.1016/j.isci.2021.102367] [PMID: 33817567]
[173]
Tatar, G.; Salmanli, M.; Dogru, Y.; Tuzuner, T. Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: Molecular docking, molecular dynamics simulation studies. J. Biomol. Struct. Dyn., 2022, 40(17), 7656-7665.
[PMID: 33749547]
[174]
Rivero-Segura, N.A.; Gomez-Verjan, J.C. In silico screening of natural products isolated from Mexican herbal medicines against COVID-19. Biomolecules, 2021, 11(2), 216.
[http://dx.doi.org/10.3390/biom11020216] [PMID: 33557097]
[175]
Zhu, Y.; Scholle, F.; Kisthardt, S.C.; Xie, D.Y. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology, 2022, 571, 21-33.
[http://dx.doi.org/10.1016/j.virol.2022.04.005] [PMID: 35439707]
[176]
Bahun, M.; Jukić, M.; Oblak, D.; Kranjc, L.; Bajc, G.; Butala, M.; Bozovičar, K.; Bratkovič, T.; Podlipnik, Č.; Poklar Ulrih, N. Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chem., 2022, 373(Pt B), 131594.
[http://dx.doi.org/10.1016/j.foodchem.2021.131594] [PMID: 34838409]
[177]
Mavian, C.; Coman, R.M.; Zhang, X.; Pomeroy, S.; Ostrov, D.A.; Dunn, B.M.; Sleasman, J.W.; Goodenow, M.M. Molecular docking-based screening for novel inhibitors of the human immunodeficiency virus type 1 protease that effectively reduce the viral replication in human cells. J. AIDS Clin. Res., 2021, 12(5), 841.
[PMID: 34950525]
[178]
Wei, Y.; Yang, J.; Kishore Sakharkar, M.; Wang, X.; Liu, Q.; Du, J.; Zhang, J.J. Evaluating the inhibitory effect of eight compounds from Daphne papyracea against the NS3/4A protease of hepatitis C virus. Nat. Prod. Res., 2020, 34(11), 1607-1610.
[http://dx.doi.org/10.1080/14786419.2018.1519825] [PMID: 30449158]
[179]
Viegas, D.J.; Edwards, T.G.; Bloom, D.C.; Abreu, P.A. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res., 2019, 172, 104621.
[http://dx.doi.org/10.1016/j.antiviral.2019.104621] [PMID: 31634495]
[180]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[181]
Ewing, T.J.A.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des., 2001, 15(5), 411-428.
[http://dx.doi.org/10.1023/A:1011115820450] [PMID: 11394736]
[182]
Tahir ul Qamar, M.; Zhu, X.T.; Chen, L.L.; Alhussain, L.; Alshiekheid, M.A.; Theyab, A.; Algahtani, M. Target-specific machine learning scoring function improved structure-based virtual screening performance for SARS-CoV-2 drugs development. Int. J. Mol. Sci., 2022, 23(19), 11003.
[http://dx.doi.org/10.3390/ijms231911003] [PMID: 36232307]
[183]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[184]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[185]
Wójcikowski, M.; Zielenkiewicz, P.; Siedlecki, P. Open Drug Discovery Toolkit (ODDT): A new open-source player in the drug discovery field. J. Cheminform., 2015, 7(1), 26.
[http://dx.doi.org/10.1186/s13321-015-0078-2] [PMID: 26101548]
[186]
de Azevedo, W.F., J.r. Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366.
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[187]
Bitencourt-Ferreira, G.; de Azevedo, W.F., J.r. Molecular dynamics simulations with NAMD2. Methods Mol. Biol., 2019, 2053, 109-124.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_8] [PMID: 31452102]
[188]
Santos, L.H.S.; Ferreira, R.S.; Caffarena, E.R. Integrating molecular docking and molecular dynamics simulations. Methods Mol. Biol., 2019, 2053, 13-34.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_2] [PMID: 31452096]
[189]
Hatamipour, M.; Hadizadeh, F.; Jaafari, M.R.; Khashyarmanesh, Z.; Sathyapalan, T.; Sahebkar, A. Anti-proliferative potential of fluorinated curcumin analogues: Experimental and computational analysis and review of the literature. Curr. Med. Chem., 2022, 29(8), 1459-1471.
[http://dx.doi.org/10.2174/0929867328666210910141316] [PMID: 34514978]
[190]
Kim, C.; Kim, E. Rational drug design approach of receptor tyrosine kinase type III inhibitors. Curr. Med. Chem., 2020, 26(42), 7623-7640.
[http://dx.doi.org/10.2174/0929867325666180622143548] [PMID: 29932031]
[191]
Hernández-Rodríguez, M.; Rosales-Hernández, M.C.; Mendieta-Wejebe, J.E.; Martínez-Archundia, M.; Basurto, J.C. Current tools and methods in Molecular Dynamics (MD) simulations for drug design. Curr. Med. Chem., 2016, 23(34), 3909-3924.
[http://dx.doi.org/10.2174/0929867323666160530144742] [PMID: 27237821]
[192]
Azam, F.; Eid, E.E.M.; Almutairi, A. Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J. Mol. Struct., 2021, 1246, 131124.
[http://dx.doi.org/10.1016/j.molstruc.2021.131124] [PMID: 34305175]
[193]
Dutta, K.; Elmezayen, A.D.; Al-Obaidi, A.; Zhu, W.; Morozova, O.V.; Shityakov, S.; Khalifa, I. Seq12, Seq12m, and Seq13m, peptide analogues of the spike glycoprotein shows antiviral properties against SARS-CoV-2: An in silico study through molecular docking, molecular dynamics simulation, and MM-PB/GBSA calculations. J. Mol. Struct., 2021, 1246, 131113.
[http://dx.doi.org/10.1016/j.molstruc.2021.131113] [PMID: 34305174]
[194]
Zarezade, V.; Rezaei, H.; Shakerinezhad, G.; Safavi, A.; Nazeri, Z.; Veisi, A.; Azadbakht, O.; Hatami, M.; Sabaghan, M.; Shajirat, Z. The identification of novel inhibitors of human angiotensin-converting enzyme 2 and main protease of Sars-Cov-2: A combination of in silico methods for treatment of COVID-19. J. Mol. Struct., 2021, 1237, 130409.
[http://dx.doi.org/10.1016/j.molstruc.2021.130409] [PMID: 33840836]
[195]
Sepay, N.; Sekar, A.; Halder, U.C.; Alarifi, A.; Afzal, M. Anti-COVID-19 terpenoid from marine sources: A docking, admet and molecular dynamics study. J. Mol. Struct., 2021, 1228, 129433.
[http://dx.doi.org/10.1016/j.molstruc.2020.129433] [PMID: 33071352]
[196]
Walsh, I.; Fishman, D.; Garcia-Gasulla, D.; Titma, T.; Pollastri, G.; Capriotti, E.; Casadio, R.; Capella-Gutierrez, S.; Cirillo, D.; Del Conte, A.; Dimopoulos, A.C.; Del Angel, V.D.; Dopazo, J.; Fariselli, P.; Fernández, J.M.; Huber, F.; Kreshuk, A.; Lenaerts, T.; Martelli, P.L.; Navarro, A.; Broin, P.Ó.; Piñero, J.; Piovesan, D.; Reczko, M.; Ronzano, F.; Satagopam, V.; Savojardo, C.; Spiwok, V.; Tangaro, M.A.; Tartari, G.; Salgado, D.; Valencia, A.; Zambelli, F.; Harrow, J.; Psomopoulos, F.E.; Tosatto, S.C.E. DOME: Recommendations for supervised machine learning validation in biology. Nat. Methods, 2021, 18(10), 1122-1127.
[http://dx.doi.org/10.1038/s41592-021-01205-4] [PMID: 34316068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy