Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Critical Role of microRNA-21 in Non-alcoholic Fatty Liver Disease Pathogenesis

Author(s): Mingjing Liu, Ting Lu, Yuanling Bai, Xingyu Han, Wanyi Zhang, Lei Zhang, Shudan Chen, Chen Lin, Chaoqi Liu* and Chengfu Yuan*

Volume 29, Issue 12, 2023

Published on: 11 April, 2023

Page: [904 - 913] Pages: 10

DOI: 10.2174/1381612829666230320152215

Price: $65

Abstract

Nonalcoholic fatty liver disease (NAFLD) has received worldwide scientific attention because of its rapidly increasing prevalence, and it has emerged as a serious public health problem in end-stage liver disease. Many factors are involved in the multifactorial development and progression of liver disease by influencing multiple signaling and metabolic pathways. Currently, many studies have demonstrated the critical role of microRNA- 21 (miR-21) in NAFLD pathogenesis. In addition, many studies have found that miR-21 is highly expressed in inflammatory bowel disease, which is associated with intestinal barrier dysfunction and altered gut microbiota. In this paper, we focus on the regulatory role of miR-21 in the progression of NAFLD and its effect on the gut microbiota, summarize the involvement of miR-21 through a variety of signaling pathways and metabolic pathways, as well as discuss some predicted miR-21 target genes and miR-21 pathways for future experimental identification.

[1]
Kolenda T, Guglas K, Kopczyńska M, et al. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25(5): 808-19.
[http://dx.doi.org/10.1016/j.rpor.2020.07.006] [PMID: 32884453]
[2]
Larki P, Ahadi A, Zare A, et al. Up-regulation of miR-21, miR-25, miR-93, and miR-106b in gastric cancer. Iran Biomed J 2018; 22(6): 367-73.
[http://dx.doi.org/10.29252/.22.6.367] [PMID: 29859516]
[3]
Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134(6): 1655-69.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003] [PMID: 18471545]
[4]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[5]
Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ. The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci 2011; 68(17): 2859-71.
[http://dx.doi.org/10.1007/s00018-011-0726-2] [PMID: 21607569]
[6]
Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[7]
Gregory RI, Yan K, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014): 235-40.
[http://dx.doi.org/10.1038/nature03120] [PMID: 15531877]
[8]
Miyoshi K, Miyoshi T, Siomi H. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 2010; 284(2): 95-103.
[http://dx.doi.org/10.1007/s00438-010-0556-1] [PMID: 20596726]
[9]
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79(1): 351-79.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[10]
Gu S, Jin L, Zhang Y, et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 2012; 151(4): 900-11.
[http://dx.doi.org/10.1016/j.cell.2012.09.042] [PMID: 23141545]
[11]
Su Y, Yi Y, Li L, Chen C. circRNA-miRNA-mRNA network in age-related macular degeneration: From construction to identification. Exp Eye Res 2021; 203: 108427.
[http://dx.doi.org/10.1016/j.exer.2020.108427] [PMID: 33383027]
[12]
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[13]
Takahashi Y, Fukusato T. Pediatric nonalcoholic fatty liver disease: Overview with emphasis on histology. World J Gastroenterol 2010; 16(42): 5280-5.
[http://dx.doi.org/10.3748/wjg.v16.i42.5280] [PMID: 21072890]
[14]
Sugimoto K, Takei Y. Clinicopathological features of non-alcoholic fatty liver disease. Hepatol Res 2011; 41(10): 911-20.
[http://dx.doi.org/10.1111/j.1872-034X.2011.00867.x] [PMID: 21951869]
[15]
Wang Y, Zhang P, Yuan M, Li X. Overexpression of miRNA-21 Promotes the Proliferation and Invasion in Hepatocellular Carcinoma Cells via Suppressing SMAD7. Technol Cancer Res Treat 2019; 18
[http://dx.doi.org/10.1177/1533033819878686] [PMID: 31554487]
[16]
Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta Mol Basis Dis 2011; 1812(5): 592-601.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.002] [PMID: 21315819]
[17]
Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism 2018; 79: 64-76.
[http://dx.doi.org/10.1016/j.metabol.2017.11.003] [PMID: 29137912]
[18]
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci 2016; 17(10): 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[19]
Calo N, Ramadori P, Sobolewski C, et al. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut 2016; 65(11): 1871-81.
[http://dx.doi.org/10.1136/gutjnl-2015-310822] [PMID: 27222533]
[20]
Rodrigues PM, Afonso MB, Simão AL, et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death Dis 2017; 8(4): e2748.
[http://dx.doi.org/10.1038/cddis.2017.172] [PMID: 28406477]
[21]
Bakirtzi K, Hatziapostolou M, Karagiannides I, et al. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 2011; 141(5): 1749-1761.e1.
[http://dx.doi.org/10.1053/j.gastro.2011.07.038] [PMID: 21806946]
[22]
Torres JL, Novo-Veleiro I, Manzanedo L, et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 2018; 24(36): 4104-18.
[http://dx.doi.org/10.3748/wjg.v24.i36.4104] [PMID: 30271077]
[23]
Blasco-Baque V, Coupé B, Fabre A, et al. Associations between hepatic miRNA expression, liver triacylglycerols and gut microbiota during metabolic adaptation to high-fat diet in mice. Diabetologia 2017; 60(4): 690-700.
[http://dx.doi.org/10.1007/s00125-017-4209-3] [PMID: 28105518]
[24]
Liu CH, Ampuero J, Gil-Gómez A, et al. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol 2018; 69(6): 1335-48.
[http://dx.doi.org/10.1016/j.jhep.2018.08.008] [PMID: 30142428]
[25]
Klieser E, Mayr C, Kiesslich T, et al. The crosstalk of miRNA and oxidative stress in the liver: From physiology to pathology and clinical implications. Int J Mol Sci 2019; 20(21): 5266.
[http://dx.doi.org/10.3390/ijms20215266] [PMID: 31652839]
[26]
Shatoor AS, Al Humayed S, Almohiy HM. Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing microRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2. J Physiol Biochem 2022; 78(1): 151-68.
[http://dx.doi.org/10.1007/s13105-021-00850-9] [PMID: 34651285]
[27]
Almohawes ZN, El-Kott A, Morsy K, et al. Salidroside inhibits insulin resistance and hepatic steatosis by downregulating miR-21 and subsequent activation of AMPK and upregulation of PPARα in the liver and muscles of high fat diet-fed rats. Arch Physiol Biochem 2022; 1-18.
[http://dx.doi.org/10.1080/13813455.2021.2024578] [PMID: 35061559]
[28]
Zhang X, Deng F, Zhang Y, Zhang X, Chen J, Jiang Y. PPARγ attenuates hepatic inflammation and oxidative stress of non-alcoholic steatohepatitis via modulating the miR-21-5p/SFRP5 pathway. Mol Med Rep 2021; 24(5): 823.
[http://dx.doi.org/10.3892/mmr.2021.12463]
[29]
Zhang T, Yang Z, Kusumanchi P, Han S, Liangpunsakul S. Critical role of microRNA-21 in the pathogenesis of liver diseases. Front Med 2020; 7: 7.
[http://dx.doi.org/10.3389/fmed.2020.00007] [PMID: 32083086]
[30]
Lai CY, Yeh KY, Lin CY, et al. MicroRNA-21 plays multiple oncometabolic roles in the process of NAFLD-related hepatocellular carcinoma via PI3K/AKT, TGF-β, and STAT3 signaling. Cancers 2021; 13(5): 940.
[http://dx.doi.org/10.3390/cancers13050940] [PMID: 33668153]
[31]
Loyer X, Paradis V, Hénique C, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut 2016; 65(11): 1882-94.
[http://dx.doi.org/10.1136/gutjnl-2014-308883] [PMID: 26338827]
[32]
Wang XM, Wang XY, Huang YM, et al. Role and mechanisms of action of microRNA-21 as regards the regulation of the WNT/β- catenin signaling pathway in the pathogenesis of non-alcoholic fatty liver disease. Int J Mol Med 2019; 44(6): 2201-12.
[http://dx.doi.org/10.3892/ijmm.2019.4375] [PMID: 31638173]
[33]
Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008; 48(6): 1810-20.
[http://dx.doi.org/10.1002/hep.22569] [PMID: 19030170]
[34]
Wang J. On the cyclic torsion of elliptic curves over cubic number fields. J Number Theory 2018; 183: 291-308.
[http://dx.doi.org/10.1016/j.jnt.2017.08.001]
[35]
Rodrigues PM, Afonso MB, Simão AL, Borralho PM, Rodrigues CMP, Castro RE. Inhibition of NF-κB by deoxycholic acid induces miR-21/PDCD4-dependent hepatocellular apoptosis. Sci Rep 2015; 5(1): 17528.
[http://dx.doi.org/10.1038/srep17528] [PMID: 26621219]
[36]
Tang S, Tan G, Jiang X, et al. An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget 2016; 7(45): 73257-69.
[http://dx.doi.org/10.18632/oncotarget.12304] [PMID: 27689326]
[37]
Azar F, Courtet K, Dekky B, et al. Integration of miRNA-regulatory networks in hepatic stellate cells identifies TIMP3 as a key factor in chronic liver disease. Liver Int 2020; 40(8): 2021-33.
[http://dx.doi.org/10.1111/liv.14476] [PMID: 32306499]
[38]
Lendvai G, Szekerczés T, Gyöngyösi B, et al. MicroRNA expression in focal nodular hyperplasia in comparison with cirrhosis and hepatocellular carcinoma. Pathol Oncol Res 2019; 25(3): 1103-9.
[http://dx.doi.org/10.1007/s12253-018-0528-z] [PMID: 30411298]
[39]
Tong M, Zheng Q, Liu M, et al. 5-methoxytryptophan alleviates liver fibrosis by modulating FOXO3a/miR-21/ATG5 signaling pathway mediated autophagy. Cell Cycle 2021; 20(7): 676-88.
[http://dx.doi.org/10.1080/15384101.2021.1897241] [PMID: 33734029]
[40]
Xue J, Xiao T, Wei S, et al. miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells. J Cell Physiol 2021; 236(8): 6025-41.
[http://dx.doi.org/10.1002/jcp.30288] [PMID: 33481270]
[41]
Sun J, Shi L, Xiao T, et al. microRNA-21, via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. Chemosphere 2021; 266: 129177.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129177] [PMID: 33310519]
[42]
Ning ZW, Luo XY, Wang GZ, et al. MicroRNA-21 Mediates angiotensin II-induced liver fibrosis by activating NLRP3 Inflammasome/IL-1β Axis via Targeting Smad7 and Spry1. Antioxid Redox Signal 2017; 27(1): 1-20.
[http://dx.doi.org/10.1089/ars.2016.6669] [PMID: 27502441]
[43]
Wu K, Ye C, Lin L, et al. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clin Sci 2016; 130(16): 1469-80.
[http://dx.doi.org/10.1042/CS20160334] [PMID: 27226339]
[44]
Zhang J, Jiao J, Cermelli S, et al. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24+ progenitor cells. Cancer Res 2015; 75(9): 1859-67.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1254] [PMID: 25769721]
[45]
Takeuchi-Yorimoto A, Yamaura Y, Kanki M, et al. MicroRNA-21 is associated with fibrosis in a rat model of nonalcoholic steatohepatitis and serves as a plasma biomarker for fibrotic liver disease. Toxicol Lett 2016; 258: 159-67.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.012] [PMID: 27320964]
[46]
Kennedy LL, Meng F, Venter JK, et al. Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. Lab Invest 2016; 96(12): 1256-67.
[http://dx.doi.org/10.1038/labinvest.2016.112] [PMID: 27775690]
[47]
Hou Z, Quan J. Hepatitis B virus X protein increases microRNA-21 expression and accelerates the development of hepatoma via the phosphatase and tensin homolog/phosphoinositide 3-kinase/protein kinase B signaling pathway. Mol Med Rep 2017; 15(5): 3285-91.
[http://dx.doi.org/10.3892/mmr.2017.6363] [PMID: 28339072]
[48]
Xia C, Zeng H, Zheng Y. Low-intensity ultrasound enhances the antitumor effects of doxorubicin on hepatocellular carcinoma cells through the ROS-miR-21-PTEN axis. Mol Med Rep 2020; 21(3): 989-98.
[http://dx.doi.org/10.3892/mmr.2020.10936] [PMID: 32016465]
[49]
Cao L, Yang X, Chen Y, Zhang D, Jiang XF, Xue P. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol Cancer 2019; 18(1): 148.
[http://dx.doi.org/10.1186/s12943-019-1075-2] [PMID: 31656200]
[50]
Zhou Y, Xue R, Wang J, Ren H. Puerarin inhibits hepatocellular carcinoma invasion and metastasis through miR-21-mediated PTEN/AKT signaling to suppress the epithelial-mesenchymal transition. Braz J Med Biol Res 2020; 53(4): e8882.
[http://dx.doi.org/10.1590/1414-431x20198882] [PMID: 32294699]
[51]
Pu J, Xu Z, Nian J, et al. M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway. Cell Death Discov 2021; 7(1): 182.
[http://dx.doi.org/10.1038/s41420-021-00556-3] [PMID: 34282135]
[52]
Li J, Ren H, Wang J, Zhang P, Shi X. Extracellular HMGB1 promotes CD44 expression in hepatocellular carcinoma via regulating miR-21. Aging 2021; 13(6): 8380-95.
[http://dx.doi.org/10.18632/aging.202649] [PMID: 33661757]
[53]
Dingsdag SA, Clay OK, Quintero GA. COVID-19 severity, miR-21 targets, and common human genetic variation. Letter regarding the article ‘Circulating cardiovascular microRNAs in critically ill COVID-19 patients’. Eur J Heart Fail 2021; 23(11): 1986-7.
[http://dx.doi.org/10.1002/ejhf.2317] [PMID: 34318976]
[54]
Hussein RM, Anwar MM, Farghaly HS, Kandeil MA. Gallic acid and ferulic acid protect the liver from thioacetamide-induced fibrosis in rats via differential expression of miR-21, miR-30 and miR-200 and impact on TGF-β1/Smad3 signaling. Chem Biol Interact 2020; 324: 109098.
[http://dx.doi.org/10.1016/j.cbi.2020.109098] [PMID: 32278740]
[55]
Zhou X, Xiong J, Lu S, et al. Inhibitory effect of corilagin on miR-21-Regulated Hepatic Fibrosis Signaling Pathway. Am J Chin Med 2019; 47(7): 1541-69.
[http://dx.doi.org/10.1142/S0192415X19500794] [PMID: 31752524]
[56]
Shin E, Kim SH, Jeong HY, Jang JJ, Lee K. Nuclear expression of S-phase kinase-associated protein 2 predicts poor prognosis of hepatocellular carcinoma. Acta Pathol Microbiol Scand Suppl 2012; 120(5): 349-57.
[http://dx.doi.org/10.1111/j.1600-0463.2011.02838.x] [PMID: 22515289]
[57]
Heo YJ, Choi SE, Jeon JY, et al. Visfatin Induces Inflammation and Insulin Resistance via the NF- κ B and STAT3 Signaling Pathways in Hepatocytes. J Diabetes Res 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/4021623] [PMID: 31396538]
[58]
Sun C, Huang F, Liu X, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med 2015; 35(3): 847-53.
[http://dx.doi.org/10.3892/ijmm.2015.2076] [PMID: 25605429]
[59]
Liu J, Xiao Y, Wu X, et al. A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis. BMC Genomics 2018; 19(1): 188.
[http://dx.doi.org/10.1186/s12864-018-4575-3] [PMID: 29523084]
[60]
Li J, Wei H, Liu Y, et al. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 Axis. Evid Based Complement Alternat Med 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/2892917] [PMID: 32724322]
[61]
Li Y, Li Z, Jia Y, Ding B, Yu J. In vitro anti-hepatoma activities of notoginsenoside R1 through downregulation of tumor promoter miR-21. Dig Dis Sci 2020; 65(5): 1364-75.
[http://dx.doi.org/10.1007/s10620-019-05856-4] [PMID: 31559550]
[62]
Li W, Dong X, He C, et al. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res 2019; 38(1): 183.
[http://dx.doi.org/10.1186/s13046-019-1177-0] [PMID: 31053148]
[63]
Cai M, Shao W, Yu H, Hong Y, Shi L. Paeonol inhibits cell proliferation, migration and invasion and induces apoptosis in hepatocellular carcinoma by regulating miR-21-5p/KLF6 Axis. Cancer Manag Res 2020; 12: 5931-43.
[http://dx.doi.org/10.2147/CMAR.S254485] [PMID: 32765094]
[64]
Knights AJ, Yang L, Shah M, et al. Krüppel-like factor 3 (KLF3) suppresses NF-κB–driven inflammation in mice. J Biol Chem 2020; 295(18): 6080-91.
[http://dx.doi.org/10.1074/jbc.RA120.013114] [PMID: 32213596]
[65]
Sue N, Jack BHA, Eaton SA, et al. Targeted disruption of the basic Krüppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol 2008; 28(12): 3967-78.
[http://dx.doi.org/10.1128/MCB.01942-07] [PMID: 18391014]
[66]
Kim Y, Jho E. Deubiquitinase YOD1: The potent activator of YAP in hepatomegaly and liver cancer. BMB Rep 2017; 50(6): 281-2.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.078] [PMID: 28502290]
[67]
Kim Y, Kim W, Song Y, et al. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci 2017; 114(18): 4691-6.
[http://dx.doi.org/10.1073/pnas.1620306114] [PMID: 28416659]
[68]
Liao Y-J, Bai H-Y, Li Z-H, et al. Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis 2014; 5(3): e1137.
[http://dx.doi.org/10.1038/cddis.2014.66] [PMID: 24651440]
[69]
Zhang SH, Qian YM, Liu AW, et al. Clinicopathologic significance and function of S-phase kinase-associated protein 2 overexpression in hepatocellular carcinoma. Hum Pathol 2012; 43(7): 1084-93.
[http://dx.doi.org/10.1016/j.humpath.2011.08.019] [PMID: 22204716]
[70]
Wang X, Sugimoto K, Fujisawa T, et al. Novel effect of ezetimibe to inhibit the development of non-alcoholic fatty liver disease in Fatty Liver Shionogi mouse. Hepatol Res 2014; 44(1): 102-13.
[http://dx.doi.org/10.1111/hepr.12092] [PMID: 23510093]
[71]
Wang X, Ren Q, Wu T, Guo Y, Liang Y, Liu S. Ezetimibe prevents the development of non-alcoholic fatty liver disease induced by high-fat diet in C57BL/6J mice. Mol Med Rep 2014; 10(6): 2917-23.
[http://dx.doi.org/10.3892/mmr.2014.2623] [PMID: 25310357]
[72]
Grohmann M, Wiede F, Dodd GT, et al. Obesity drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell 2018; 175(5): 1289-1306.e20.
[http://dx.doi.org/10.1016/j.cell.2018.09.053] [PMID: 30454647]
[73]
Bi J, Sun K, Wu H, Chen X, Tang H, Mao J. PPARγ alleviated hepatocyte steatosis through reducing SOCS3 by inhibiting JAK2/STAT3 pathway. Biochem Biophys Res Commun 2018; 498(4): 1037-44.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.110] [PMID: 29550470]
[74]
Min HK, Mirshahi F, Verdianelli A, et al. Activation of the GP130-STAT3 axis and its potential implications in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2015; 308(9): G794-803.
[http://dx.doi.org/10.1152/ajpgi.00390.2014] [PMID: 25747354]
[75]
Zhu J, Zhou M, Zhao X, Mu M, Cheng M. Blueberry, combined with probiotics, alleviates non-alcoholic fatty liver disease via IL-22-mediated JAK1/STAT3/BAX signaling. Food Funct 2018; 9(12): 6298-306.
[http://dx.doi.org/10.1039/C8FO01227J] [PMID: 30411754]
[76]
Zatkova A, Rouillard JM, Hartmann W, et al. Amplification and overexpression of theIGF2 regulatorPLAG1 in hepatoblastoma. Genes Chromosomes Cancer 2004; 39(2): 126-37.
[http://dx.doi.org/10.1002/gcc.10307] [PMID: 14695992]
[77]
Blagotinšek Cokan K, Urlep Ž, Moškon M, et al. Common transcriptional program of liver fibrosis in mouse genetic models and humans. Int J Mol Sci 2021; 22(2): 832.
[http://dx.doi.org/10.3390/ijms22020832] [PMID: 33467660]
[78]
Onoyama I, Suzuki A, Matsumoto A, et al. Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. J Clin Invest 2011; 121(1): 342-54.
[http://dx.doi.org/10.1172/JCI40725] [PMID: 21123947]
[79]
Verginelli F, Adesso L, Limon I, et al. Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1β. Oncotarget 2015; 6(41): 43216-29.
[http://dx.doi.org/10.18632/oncotarget.6456] [PMID: 26646450]
[80]
Hotta K, Kikuchi M, Kitamoto T, et al. Identification of core gene networks and hub genes associated with progression of non-alcoholic fatty liver disease by RNA sequencing. Hepatol Res 2017; 47(13): 1445-58.
[http://dx.doi.org/10.1111/hepr.12877] [PMID: 28219123]
[81]
Nishio T, Taura K, Iwaisako K, et al. Hepatic vagus nerve regulates Kupffer cell activation via α7 nicotinic acetylcholine receptor in nonalcoholic steatohepatitis. J Gastroenterol 2017; 52(8): 965-76.
[http://dx.doi.org/10.1007/s00535-016-1304-z] [PMID: 28044208]
[82]
Zhang C, Ling Y, Zhang C, et al. The silencing of RECK gene is associated with promoter hypermethylation and poor survival in hepatocellular carcinoma. Int J Biol Sci 2012; 8(4): 451-8.
[http://dx.doi.org/10.7150/ijbs.4038] [PMID: 22419890]
[83]
Zhang N, Duan WD, Leng JJ, et al. STAT3 regulates the migration and invasion of a stem-like subpopulation through microRNA-21 and multiple targets in hepatocellular carcinoma. Oncol Rep 2015; 33(3): 1493-8.
[http://dx.doi.org/10.3892/or.2015.3710] [PMID: 25571964]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy