Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Design, Synthesis and Anticancer Evaluation of New 1-allyl-4-oxo-6-(3,4,5- trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile Bearing Pyrazole Moieties

Author(s): Nermine A. Osman, Nermine S. EL-Sayed, Hanan A. Abdel Fattah, Ahmad J. Almalki, Ahmed K. Kammoun, Tarek S. Ibrahim, Abdulrahman S. Alharbi* and Amany M. AL-Mahmoudy

Volume 20, Issue 8, 2023

Published on: 12 May, 2023

Page: [897 - 909] Pages: 13

DOI: 10.2174/1570179420666230320153649

Price: $65

Abstract

Aim: pyrimidine and pyrazole have various biological and pharmaceutical applications such as antibacterial, antifungal, antileishmanial, anti-inflammatory, antitumor, and anti-cancer.

Introduction: In this search, the goal is to prepare pyrimidine-pyrazoles and study their anticancer activity.

Methods: 1-allyl-4-oxo-6-(3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile bearing pyrazoles (4,6-8) have been synthesized. Firstly, the reaction of 1-allyl-2-(methylthio)-4-oxo-6- (3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile (1) with chalcones 2a-b produced the intermediates 3a-b. The latter was reacted with hydrazine hydrate to give the targets 4a-b. On the other hand, hydrazinolysis of compound 1 yielded the hydrazino derivative 5 which upon reaction with chalcones 2c-i or 1,3-bicarbonyl compounds afforded the compounds 6-8. Finally, the new compounds were characterized by spectral data (IR, 1H NMR, 13C NMR) and elemental analysis. Moreover, they were evaluated for Panc-1, MCF-7, HT-29, A-549, and HPDE cell lines as anticancer activity.

Results: All the tested compounds 3,4,6-8 showed IC50 values > 50 μg/mL against the HPDE cell line. Compounds 6a and 6e exhibited potent anticancer activity where the IC50 values in the range of 1.7- 1.9, 1.4-182, 1.75-1.8, and 1.5-1.9 μg/mL against Panc-1, MCF-7, HT-29, and A-549 cell lines.

Conclusion: New pyrimidine-pyrazole derivatives were simply synthesized, in addition, some of them showed potential anticancer activity.

Graphical Abstract

[1]
Tan, Y.M.; Li, D.; Li, F.F.; Fawad Ansari, M.; Fang, B.; Zhou, C.H. Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents. Bioorg. Med. Chem. Lett., 2022, 73, 128885.
[http://dx.doi.org/10.1016/j.bmcl.2022.128885] [PMID: 35835379]
[2]
Ding, R.; Wang, X.; Fu, J.; Chang, Y.; Li, Y.; Liu, Y.; Liu, Y.; Ma, J.; Hu, J. Design, synthesis and antibacterial activity of novel pleuromutilin derivatives with thieno[2,3-d]pyrimidine substitution. Eur. J. Med. Chem., 2022, 237, 114398.
[http://dx.doi.org/10.1016/j.ejmech.2022.114398] [PMID: 35468515]
[3]
Dastmard, S.; Mamaghani, M.; Farahnak, L.; Rassa, M. Facile synthesis of polyfunctional indole-pyrido[2,3-d]pyrimidine hybrids using nickel-incorporated fluorapatite encapsulated iron oxide nanocatalyst and study of their antibacterial activities. Polycycl. Aromat. Compd., 2022, 42(4), 1747-1760.
[4]
Blokhina, S.V.; Sharapova, A.V.; Ol’khovich, M.V.; Doroshenko, I.A.; Levshin, I.B.; Perlovich, G.L. Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazole. Bioorg. Med. Chem. Lett., 2021, 40, 127944.
[http://dx.doi.org/10.1016/j.bmcl.2021.127944] [PMID: 33713781]
[5]
Khan, S.; Kale, M.; Siddiqui, F.; Nema, N. Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein. Digital Chinese Med., 2021, 4(2), 102-119.
[http://dx.doi.org/10.1016/j.dcmed.2021.06.004]
[6]
Wang, S.C.; Gao, J.G.; Zhang, S.; Liu, S.; Jiang, L. Synthesis of novel pyrimidine derivatives with (pyridin-3-ylmethyl)thio and phenylamino moieties and evaluation of their antifungal activity. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(4), 245-248.
[http://dx.doi.org/10.1080/10426507.2017.1395439]
[7]
Patel, N.B.; Soni, H.I.; Parmar, R.B.; Chan-Bacab, M.J.; Rivera, G. 1,2,4-Triazoles clubbed pyrimidine compounds with synthesis, antimicrobial, antituberculosis, antimalarial, and anti-protozoal studies. Lett. Org. Chem., 2021, 18(8), 617-624.
[http://dx.doi.org/10.2174/1570178617999201001153113]
[8]
Trivedi, H.D.; Patel, B.Y.; Patel, P.K.; Sagar, S.R. Synthesis, molecular modeling, ADMET and fastness studies of some quinoline encompassing pyrimidine azo dye derivatives as potent antimicrobial agents. Chem. Data Collect., 2022, 41, 100923.
[http://dx.doi.org/10.1016/j.cdc.2022.100923]
[9]
Allehyani, E.S. Novel heteroannulated chromeno [3′2′5,6]pyrido[2,3-d][1,2,4]triazolo [4,3-a] pyrimidines and chromeno[3′′2′′5′6′]pyrido [2′3′4,5] pyrimido[2,1-c][1,2,4]triazines: Synthesis, characterization and antimicrobial evaluation. Synth. Commun., 2022, 52(5), 764-773.
[10]
El-Tombary, A.; El-Hawash, S.; Habib, N.; Soliman, R.; El-Ashmawy, I.; Shaaban, O. Synthesis and biological evaluation of some novel thieno[2,3-d] pyrimidine derivatives as potential anti-inflammatory and analgesic agents. Med. Chem., 2013, 9(8), 1099-1112.
[http://dx.doi.org/10.2174/1573406411309080012] [PMID: 23628080]
[11]
Wang, H.; Cui, E.; Li, J.; Ma, X.; Jiang, X.; Du, S.; Qian, S.; Du, L. Design and synthesis of novel indole and indazole-piperazine pyrimidine derivatives with anti-inflammatory and neuroprotective activities for ischemic stroke treatment. Eur. J. Med. Chem., 2022, 241, 114597.
[http://dx.doi.org/10.1016/j.ejmech.2022.114597] [PMID: 35931005]
[12]
Abdel-Aziz, S.A.; Taher, E.S.; Lan, P.; Asaad, G.F.; Gomaa, H.A.M.; El-Koussi, N.A.; Youssif, B.G.M. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. Bioorg. Chem., 2021, 111, 104890.
[http://dx.doi.org/10.1016/j.bioorg.2021.104890] [PMID: 33872924]
[13]
Ahmed, M.H.; El-Hashash, M.A.; Marzouk, M.I.; El-Naggar, A.M. Synthesis and antitumor activity of some nitrogen heterocycles bearing pyrimidine moiety. J. Heterocycl. Chem., 2020, 57(9), jhet.4061.
[http://dx.doi.org/10.1002/jhet.4061]
[14]
Ballesteros-Casallas, A.; Paulino, M.; Vidossich, P.; Melo, C.; Jiménez, E.; Castillo, J-C.; Portilla, J.; Miscione, G.P. Synthesis of 2,7-diarylpyrazolo[1,5-a] pyrimidine derivatives with antitumor activity. Theoretical identification of targets. EJMECH Reports, 2022, 4, 100028.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100028]
[15]
Hussain, Z.; Ibrahim, M.A.; El-Gohary, N.M.; Badran, A-S. Synthesis, characterization, DFT, QSAR, antimicrobial, and antitumor studies of some novel pyridopyrimidines. J. Mol. Struct., 2022, 1269, 133870.
[16]
Abdelgawad, M.A.; Elkanzi, N.A.A.; Nayl, A.A.; Musa, A.; Alotaibi, N.H.; Arafa, W.A.A.; Gomha, S.M.; Bakr, R.B. Targeting tumor cells with pyrazolo[3,4-d]pyrimidine scaffold: A literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms. Arab. J. Chem., 2022, 15(5), 103781.
[http://dx.doi.org/10.1016/j.arabjc.2022.103781]
[17]
Li, Y.; Liu, Y.; Chen, Y.; Wang, K.; Luan, Y. Design, synthesis and antitumor activity study of a gemcitabine prodrug conjugated with a HDAC6 inhibitor. Bioorg. Med. Chem. Lett., 2022, 72, 128881.
[http://dx.doi.org/10.1016/j.bmcl.2022.128881]
[18]
Abu-Hashem, A.; Hussein, H. Synthesis and antitumor activity of new pyrimidine and caffeine derivatives. Lett. Drug Des. Discov., 2015, 12(6), 471-478.
[http://dx.doi.org/10.2174/1570180812666150429234237]
[19]
Halawa, H.A.; M., Fouda A.; M. Al-Dies, A.-A.; M. El-Agrody, A., Synthesis, biological evaluation and molecular docking studies of 4Hbenzo[h] chromenes, 7H-benzo[h]chromeno[2,3-d] pyrimidines as antitumor agents. Lett. Drug Des. Discov., 2016, 13(1), 77-88.
[http://dx.doi.org/10.2174/1570180812666150611185830]
[20]
Dimopoulou, A.; Kollatos, N.; Manta, S.; Panagiotopoulou, A.; Karastergiou, A.; Kontopoulou, F.; Schols, D.; Komiotis, D. Facile microwave-assisted synthesis of various C5-modified pyrimidine pyranonucleosides as potential cytotoxic antitumor agents. Curr. Microw. Chem., 2017, 4(4), 324-338.
[http://dx.doi.org/10.2174/2213335604666170720151941]
[21]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[22]
Mohamed, H.S.; Amin, N.H.; El-Saadi, M.T.; Abdel-Rahman, H.M. Design, synthesis, biological assessment, and in-silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg. Chem., 2022, 105687, 90.
[23]
Gupta, S.; Bartwal, G.; Singh, A.; Tanwar, J.; Khurana, J.M. Design, synthesis and biological evaluation of spiroisoquinoline-pyrimidine derivatives as anticancer agents against MCF-7 cancer cell lines. Results Chem., 2022, 4, 100386.
[http://dx.doi.org/10.1016/j.rechem.2022.100386]
[24]
Sabita, G.; Savitha, R.; Divya, K.; Bhaskar, K. Synthesis and biological evaluation of aryl sulfonyl linked isoxazol-(pyridin-4-yl)pyrazolo [1,5-a]pyrimidines as cytotoxicity agents. Chem. Data Collect., 2022, 38, 100822.
[http://dx.doi.org/10.1016/j.cdc.2021.100822]
[25]
Sudhakar, D.G.S.; Rao, A.S.; Reddy, C.V.R.; Somaiah, N. Design and synthesis of 1,2,3-triazole incorporated pyrimidine-benzoxazole derivatives as anticancer agents. Chem. Data Collect., 2022, 41, 100906.
[http://dx.doi.org/10.1016/j.cdc.2022.100906]
[26]
Koteswaraiah, M.; Praveen, C.; Reddy, T.V.; Raveendrareddy, G.; Srinivas, U. Design, synthesis and biological evaluation of aryl and hetero-aryl linked thieno[3,2-d]pyrimidine derivatives as anticancer agents. Chem. Data Collect., 2022, 39, 100863.
[27]
Dawood, D.H.; Abbas, E.M.H.; Farghaly, T.A.; Ali, M.M.; Ibrahim, M.F. ZnO nanoparticles catalyst in the synthesis of bioactive fused pyrimidines as anti-breast cancer agents targeting VEGFR-2. Med. Chem., 2019, 15(3), 277-286.
[http://dx.doi.org/10.2174/1573406414666180912113226] [PMID: 30207239]
[28]
Chidella, K.; Seelam, N.V.; Cherukumalli, P.K.R.; Reddy, N.J.; Kumar, J.V.S. Design, synthesis and biological evaluation of substituted amide derivatives of isoxazole-thieno[2,3-d]pyrimidines as anticancer agents. Chem. Data Collect., 2022, 41, 100919.
[http://dx.doi.org/10.1016/j.cdc.2022.100919]
[29]
Tang, X.; Zheng, A.; Wu, F.; Liao, C.; Hu, Y.; Luo, C. Synthesis and anticancer activities of diverse furo[2,3- d]pyrimidine and benzofuro[3,2- d]pyrimidine derivatives. Synth. Commun., 2022, 52(7), 994-1003.
[http://dx.doi.org/10.1080/00397911.2022.2060117]
[30]
Elgiushy, H.R.; Mohamed, S.H.; Taha, H.; Sawaf, H.; Hassan, Z.; Abou-Taleb, N.A.; El-labbad, E.M.; Hassan, A.S.; Abouzid, K.A.M.; Hammad, S.F. Identification of a promising hit from a new series of pyrazolo[1,5-a]pyrimidine based compounds as a potential anticancer agent with potent CDK1 inhibitory and pro-apoptotic properties through a multistep in vitro assessment. Bioorg. Chem., 2022, 120, 105646.
[http://dx.doi.org/10.1016/j.bioorg.2022.105646] [PMID: 35134645]
[31]
Li, L.; Liu, J.; Yang, Z.; Zhao, H.; Deng, B.; Ren, Y.; Mai, R.; Huang, J.; Chen, J. Discovery of thieno[2,3-d]pyrimidine-based KRAS G12D inhibitors as potential anticancer agents via combinatorial virtual screening. Eur. J. Med. Chem., 2022, 233, 114243.
[32]
Yong, J.; Lu, C.; Wu, X. Synthesis of isoxazole moiety containing thieno[2,3-d]pyrimidine derivatives and preliminarily in vitro anticancer activity (part II). Anticancer. Agents Med. Chem., 2015, 15(9), 1148-1155.
[http://dx.doi.org/10.2174/1871520615666150305103122] [PMID: 25742095]
[33]
Rahman, A.A.H.A.; Nassar, I.F.; Shaban, A.K.F. EL-Kady, D.S.; Awad, H.M.; El Sayed, W.A. Synthesis, docking studies into CDK-2 and anticancer activity of new derivatives based pyrimidine scaffold and their derived glycosides. Mini Rev. Med. Chem., 2019, 19(13), 1093-1110.
[http://dx.doi.org/10.2174/1389557519666190312165717] [PMID: 30864522]
[34]
El-Naggar, A.M.; Khalil, A.K.; Zeidan, H.M.; El-Sayed, W.M. Eco-friendly synthesis of pyrido[2,3-d]pyrimidine analogs and their anticancer and tyrosine kinase inhibition activities. Anticancer. Agents Med. Chem., 2018, 17(12), 1644-1651.
[http://dx.doi.org/10.2174/1871521409666170412130040] [PMID: 28403776]
[35]
Al-Otaibi, J.S.; Ibrahim, D.A.; EL Gogary, T.M. Design synthesis, and biological evaluation of pyrido[2,3-d]pyrimidine derivatives as potential anticancer agents. Lett. Drug Des. Discov., 2018, 15(12), 1240-1251.
[http://dx.doi.org/10.2174/1570180815666180219163254]
[36]
Shaquiquzzaman, M.; Khan, S.A.; Amir, M.; Alam, M.M. Synthesis, anticonvulsant, and neurotoxicity evaluation of some new pyrimidine-5-carbonitrile derivatives. Saudi Pharm. J., 2012, 20(2), 149-154.
[http://dx.doi.org/10.1016/j.jsps.2011.09.007]
[37]
Ali, M.R.; Verma, G.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Synthesis and anticonvulsant activity of some newer dihydro-pyrimidine-5-carbonitrile derivatives: Part II. J. Taibah Univ. Med. Sci., 2015, 10(4), 437-443.
[http://dx.doi.org/10.1016/j.jtumed.2015.07.002]
[38]
Alam, O.; Mullick, P.; Verma, S.P.; Gilani, S.J.; Khan, S.A.; Siddiqui, N.; Ahsan, W. Synthesis, anticonvulsant and toxicity screening of newer pyrimidine semicarbazone derivatives. Eur. J. Med. Chem., 2010, 45(6), 2467-2472.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.031] [PMID: 20211511]
[39]
Wang, S.B.; Deng, X.Q.; Zheng, Y.; Yuan, Y.P.; Quan, Z.S.; Guan, L.P. Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo[1,5-c]thieno[2,3-e]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 56, 139-144.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.027] [PMID: 22982524]
[40]
Sahu, M.; Siddiqui, N.; Sharma, V.; Wakode, S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg. Chem., 2018, 77, 56-67.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.031] [PMID: 29331765]
[41]
Huang, L.; Ding, J.; Li, M.; Hou, Z.; Geng, Y.; Li, X.; Yu, H. Discovery of [1,2,4]-triazolo [1,5-a]pyrimidine-7(4H)-one derivatives as positive modulators of GABAA1 receptor with potent anticonvulsant activity and low toxicity. Eur. J. Med. Chem., 2020, 185, 111824.
[http://dx.doi.org/10.1016/j.ejmech.2019.111824] [PMID: 31708184]
[42]
Lamie, P.F.; El-Kalaawy, A.M.; Abdel Latif, N.S.; Rashed, L.A.; Philoppes, J.N. Pyrazolo[3,4-d]pyrimidine-based dual EGFR T790M/HER2 inhibitors: Design, synthesis, structure–activity relationship and biological activity as potential antitumor and anticonvulsant agents. Eur. J. Med. Chem., 2021, 214, 113222.
[http://dx.doi.org/10.1016/j.ejmech.2021.113222] [PMID: 33545637]
[43]
Berg, M.; Van der Veken, P.; Goeminne, A.; Haemers, A.; Augustyns, K. Inhibitors of the purine salvage pathway: A valuable approach for antiprotozoal chemotherapy? Curr. Med. Chem., 2010, 17(23), 2456-2481.
[http://dx.doi.org/10.2174/092986710791556023] [PMID: 20491648]
[44]
Kumar, A.; Siwach, A.; Verma, P. An overview of the synthetic route to the marketed formulations of pyrimidine: A review. Mini Rev. Med. Chem., 2022, 22(6), 884-903.
[http://dx.doi.org/10.2174/1389557521666211008153329] [PMID: 34629043]
[45]
Valente, M.; Vidal, A.E.; González-Pacanowska, D. Targeting kinetoplastid and apicomplexan thymidylate biosynthesis as an antiprotozoal strategy. Curr. Med. Chem., 2019, 26(22), 4262-4279.
[http://dx.doi.org/10.2174/0929867325666180926154329] [PMID: 30259810]
[46]
Kayamba, F.; Malimabe, T.; Ademola, I.K.; Pooe, O.J.; Kushwaha, N.D.; Mahlalela, M.; van Zyl, R.L.; Gordon, M.; Mudau, P.T.; Zininga, T.; Shonhai, A.; Nyamori, V.O.; Karpoormath, R. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur. J. Med. Chem., 2021, 217, 113330.
[http://dx.doi.org/10.1016/j.ejmech.2021.113330] [PMID: 33744688]
[47]
Mavrova, A.T.; Vuchev, D.; Anichina, K.; Vassilev, N. Synthesis, antitrichinnellosis and antiprotozoal activity of some novel thieno[2,3-d]pyrimidin-4(3H)-ones containing benzimidazole ring. Eur. J. Med. Chem., 2010, 45(12), 5856-5861.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.050] [PMID: 20950896]
[48]
Verbitskiy, E.V.; Cheprakova, E.M.; Slepukhin, P.A.; Kravchenko, M.A.; Skornyakov, S.N.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Synthesis, and structure-activity relationship for C(4) and/or C(5) thienyl substituted pyrimidines, as a new family of antimycobacterial compounds. Eur. J. Med. Chem., 2015, 97, 225-234.
[49]
Srivastav, N.C.; Shakya, N.; Bhavanam, S.; Agrawal, A.; Tse, C.; Desroches, N.; Kunimoto, D.Y.; Kumar, R. Antimycobacterial activities of 5-alkyl (or halo)-3`-substituted pyrimidine nucleoside analogs. Bioorg. Med. Chem. Lett., 2012, 22(2), 1091-1094.
[50]
Read, M.L.; Brændvang, M.; Miranda, P.O.; Gundersen, L.L. Synthesis and biological evaluation of pyrimidine analogs of antimycobacterial purines. Bioorg. Med. Chem., 2010, 18(11), 3885-3897.
[http://dx.doi.org/10.1016/j.bmc.2010.04.035] [PMID: 20488716]
[51]
Kulkarni, R.; Kompalli, K.; Gaddam, N.; Mangannavar, C.V.; Darna, B.; Garlapati, A.; Kumar, D.; Machha, B. Synthesis, characterization, antitubercular and anti-inflammatory activity of new pyrazolo[3,4-d]pyrimidines. Comb. Chem. High Throughput Screen., 2021, 24(8), 1300-1308.
[http://dx.doi.org/10.2174/1386207323999200918114905] [PMID: 32957875]
[52]
Salih, M.M.; Saleh, A.M.; Hamad, A.S.; Al-Janabi, A.S. Synthesis, spectroscopic, anti-bacterial activity, molecular docking, ADMET, toxicity and DNA binding studies of divalent metal complexes of pyrazole-3-one azo ligand. J. Mol. Struct., 2022, 1264, 133252.
[http://dx.doi.org/10.1016/j.molstruc.2022.133252]
[53]
Jagadale, S.M.; Abhale, Y.K.; Pawar, H.R.; Shinde, A.; Bobade, V.D.; Chavan, A.P.; Sarkar, D.; Mhaske, P.C. Synthesis of new thiazole and pyrazole clubbed 1,2,3-triazol derivatives as potential antimycobacterial and antibacterial agents. Polycycl. Aromat. Compd., 2022, 42(6)3216-3237.doi.org/10.1080/10406638.2020.1857272
[54]
Chalkha, M.; Nakkabi, A.; Hadda, T.B.; Berredjem, M.; Moussaoui, A.E.; Bakhouch, M.; Saadi, M.; Ammari, L.E.; Almalki, F.A.; Laaroussi, H.; Jevtovic, V.; Yazidi, M.E. Crystallographic study, biological assessment and POM/Docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined Antibacterial/Antiviral pharmacophore sites leading to in-silico screening the anti-Covid-19 activity. J. Mol. Struct., 2022, 1267, 133605.
[http://dx.doi.org/10.1016/j.molstruc.2022.133605] [PMID: 35782312]
[55]
Yang, J.; Xie, D.; Zhang, C.; Zhao, C.; Wu, Z.; Xue, W. Synthesis, antifungal activity and in vitro mechanism of novel 1-substituted-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives. Arab. J. Chem., 2022, 15(8), 103987.
[http://dx.doi.org/10.1016/j.arabjc.2022.103987]
[56]
Titi, A.; Touzani, R.; Moliterni, A.; Hadda, T.B.; Messali, M.; Benabbes, R.; Berredjem, M.; Bouzina, A.; Al-Zaqri, N.; Taleb, M.; Zarrouk, A.; Warad, I. Synthesis, structural, biocomputational modeling and antifungal activity of novel armed pyrazoles. J. Mol. Struct., 2022, 1264, 133156.
[http://dx.doi.org/10.1016/j.molstruc.2022.133156]
[57]
Lin, C.; Karalic, I.; Matheeussen, A.; Feijens, P.B.; Hulpia, F.; Maes, L.; Caljon, G.; Van Calenbergh, S. Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. Eur. J. Med. Chem., 2022, 237, 114367.
[http://dx.doi.org/10.1016/j.ejmech.2022.114367] [PMID: 35533570]
[58]
Batista, A.S.; Oliveira, S.D.S.; Pomel, S.; Commere, P.H.; Mazan, V.; Lee, M.; Loiseau, P.M.; Rossi-Bergmann, B.; Prina, E.; Duval, R. Targeting chalcone binding sites in living Leishmania using a reversible fluorogenic benzochalcone probe. Biomed. Pharmacother., 2022, 149, 112784.
[http://dx.doi.org/10.1016/j.biopha.2022.112784] [PMID: 35299122]
[59]
Shaker, A.M.M.; Shahin, M.I. AboulMagd, A.M.; Abdel Aleem, S.A.; Abdel-Rahman, H.M.; Abou El Ella, D.A. Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2. Bioorg. Chem., 2022, 129, 106143.
[http://dx.doi.org/10.1016/j.bioorg.2022.106143] [PMID: 36191430]
[60]
Kumar, D.; Karati, D.; Mahadik, K.R. Pyrazole scaffolds: Centrality in anti-inflammatory and antiviral drug design. Med. Chem., 2022, 18(10), 1060-1072.
[http://dx.doi.org/10.2174/1573406418666220410181827] [PMID: 35410619]
[61]
Yang, B.; Liu, W.; Mei, Y.; Huang, D.; Qian, H.; Huang, W.; Gust, R. Design, synthesis and biological evaluation of 5-amino-1h-pyrazole-4- carboxamide derivatives as potential antitumor agents. Lett. Drug Des. Discov., 2014, 11(6), 749-755.
[http://dx.doi.org/10.2174/1570180811666140115234123]
[62]
Teng, Q.H.; Sun, G.X.; Luo, S.Y.; Wang, K.; Liang, F.P. Design, syntheses and antitumor activities evaluation of 1,5-diaryl substituted pyrazole secnidazole ester derivatives. J. Heterocycl. Chem., 2021, 58(8), 1656-1664.
[http://dx.doi.org/10.1002/jhet.4302]
[63]
Supruniuk, K.; Czarnomysy, R. Muszyńska, A.; Radziejewska, I. Anti-cancer effects of pyrazole-platinum(II) complexes combined with anti-MUC1 monoclonal antibody versus monotherapy in DLD-1 and HT-29 colon cancer cells. Transl. Oncol., 2022, 18, 101348.
[http://dx.doi.org/10.1016/j.tranon.2022.101348] [PMID: 35121220]
[64]
Krinochkin, A.P.; Shtaitz, Y.K.; Rammohan, A.; Butorin, I.I.; Savchuk, M.I.; Khalymbadzha, I.A.; Kopchuk, D.S.; Slepukhin, P.A.; Melekhin, V.V.; Shcheglova, A.V.; Zyryanov, G.V.; Chupakhin, O.N. 1H-Pyrazole-appended pyridines and their 1,2,4-triazine precursors: A rational synthesis and in silico and in vitro evaluation of anti-cancer activity. Eur. J. Med. Chem., 2022, 2022(22)21-27.i.org/10.1002/ejoc.202200227
[65]
Bennani, F.E.; Doudach, L.; Karrouchi, K. El rhayam, Y.; Rudd, C.E.; Ansar, M.; El Abbes Faouzi, M. Design and prediction of novel pyrazole derivatives as potential anti-cancer compounds based on 2D-QSAR study against PC-3, B16F10, K562, MDA-MB-231, A2780, ACHN and NUGC cancer cell lines. Heliyon, 2022, 8(8), e10003.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10003] [PMID: 35965973]
[66]
Qiao, Y.; Chen, Y.; Zhang, S.; Huang, Q.; Zhang, Y.; Li, G. Six novel complexes based on 5-Acetoxy-1-(6-chloro-pyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives: Syntheses, crystal structures, and anti-cancer activity. Arab. J. Chem., 2021, 14(7), 103237.
[http://dx.doi.org/10.1016/j.arabjc.2021.103237]
[67]
Wang, G.; Liu, W.; Peng, Z.; Huang, Y.; Gong, Z.; Li, Y. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorg. Chem., 2020, 103, 104141.
[http://dx.doi.org/10.1016/j.bioorg.2020.104141] [PMID: 32750611]
[68]
Dawood, D.H.; Nossier, E.S.; Ali, M.M.; Mahmoud, A.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg. Chem., 2020, 101, 103916.
[http://dx.doi.org/10.1016/j.bioorg.2020.103916] [PMID: 32559576]
[69]
Masaret, G.S. Synthesis, structure elucidation, and biological activities of pyrazoles against human lung and hepatocellular cancer. J. Heterocycl. Chem., 2018, 55(9), 2123-2129.
[http://dx.doi.org/10.1002/jhet.3257]
[70]
Cherukumalli, P.K.R.; Tadiboina, B.R.; Gulipalli, K.C.; Bodige, S.; Badavath, V.N.; Sridhar, G.; Gangarapu, K. Design and synthesis of novel urea derivatives of pyrimidine-pyrazoles as anticancer agents. J. Mol. Struct., 2022, 1251, 131937.
[http://dx.doi.org/10.1016/j.molstruc.2021.131937]
[71]
Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Anwar, M.M.; Nossier, E.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg. Chem., 2021, 114, 105078.
[http://dx.doi.org/10.1016/j.bioorg.2021.105078] [PMID: 34161878]
[72]
Ali, T.E.; Assiri, M.A.; Alzahrani, A.Y.; Salem, M.A.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I. An effective green one-pot synthesis of some novel 5-(thiophene-2-carbonyl)-6-(trifluoromethyl)pyrano[2,3- c]pyrazoles and 6-(thiophene-2-carbonyl)-7-(trifluoromethyl)pyrano[2,3- d]pyrimidines bearing chromone ring as anticancer agents. Synth. Commun., 2021, 51(21), 3267-3276.
[http://dx.doi.org/10.1080/00397911.2021.1966804]
[73]
Shi, J.B.; Tang, W.J. qi, X.B.; Li, R.; Liu, X.H. Novel pyrazole-5-carboxamide and pyrazole–pyrimidine derivatives: Synthesis and anticancer activity. Eur. J. Med. Chem., 2015, 90, 889-896.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.013] [PMID: 25554922]
[74]
Hafez, H.N.; El-Gazzar, A.R.B.A.; Al-Hussain, S.A. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(10), 2428-2433.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.117] [PMID: 27080187]
[75]
Bondock, S.; Alqahtani, S.; Fouda, A.M. Synthesis and anticancer evaluation of some new pyrazolo[3,4- d][1,2,3]triazin-4-ones, pyrazolo[1,5- a]pyrimidines, and imidazo[1,2- b]pyrazoles clubbed with carbazole. J. Heterocycl. Chem., 2021, 58(1), 56-73.
[http://dx.doi.org/10.1002/jhet.4148]
[76]
Filho, E.V.; Pina, J.W.S.; Antoniazi, M.K.; Loureiro, L.B.; Ribeiro, M.A.; Pinheiro, C.B.; Guimarães, C.J.; de Oliveira, F.C.E.; Pessoa, C.; Taranto, A.G.; Greco, S.J. Synthesis, docking, machine learning and antiproliferative activity of the 6-ferrocene/heterocycle-2-aminopyrimidine and 5-ferrocene-1H-Pyrazole derivatives obtained by microwave-assisted Atwal reaction as potential anticancer agents. Bioorg. Med. Chem. Lett., 2021, 48, 128240.
[http://dx.doi.org/10.1016/j.bmcl.2021.128240] [PMID: 34217828]
[77]
Bhogireddy, D.N.; Surapureddi, S.R.; Syed, T.; Prashanth, T.; Tadiboina, B.R. Synthesis and biological evaluation of aryl derivatives of isoxazole pyrazolo[1,5-a] pyrimidines as anticancer agents. Synth. Commun., 2022, 52(6), 861-874.
[http://dx.doi.org/10.1080/00397911.2022.2056846]
[78]
Chavan, H.V.; Bhale, P.S.; Dongare, S.B.; Mule, Y.B.; Kolekar, N.D.; Bandgar, B.P. Synthesis and pharmacological evaluation of pyrazoline and pyrimidine analogs of combretastatin-a4 as anticancer, anti-inflammatory and antioxidant agents. Croat. Chem. Acta, 2018, 91, 1-10 DOI:10.5562/cca3393.
[http://dx.doi.org/10.1080/00397911.2020.1800744]
[79]
Aldawsari, M.F.; Alalaiwe, A.; Khafagy, E-S.; Al Saqr, A.; Alshahrani, S.M.; Alsulays, B.B.; Alshehri, S.; Abu Lila, A.S. Danish Rizvi, S.M.; Hegazy, W.A.H. Efficacy of SPG-ODN 1826 Nanovehicles in Inducing M1 Phenotype through TLR-9 Activation in Murine Alveolar J774A.1 Cells: Plausible Nano-Immunotherapy for Lung Carcinoma. Int. J. Mol. Sci., 2021, 22, 6833.
[http://dx.doi.org/10.3390/ijms22136833]
[80]
Lombardo, L.J.; Lee, F.Y.; Chen, P.; Norris, D.; Barrish, J.C.; Behnia, K.; Castaneda, S.; Cornelius, L.A.M.; Das, J.; Doweyko, A.M.; Fairchild, C.; Hunt, J.T.; Inigo, I.; Johnston, K.; Kamath, A.; Kan, D.; Klei, H.; Marathe, P.; Pang, S.; Peterson, R.; Pitt, S.; Schieven, G.L.; Schmidt, R.J.; Tokarski, J.; Wen, M.L.; Wityak, J.; Borzilleri, R.M. Discovery of N -(2-Chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a Dual Src/Abl Kinase Inhibitor with Potent Antitumor Activity in Preclinical Assays. J. Med. Chem., 2004, 47(27), 6658-6661.
[http://dx.doi.org/10.1021/jm049486a] [PMID: 15615512]
[81]
Youns, M.; Askoura, M.; Abbas, H.A.; Attia, G.H.; Khayyat, A.N.; Goda, R.M.; Almalki, A.J.; Khafagy, E.S.; Hegazy, W.A. Celastrol modulates multiple signaling pathways to inhibit proliferation of pancreatic cancer via DDIT3 and ATF3 up-regulation and RRM2 and MCM4 down-regulation. OncoTargets Ther., 2021, 14, 3849 doi: 10.2147/OTT.S313933.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.066] [PMID: 17239593]
[82]
Ibrahim, T.S.; Malebari, A.M.; Mohamed, M.F.A. Design, Synthesis, In vitro Anticancer Evaluation and Molecular Modelling Studies of 3,4,5-Trimethoxyphenyl-Based Derivatives as Dual EGFR/HDAC Hybrid Inhibitors. Pharmaceuticals, 2021, 14, 1177.
[http://dx.doi.org/10.3390/ph14111177]
[83]
Kulsoom, B.; Shamsi, T. S.; Afsar, N.A.; Memon, Z.; Ahmed, N; Hasnain, S.N. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Manag. Res., 2018, 10, 403-416.
[http://dx.doi.org/10.2147/CMAR.S154608]
[84]
Askoura, M.; Abbas, H.A.; Al Sadoun, H.; Abdulaal, W.H.; Abu Lila, A.S.; Almansour, K.; Alshammari, F.; Khafagy, E-S.; Ibrahim, T.S.; Hegazy, W.A.H. Elevated Levels of IL-33, IL-17 and IL-25 Indicate the Progression from Chronicity to Hepatocellular Carcinoma in Hepatitis C Virus Patients. Pathogens, 2022, 11, 57.
[http://dx.doi.org/10.3390/pathogens11010057]
[85]
Wlodkowic, D.; Skommer, J.; Akagi, J.; Fujimura, Y.; Takeda, K. Multiparameter analysis of apoptosis using lab-on-a-chip flow cytometry. Curr. Protoc. Cytom., 2013, 66, (1), 9.42.41-49.42.15.
[http://dx.doi.org/10.1002/0471142956.cy0942s66]
[86]
Youns, M.; Abdel Halim, H. W. The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PLoS One, 2017, 12, (1):e0169335.
[http://dx.doi.org/10.1371/journal.pone.0169335]
[87]
Piechowicz, K.A.; Truong, E.C.; Javed, K.M.; Chaney, R.R.; Wu, J.Y.; Phuan, P.W.; Verkman, A.S.; Anderson, M.O. Synthesis and evaluation of 5,6-disubstituted thiopyrimidine aryl aminothiazoles as inhibitors of the calcium-activated chloride channel TMEM16A/Ano1. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1362-1368.
[http://dx.doi.org/10.3109/14756366.2015.1135912] [PMID: 26796863]
[88]
Abdel Fattah, H.A.; Osman, N.A. AL-Mahmoudy, A. M.; EL-Sayed, N. S., Synthesis of novel pyrimidine and fused pyrimidine derivatives and their in vitro antimicrobial and cytotoxic evaluation. World J. Pharm. Res., 2015, 4(8), 469-446.
[89]
Beyhan, N.; Kocyigit-Kaymakcioglu, B.; Gümrü, S.; Aricioglu, F. Synthesis, and anticonvulsant activity of some 2-pyrazolines derived from chalcones. Arab. J. Chem., 2017, 10, S2073-S2081.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.037]
[90]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[91]
Dinesha; Viveka, S.; Naik, P.; Nagaraja, G.K. Synthesis, characterization of new imidazoquinonyl chalcones and pyrazolines as potential anticancer and antioxidant agents. Med. Chem. Res., 2014, 23(9), 4189-4197.
[http://dx.doi.org/10.1007/s00044-014-0998-9]
[92]
Shashiprabha, B.; Holla, B.S. P, V.; P, N. Synthesis and characterization of chalcones and pyrazolines derived from substituted aryl ether. Mapana J. Sci., 2019, 18(2), 13-20.
[http://dx.doi.org/10.12723/mjs.49.2]
[93]
Abdelall, E.K.A.; Kamel, G.M. Synthesis of new thiazolo-celecoxib analogues as dual cyclooxygenase-2/15-lipoxygenase inhibitors: Determination of regio-specific different pyrazole cyclization by 2D NMR. Eur. J. Med. Chem., 2016, 118, 250-258.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.049] [PMID: 27131067]
[94]
Joshi, V.D.; Kshirsagar, M.D.; Singhal, S. Synthesis and antimicrobial activities of various pyrazolines from chalcones. Inter. J. ChemTech Res., 2012, 4, 971-975.
[95]
Vijesh, A.M.; Isloorb, A.M.; Isloorc, S.; Shivanandad, K.N.; Shymaa, P.C.; Arulmoli, T. Synthesis of some new pyrazolone derivatives as potent antimicrobial agents. Der Pharma Chem., 2011, 3(4), 454-463.
[96]
Dube, P.N.; Bule, S.S.; Ushir, Y.V.; Kumbhare, M.R.; Dighe, P.R. Synthesis of novel 5-methyl pyrazol-3-one derivatives and their in vitro cytotoxic evaluation. Med. Chem. Res., 2015, 24(3), 1070-1076.
[http://dx.doi.org/10.1007/s00044-014-1201-z]
[97]
Sidhaye, R.V.; Dhanawade, A.E.; Manasa, K.; Aishwarya, G. Synthesis, antimicrobial and antimycobacterial activity of nicotinic acid hydrazide derivatives. J. Curr. Pharm. Res., 2011, 1(2), 135-139.
[http://dx.doi.org/10.33786/JCPR.2011.v01i02.008]
[98]
Green, D.R. At the gates of death. Cancer Cell, 2006, 9(5), 328-330.
[http://dx.doi.org/10.1016/j.ccr.2006.05.004]
[99]
Reed, J.C. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell death & differentiation, 2006, 13(8), 1378-1386.
[http://dx.doi.org/10.1038/sj.cdd.4401975]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy