Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Letter Article

Effects of Anti-Sclerostin Antibody Release from Porous Microparticles on Bone Resorption Inhibition of Osteoblasts

Author(s): Hajime Watanabe, Yasuhiro Nakagawa, Toshiyuki Ikoma*, Shinya Hattori, Takashi Minowa and Nobutaka Hanagata

Volume 13, Issue 3, 2023

Published on: 02 May, 2023

Page: [243 - 250] Pages: 8

DOI: 10.2174/2210303113666230316124601

Price: $65

Abstract

Background: Anti-sclerostin antibodies are among the most efficient drugs for the treatment of osteoporosis, and have been also expected for the treatment of local bone disorders. We have previously developed porous microparticles of hydroxyapatite and chondroitin sulfate loading anti-sclerostin antibodies formulated with zinc cations. However, the biological behavior and concentration dependence of anti-sclerostin antibodies in vitro released from the microparticles remain unclear.

Objective: Bolus administration and the subsequent release of anti-sclerostin antibodies from the microparticles formulated with or without zinc cations were investigated; bone-resorptive inhibitory effects on mouse MC3T3-E1 osteoblast function were revealed by cell culture using a cell culture insert plate.

Methods: Differentiation induction culture of osteoblasts was performed after maintaining the concentrations of anti-sclerostin antibodies and sclerostin at previously reported concentrations of 5.0 and 1.0 µg/mL for the first 3 days. Subsequently, the medium was replaced with fresh medium that did not contain anti-sclerostin antibodies but microparticles loading anti-sclerostin antibodies (20 or 80 µg/mg) with or without zinc cations in the cell culture insert. After 11 days of incubation, the bioactivity of the osteoblasts was evaluated using the polymerase chain reaction method.

Results: The formulation using zinc cations showed an increase of anti-sclerostin antibodies released from the microparticles, which increased the expression of receptor activator of the nuclear factor kappa-B ligand in the osteoblasts on day 14. This result indicates the inhibition of sclerostinmediated bone resorption. However, the increase of loading amounts of anti-sclerostin antibodies extremely enhanced the subsequent release of anti-sclerostin antibodies, which decreased the inhibition of bone resorption contrary to expectations.

Conclusion: The moderately sustained release of anti-sclerostin antibodies from the microparticles can promote the inhibition of bone resorption in osteoblasts, supporting the potential of this formulation for the treatment of localized bone disorders.

« Previous
Graphical Abstract

[1]
McClung, M.R.; Grauer, A.; Boonen, S.; Bolognese, M.A.; Brown, J.P.; Diez-Perez, A.; Langdahl, B.L.; Reginster, J.Y.; Zanchetta, J.R.; Wasserman, S.M.; Katz, L.; Maddox, J.; Yang, Y.C.; Libanati, C.; Bone, H.G. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med., 2014, 370(5), 412-420.
[http://dx.doi.org/10.1056/NEJMoa1305224] [PMID: 24382002]
[2]
Lewiecki, E.M.; Dinavahi, R.V.; Lazaretti-Castro, M.; Ebeling, P.R.; Adachi, J.D.; Miyauchi, A.; Gielen, E.; Milmont, C.E.; Libanati, C.; Grauer, A. One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: Results of the FRAME extension study. J. Bone Miner. Res., 2019, 34(3), 419-428.
[http://dx.doi.org/10.1002/jbmr.3622] [PMID: 30508316]
[3]
Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med., 2017, 377(15), 1417-1427.
[http://dx.doi.org/10.1056/NEJMoa1708322] [PMID: 28892457]
[4]
Maeda, K.; Kobayashi, Y.; Koide, M.; Uehara, S.; Okamoto, M.; Ishihara, A.; Kayama, T.; Saito, M.; Marumo, K. The regulation of bone metabolism and disorders by Wnt signaling. Int. J. Mol. Sci., 2019, 20(22), 5525.
[http://dx.doi.org/10.3390/ijms20225525] [PMID: 31698687]
[5]
Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Goto, M.; Mochizuki, S.I.; Tsuda, E.; Morinaga, T.; Udagawa, N.; Takahashi, N.; Suda, T.; Higashio, K. A novel molecular mechanism modulating osteoclast differentiation and function. Bone, 1999, 25(1), 109-113.
[http://dx.doi.org/10.1016/S8756-3282(99)00121-0] [PMID: 10423033]
[6]
Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; Shimamoto, G.; DeRose, M.; Elliott, R.; Colombero, A.; Tan, H.L.; Trail, G.; Sullivan, J.; Davy, E.; Bucay, N.; Renshaw-Gegg, L.; Hughes, T.M.; Hill, D.; Pattison, W.; Campbell, P.; Sander, S.; Van, G.; Tarpley, J.; Derby, P.; Lee, R.; Boyle, W.J. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2), 309-319.
[http://dx.doi.org/10.1016/S0092-8674(00)80209-3] [PMID: 9108485]
[7]
Jho, E.; Zhang, T.; Domon, C.; Joo, C.K.; Freund, J.N.; Costantini, F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol., 2002, 22(4), 1172-1183.
[http://dx.doi.org/10.1128/MCB.22.4.1172-1183.2002] [PMID: 11809808]
[8]
Mao, B.; Wu, W.; Davidson, G.; Marhold, J.; Li, M.; Mechler, B.M.; Delius, H.; Hoppe, D.; Stannek, P.; Walter, C.; Glinka, A.; Niehrs, C. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature, 2002, 417(6889), 664-667.
[http://dx.doi.org/10.1038/nature756] [PMID: 12050670]
[9]
Glass, D.A., II; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, H.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; Karsenty, G. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell, 2005, 8(5), 751-764.
[http://dx.doi.org/10.1016/j.devcel.2005.02.017]
[10]
Suen, P.K.; Zhu, T.Y.; Chow, D.H.K.; Huang, L.; Zheng, L.Z.; Qin, L. Sclerostin antibody treatment increases bone formation, bone mass and bone strength of intact bones in adult male rats. Sci. Rep., 2015, 5(1), 15632.
[http://dx.doi.org/10.1038/srep15632] [PMID: 26494536]
[11]
Feng, G.; Chang-Qing, Z.; Yi-Min, C.; Xiao-Lin, L. Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int. Immunopharmacol., 2015, 24(1), 7-13.
[http://dx.doi.org/10.1016/j.intimp.2014.11.010] [PMID: 25479724]
[12]
Suen, P.K.; He, Y.X.; Chow, D.H.K.; Huang, L.; Li, C.; Ke, H.Z.; Ominsky, M.S.; Qin, L. Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J. Orthop. Res., 2014, 32(8), 997-1005.
[http://dx.doi.org/10.1002/jor.22636] [PMID: 24782158]
[13]
McDonald, M.M.; Morse, A.; Mikulec, K.; Peacock, L.; Yu, N.; Baldock, P.A.; Birke, O.; Liu, M.; Ke, H.Z.; Little, D.G. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J. Orthop. Res., 2012, 30(10), 1541-1548.
[http://dx.doi.org/10.1002/jor.22109] [PMID: 22457198]
[14]
Virk, M.S.; Alaee, F.; Tang, H.; Ominsky, M.S.; Ke, H.Z.; Lieberman, J.R. Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J. Bone Joint Surg. Am., 2013, 95(8), 694-701.
[http://dx.doi.org/10.2106/JBJS.L.00285] [PMID: 23595067]
[15]
Jawad, M.U.; Fritton, K.E.; Ma, T.; Ren, P.G.; Goodman, S.B.; Ke, H.Z.; Babij, P.; Genovese, M.C. Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J. Orthop. Res., 2013, 31(1), 155-163.
[http://dx.doi.org/10.1002/jor.22186] [PMID: 22887736]
[16]
Alaee, F.; Virk, M.S.; Tang, H.; Sugiyama, O.; Adams, D.J.; Stolina, M.; Dwyer, D.; Ominsky, M.S.; Ke, H.Z.; Lieberman, J.R. Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model. J. Orthop. Res., 2014, 32(2), 197-203.
[http://dx.doi.org/10.1002/jor.22498] [PMID: 24600701]
[17]
Emil, H. A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. J. Bone Joint Surg. Am., 2020, 102, 693-702.
[http://dx.doi.org/10.2106/JBJS.19.00790]
[18]
Bhandari, M.M.D. Romosozumab in skeletally mature adults with a fresh unilateral tibial diaphyseal fracture a randomized Phase-2 study. J. Bone Jt. Surg., 2020, 102(16), 1416-1426.
[http://dx.doi.org/10.2106/JBJS.19.01008]
[19]
Asadipooya, K.; Weinstock, A. Cardiovascular outcomes of romosozumab and protective role of alendronate. Arterioscler. Thromb. Vasc. Biol., 2019, 39(7), 1343-1350.
[http://dx.doi.org/10.1161/ATVBAHA.119.312371] [PMID: 31242037]
[20]
Schweizer, D.; Schönhammer, K.; Jahn, M.; Göpferich, A. Protein-polyanion interactions for the controlled release of monoclonal antibodies. Biomacromolecules, 2013, 14(1), 75-83.
[http://dx.doi.org/10.1021/bm301352x] [PMID: 23157419]
[21]
Hsu, Y.H.; Chiu, Y.S.; Chen, W.Y.; Huang, K.Y.; Jou, I.M.; Wu, P.T.; Wu, C.H.; Chang, M.S. Anti-IL-20 monoclonal antibody promotes bone fracture healing through regulating IL-20-mediated osteoblastogenesis. Sci. Rep., 2016, 6(1), 24339.
[http://dx.doi.org/10.1038/srep24339] [PMID: 27075747]
[22]
Li, M.; Li, S.; Liu, J.; Cui, X.; Zhang, S.; Zhou, J.; Wang, X.; Yao, Q. Sustained‐release of sclerostin single‐chain antibody fragments using poly(lactic‐co‐glycolic acid) microspheres for osteoporotic fracture repair. J. Biomed. Mater. Res. A, 2019, 107(8), 1832-1840.
[http://dx.doi.org/10.1002/jbm.a.36704] [PMID: 31012249]
[23]
Watanabe, H.; Ikoma, T.; Tanaka, M.; Yoshioka, T.; Tanaka, J. Controlled release of a protein using a ceramic carrier and zinc ions as a novel approach to the treatment of osteoporosis. Key Eng. Mater., 2014, 631, 332-337.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.631.332]
[24]
Watanabe, H.; Ikoma, T.; Sotome, S.; Okawa, A. Local administration and enhanced release of bone metabolic antibodies from hydroxyapatite/chondroitin sulfate nanocomposite microparticles using zinc cations. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(3), 757-766.
[http://dx.doi.org/10.1039/D0TB02050H] [PMID: 33325979]
[25]
Yamaoka, T.; Ooya, Y.; Nakano, T.; Ishihara, K. Biomaterial Science, 2nd ed; Tokyo Kagaku Doujin, 2018, p. 88.
[26]
Winkler, D.G.; Sutherland, M.K.; Geoghegan, J.C.; Yu, C.; Hayes, T.; Skonier, J.E.; Shpektor, D.; Jonas, M.; Kovacevich, B.R.; Staehling-Hampton, K.; Appleby, M.; Brunkow, M.E.; Latham, J.A. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J., 2003, 22(23), 6267-6276.
[http://dx.doi.org/10.1093/emboj/cdg599] [PMID: 14633986]
[27]
Poole, K.E.S.; Van Bezooijen, R.L.; Loveridge, N.; Hamersma, H.; Papapoulos, S.E.; Löwik, C.W.; Reeve, J. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J., 2005, 19(13), 1842-1844.
[http://dx.doi.org/10.1096/fj.05-4221fje] [PMID: 16123173]
[28]
Veverka, V.; Henry, A.J.; Slocombe, P.M.; Ventom, A.; Mulloy, B.; Muskett, F.W.; Muzylak, M.; Greenslade, K.; Moore, A.; Zhang, L.; Gong, J.; Qian, X.; Paszty, C.; Taylor, R.J.; Robinson, M.K.; Carr, M.D. Characterization of the structural features and interactions of sclerostin: Molecular insight into a key regulator of Wnt-mediated bone formation. J. Biol. Chem., 2009, 284(16), 10890-10900.
[http://dx.doi.org/10.1074/jbc.M807994200] [PMID: 19208630]
[29]
Krause, C.; Korchynskyi, O.; de Rooij, K.; Weidauer, S.E.; de Gorter, D.J.J.; van Bezooijen, R.L.; Hatsell, S.; Economides, A.N.; Mueller, T.D.; Löwik, C.W.G.M.; ten Dijke, P. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J. Biol. Chem., 2010, 285(53), 41614-41626.
[http://dx.doi.org/10.1074/jbc.M110.153890] [PMID: 20952383]
[30]
Holmen, S.L.; Zylstra, C.R.; Mukherjee, A.; Sigler, R.E.; Faugere, M.C.; Bouxsein, M.L.; Deng, L.; Clemens, T.L.; Williams, B.O. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem., 2005, 280(22), 21162-21168.
[http://dx.doi.org/10.1074/jbc.M501900200] [PMID: 15802266]
[31]
Li, X.; Ominsky, M.S.; Warmington, K.S.; Morony, S.; Gong, J.; Cao, J.; Gao, Y.; Shalhoub, V.; Tipton, B.; Haldankar, R.; Chen, Q.; Winters, A.; Boone, T.; Geng, Z.; Niu, Q.T.; Ke, H.Z.; Kostenuik, P.J.; Simonet, W.S.; Lacey, D.L.; Paszty, C. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res., 2009, 24(4), 578-588.
[http://dx.doi.org/10.1359/jbmr.081206] [PMID: 19049336]
[32]
Wijenayaka, A.R.; Kogawa, M.; Lim, H.P.; Bonewald, L.F.; Findlay, D.M.; Atkins, G.J. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One, 2011, 6(10), e25900.
[http://dx.doi.org/10.1371/journal.pone.0025900] [PMID: 21991382]
[33]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm., 2008, 364(2), 328-343.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.004] [PMID: 18822362]
[34]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
[35]
Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[36]
Ikoma, T.; Azuma, N.; Itoh, S.; Omi, H.; Nishikawa, S.; Toh, S.; Tanaka, M. Spherical porous microparticle of hydroxyapatite/polysaccharides nanocomposites. Key Eng. Mater., 2005, 288-289, 159-162.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.288-289.159]
[37]
Ikoma, T.; Azuma, N.; Tanaka, J. Preparation of hydroxyapatite/chondroitin sulfate nanocomposite and its spherical porous microparticle. Trans. Mater. Res. Soc. Jpn., 2004, 29(6), 2911-2914.
[38]
Watanabe, H.; Ikoma, T.; Chen, G.; Tanaka, J. Protein adsorption onto hydroxyapatite/chondroitin sulfate microparticles. Trans. Mater. Res. Soc. Jpn., 2006, 31(20), 341-344.
[39]
Dunnett, C.W. New tables for multiple comparisons with a control. Biometrics, 1964, 20(3), 482-491.
[http://dx.doi.org/10.2307/2528490]
[40]
Kubota, T.; Michigami, T.; Sakaguchi, N.; Kokubu, C.; Suzuki, A.; Namba, N.; Sakai, N.; Nakajima, S.; Imai, K.; Ozono, K. Lrp6 hypomorphic mutation affects bone mass through bone resorption in mice and impairs interaction with Mesd. J. Bone Miner. Res., 2008, 23(10), 1661-1671.
[http://dx.doi.org/10.1359/jbmr.080512] [PMID: 18505367]
[41]
Yamaguchi, M.; Goto, M.; Uchiyama, S.; Nakagawa, T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: Enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol. Cell. Biochem., 2008, 312(1-2), 157-166.
[http://dx.doi.org/10.1007/s11010-008-9731-7]
[42]
Yamaguchi, Masayoshi Uchiyama, Satoshi Receptor activator of NF-kappaB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int. J. Mol. Med., 2004, 14(1), 81-85.
[http://dx.doi.org/10.3892/ijmm.14.1.81]
[43]
Sun, J.S.; Liu, H.C.; Hong-Shong Chang, W.; Li, J.; Lin, F.H.; Tai, H.C. Influence of hydroxyapatite particle size on bone cell activities: An in vitro study. J. Biomed. Mater. Res., 1998, 39(3), 390-397.
[http://dx.doi.org/10.1002/(SICI)1097-4636(19980305)39:3<390:AID-JBM7>3.0.CO;2-E] [PMID: 9468047]
[44]
Montesi, M.; Panseri, S.; Iafisco, M.; Adamiano, A.; Tampieri, A. Coupling hydroxyapatite nanocrystals with lactoferrin as a promising strategy to fine regulate bone homeostasis. PLoS One, 2015, 10(7), e0132633.
[http://dx.doi.org/10.1371/journal.pone.0132633] [PMID: 26148296]
[45]
Berinstein, N.L.; Grillo-López, A.J.; White, C.A.; Bence-Bruckler, I.; Maloney, D.; Czuczman, M.; Green, D.; Rosenberg, J.; McLaughlin, P.; Shen, D. Association of serum Rituximab (IDEC–C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann. Oncol., 1998, 9(9), 995-1001.
[http://dx.doi.org/10.1023/A:1008416911099] [PMID: 9818074]
[46]
Baselga, J.; Albanell, J. Mechanism of action of anti-HER2 monoclonal antibodies. Ann. Oncol., 2001, 12(Suppl. 1), S35-S41.
[http://dx.doi.org/10.1093/annonc/12.suppl_1.S35] [PMID: 11521720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy