Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Review Article

Essential Oils as Alternative Antimicrobials: Current Status

Author(s): Ashish Sahu, Debaprasad Parai*, Hari Ram Choudhary and Desh Deepak Singh*

Volume 19, Issue 1, 2024

Published on: 29 March, 2023

Page: [56 - 72] Pages: 17

DOI: 10.2174/2772434418666230316113927

Price: $65

Abstract

It is becoming increasingly difficult to treat bacterial infections with conventional antibiotics as resistance increases with time. Common antibiotics have been irrationally used in the general community, which has resulted in the selection of antibiotic-resistant genes. Despite various modifications that have been done to restore the antimicrobial activities of conventional antibiotics against an array of multi-drug resistant (MDR) strains, it has been unattainable to overcome this hurdle for a long time. Parallelly, the search for a new and alternative drug has become a high priority in every part of the world.

In the last two decades, immense interest has grown in natural products as alternative therapeutics due to their lower toxicity, chemical group diversity and biochemical specificity, which are the upper hand compared to antibiotics. Essential oils are naturally found phytochemicals obtained from approximately 60 families of plants. These are composed of 20 to 60 different bioactive components at different concentrations and have already been reported for their antibacterial, antifungal, antiviral, anti-parasitic, insecticidal activities, antioxidant and antiseptic properties. This review focuses on antimicrobial activities, detailed mode of action and the latest progress in the research on the essential oil.

Graphical Abstract

[1]
Aminov RI. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134] [PMID: 21687759]
[2]
Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis 2013; 56(10): 1445-50.
[http://dx.doi.org/10.1093/cid/cit070] [PMID: 23403172]
[3]
Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov 2013; 12(5): 371-87.
[http://dx.doi.org/10.1038/nrd3975] [PMID: 23629505]
[4]
Nucleo E, Steffanoni L, Fugazza G, et al. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol 2009; 9(1): 270.
[http://dx.doi.org/10.1186/1471-2180-9-270] [PMID: 20028528]
[5]
Parai D, Banerjee M, Dey P, Chakraborty A, Islam E, Mukherjee SK. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling 2018; 34(3): 320-34.
[http://dx.doi.org/10.1080/08927014.2018.1437910] [PMID: 29482361]
[6]
Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC 2019.
[7]
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[8]
Antimicrobial resistance: global report on surveillance 2014. Geneva, Switzerland: WHO Press, World Health Organization 2014.
[9]
Touani FK, Seukep AJ, Djeussi DE, Fankam AG, Noumedem JAK, Kuete V. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement Altern Med 2014; 14(1): 258.
[http://dx.doi.org/10.1186/1472-6882-14-258] [PMID: 25047005]
[10]
Wright GD. Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 2014; 60(3): 147-54.
[http://dx.doi.org/10.1139/cjm-2014-0063] [PMID: 24588388]
[11]
Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 2012; 29(9): 1007-21.
[http://dx.doi.org/10.1039/c2np20035j] [PMID: 22786554]
[12]
Petrovska B. Historical review of medicinal plants' usage. Pharmacogn Rev 2012; 6(11): 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[13]
Borchardt JK. The beginnings of drug therapy: Ancient mesopotamian medicine. Drug News Perspect 2002; 15(3): 187-92.
[http://dx.doi.org/10.1358/dnp.2002.15.3.840015] [PMID: 12677263]
[14]
Chen X, Zhou H, Liu YB, et al. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br J Pharmacol 2006; 149(8): 1092-103.
[http://dx.doi.org/10.1038/sj.bjp.0706945] [PMID: 17088869]
[15]
Dev S. Ancient-modern concordance in Ayurvedic plants: some examples. Environ Health Perspect 1999; 107(10): 783-9.
[http://dx.doi.org/10.1289/ehp.99107783] [PMID: 10504143]
[16]
Gibbons S. Anti-staphylococcal plant natural products. Nat Prod Rep 2004; 21(2): 263-77.
[http://dx.doi.org/10.1039/b212695h] [PMID: 15042149]
[17]
Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crops Prod 2014; 62: 250-64.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.055]
[18]
Helander IM, Alakomi HL, Latva-Kala K, et al. Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 1998; 46(9): 3590-5.
[http://dx.doi.org/10.1021/jf980154m]
[19]
Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 2004; 94(3): 223-53.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[20]
Nerio LS, Olivero-Verbel J, Stashenko E. Repellent activity of essential oils: A review. Bioresour Technol 2010; 101(1): 372-8.
[http://dx.doi.org/10.1016/j.biortech.2009.07.048] [PMID: 19729299]
[21]
Tongnuanchan P, Benjakul S. Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 2014; 79(7): R1231-49.
[http://dx.doi.org/10.1111/1750-3841.12492] [PMID: 24888440]
[22]
Murbach Teles Andrade BF, Nunes Barbosa L, da Silva Probst I, Fernandes Júnior A. Antimicrobial activity of essential oils. J Essent Oil Res 2014; 26(1): 34-40.
[http://dx.doi.org/10.1080/10412905.2013.860409]
[23]
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol 2008; 46(2): 446-75.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[24]
Shaaban HAE, El-Ghorab AH, Shibamoto T. Bioactivity of essential oils and their volatile aroma components: Review. J Essent Oil Res 2012; 24(2): 203-12.
[http://dx.doi.org/10.1080/10412905.2012.659528]
[25]
Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines 2017; 4(3): 58.
[http://dx.doi.org/10.3390/medicines4030058] [PMID: 28930272]
[26]
El-Ghorab A, Shaaban HA, El-Massry KF, Shibamoto T. Chemical composition of volatile extract and biological activities of volatile and less-volatile extracts of juniper berry (Juniperus drupacea L.) fruit. J Agric Food Chem 2008; 56(13): 5021-5.
[http://dx.doi.org/10.1021/jf8001747] [PMID: 18547046]
[27]
Betts TJ. Chemical characterisation of the different types of volatile oil constituents by various solute retention ratios with the use of conventional and novel commercial gas chromatographic stationary phases. J Chromatogr A 2001; 936(1-2): 33-46.
[http://dx.doi.org/10.1016/S0021-9673(01)01284-5] [PMID: 11761004]
[28]
Baser KHC, Buchbauer G. Handbook of essential oils: science, technology, and applications. Boca Raton, FL: CRC Press 2009.
[http://dx.doi.org/10.1201/9781420063165]
[29]
Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 2009; 70(15-16): 1739-45.
[http://dx.doi.org/10.1016/j.phytochem.2009.08.023] [PMID: 19819506]
[30]
Saad NY, Muller CD, Lobstein A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragrance J 2013; 28(5): 269-79.
[http://dx.doi.org/10.1002/ffj.3165]
[31]
Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 2012; 3: 12.
[http://dx.doi.org/10.3389/fmicb.2012.00012] [PMID: 22291693]
[32]
Zhang Y, Liu X, Wang Y, Jiang P, Quek S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016; 59: 282-9.
[http://dx.doi.org/10.1016/j.foodcont.2015.05.032]
[33]
El Kolli M, Laouer H, El Kolli H, Akkal S, Sahli F. Chemical analysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action. Asian Pac J Trop Biomed 2016; 6(1): 8-15.
[http://dx.doi.org/10.1016/j.apjtb.2015.08.004]
[34]
Diao WR, Hu Q-P, Zhang H, Xu JG. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014; 35(1): 109-16.
[http://dx.doi.org/10.1016/j.foodcont.2013.06.056]
[35]
Yang XN, Khan I, Kang SC. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pac J Trop Med 2015; 8(9): 694-700.
[http://dx.doi.org/10.1016/j.apjtm.2015.07.031] [PMID: 26433652]
[36]
Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 2009; 20(12): 1073-9.
[http://dx.doi.org/10.1016/j.foodcont.2009.02.001]
[37]
Burt SA, van der Zee R, Koets AP, De Graaff AM. Carvacrol induces heat shock protein 60 and inhibit synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol 2007; 73: 4484-90.
[http://dx.doi.org/10.1128/AEM.00340-07] [PMID: 17526792]
[38]
Becerril R, Gómez-Lus R, Goñi P, López P, Nerín C. Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Anal Bioanal Chem 2007; 388(5-6): 1003-11.
[http://dx.doi.org/10.1007/s00216-007-1332-x] [PMID: 17551716]
[39]
Ahmad A, Khan A, Kumar P, Bhatt RP, Manzoor N. Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast 2011; 28(8): 611-7.
[http://dx.doi.org/10.1002/yea.1890] [PMID: 21755533]
[40]
Hu Y, Zhang J, Kong W, Zhao G, Yang M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem 2017; 220: 1-8.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.179] [PMID: 27855875]
[41]
Zhang J, Ye KP, Zhang X, Pan DD, Sun YY, Cao JX. Antibacterial activity and mechanism of action of black pepper essential oil on meat-borne Escherichia coli. Front Microbiol 2017; 7: 2094.
[http://dx.doi.org/10.3389/fmicb.2016.02094] [PMID: 28101081]
[42]
Trombetta D, Castelli F, Sarpietro MG, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005; 49(6): 2474-8.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005] [PMID: 15917549]
[43]
Rao A, Zhang Y, Muend S, Rao R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 2010; 54(12): 5062-9.
[http://dx.doi.org/10.1128/AAC.01050-10] [PMID: 20921304]
[44]
Pérez-Fons L, Aranda FJ, Guillén J, Villalaín J, Micol V. Rosemary (Rosmarinus officinalis) diterpenes affect lipid polymorphism and fluidity in phospholipid membranes. Arch Biochem Biophys 2006; 453(2): 224-36.
[http://dx.doi.org/10.1016/j.abb.2006.07.004] [PMID: 16949545]
[45]
Niu C, Afre S, Gilbert ES. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 2006; 43(5): 489-94.
[http://dx.doi.org/10.1111/j.1472-765X.2006.02001.x] [PMID: 17032221]
[46]
Khan MSA, Zahin M, Hasan S, Husain FM, Ahmad I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett Appl Microbiol 2009; 49(3): 354-60.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02666.x] [PMID: 19627477]
[47]
Poli JP, Guinoiseau E, de Rocca Serra D, et al. Anti-Quorum sensing activity of 12 essential oils on chromobacterium violaceum and specific action of cis-cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis. Molecules 2018; 23(9): 2125.
[http://dx.doi.org/10.3390/molecules23092125] [PMID: 30142938]
[48]
Yang SK, Yusoff K, Ajat M, et al. Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS One 2019; 14(4): e0214326.
[http://dx.doi.org/10.1371/journal.pone.0214326] [PMID: 30939149]
[49]
Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 2002; 68(4): 1561-8.
[http://dx.doi.org/10.1128/AEM.68.4.1561-1568.2002] [PMID: 11916669]
[50]
La Storia A, Ercolini D, Marinello F, Di Pasqua R, Villani F, Mauriello G. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res Microbiol 2011; 162(2): 164-72.
[http://dx.doi.org/10.1016/j.resmic.2010.11.006] [PMID: 21168481]
[51]
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016; 2016: 1-21.
[http://dx.doi.org/10.1155/2016/3012462] [PMID: 28090211]
[52]
Maida I, Lo Nostro A, Pesavento G, et al. Exploring the anti-Burkholderia cepacia complex activity of essential oils: A preliminary analysis. Evidence-Based Complement Alternet Med 2014; 2014: 573518.
[53]
Rouis-Soussi LS, Ayeb-Zakhama AE, Mahjoub A, Flamini G, Jannet HB, Harzallah-Skhiri F. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. EXCLI J 2014; 13: 526-35.
[PMID: 26417280]
[54]
Lopez-Romero JC, González-Ríos H, Borges A, Simões M. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid Based Complement Alternat Med 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/795435] [PMID: 26221178]
[55]
Man A, Santacroce L, Iacob R, Mare A, Man L. Antimicrobial activity of six essential oils against a group of human pathogens: a comparative study. Pathogens 2019; 8(1): 15.
[http://dx.doi.org/10.3390/pathogens8010015] [PMID: 30696051]
[56]
Bey-Ould Si Said Z, Haddadi-Guemghar H, Boulekbache-Makhlouf L, et al. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind Crops Prod 2016; 89: 167-75.
[http://dx.doi.org/10.1016/j.indcrop.2016.05.018]
[57]
Martucci JF, Gende LB, Neira LM, Ruseckaite RA. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind Crops Prod 2015; 71: 205-13.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.079]
[58]
Radaelli M, da Silva BP, Weidlich L, et al. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens. Braz J Microbiol 2016; 47(2): 424-30.
[http://dx.doi.org/10.1016/j.bjm.2015.10.001] [PMID: 26991289]
[59]
Sharifi-Rad J, Mnayer D, Tabanelli G, et al. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell Mol Biol 2016; 62(9): 57-68.
[PMID: 27585263]
[60]
Aguiar RWS, Ootani MA, Ascencio SD, Ferreira TPS, Santos MM, Santos GR. Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. Sci World JentificWorldJournal 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/492138] [PMID: 24600325]
[61]
Ghavam M, Manca ML, Manconi M, Bacchetta G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci Rep 2020; 10(1): 15647.
[http://dx.doi.org/10.1038/s41598-020-73193-y] [PMID: 32973295]
[62]
Abers M, Schroeder S, Goelz L, et al. Antimicrobial activity of the volatile substances from essential oils. BMC Complement Med Ther 2021; 21(1): 124.
[http://dx.doi.org/10.1186/s12906-021-03285-3] [PMID: 33865375]
[63]
Cazella LN, Glamoclija J, Soković M, et al. Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front Plant Sci 2019; 10: 27.
[http://dx.doi.org/10.3389/fpls.2019.00027] [PMID: 30761171]
[64]
Mekonnen A, Yitayew B, Tesema A, Taddese S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. Int J Microbiol 2016; 2016: 9545693.
[65]
Nazzaro F, Fratianni F, Coppola R, Feo VD. Essential oils and antifungal activity. Pharmaceuticals (Basel) 2017; 10(4): 86.
[http://dx.doi.org/10.3390/ph10040086] [PMID: 29099084]
[66]
Cui H, Zhang X, Zhou H, Zhao C, Lin L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot Stud (Taipei, Taiwan) 2015; 56(1): 16.
[http://dx.doi.org/10.1186/s40529-015-0096-4] [PMID: 28510825]
[67]
Lakehal S, Meliani A, Benmimoune S, Bensouna SN, Benrebiha FZ, Chaouia C. Essential oil composition and antimicrobial activity of Artemisia herba-alba Asso grown in Algeria. Med Chem 2016; 6: 435-9.
[68]
Li ZH, Cai M, Liu YS, Sun PL, Luo SL. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 2019; 24(8): 1577.
[http://dx.doi.org/10.3390/molecules24081577] [PMID: 31013583]
[69]
Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, et al. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food Chem Toxicol 2015; 81: 9-27.
[http://dx.doi.org/10.1016/j.fct.2015.03.030] [PMID: 25865936]
[70]
Nikolić M, Jovanović KK, Marković T, et al. Chemicalcomposition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils Ind Crops Prod 2014; 61: 225-32.
[http://dx.doi.org/10.1016/j.indcrop.2014.07.011]
[71]
Kerekes EB, Vidács A, Takó M, et al. Anti-biofilm effect of selected essential oils and main components on mono and polymicrobic bacterial cultures. Microorganisms 2019; 7(9): 345.
[http://dx.doi.org/10.3390/microorganisms7090345] [PMID: 31547282]
[72]
Purkait S, Bhattacharya A, Bag A, Chattopadhyay RR. Evaluation of antibiofilm efficacy of essential oil components β-caryophyllene, cinnamaldehyde and eugenol alone and in combination against biofilm formation and preformed biofilms of Listeria monocytogenes and Salmonella typhimurium. Lett Appl Microbiol 2020; 71(2): 195-202.
[http://dx.doi.org/10.1111/lam.13308] [PMID: 32357268]
[73]
Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind Crops Prod 2015; 71: 197-204.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.058]
[74]
Garzoli S, Božović M, Baldisserotto A, et al. Essential oil extraction, chemical analysis and anti Candida activity of Foeniculum vulgare Miller-new approaches. Nat Prod Res 2018; 32(11): 1254-9.
[http://dx.doi.org/10.1080/14786419.2017.1340291] [PMID: 28617136]
[75]
Zrira S, Ghanmi M. Chemical composition and antibacterial activity of the essential of Cedrus atlantica (Cedarwood oil). J Essent Oil-Bear Plants 2016; 19(5): 1267-72.
[http://dx.doi.org/10.1080/0972060X.2015.1137499]
[76]
Garcia R, Alves ESS, Santos MP, et al. Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Braz J Microbiol 2008; 39(1): 163-8.
[http://dx.doi.org/10.1590/S1517-83822008000100032] [PMID: 24031197]
[77]
Kačániová M, Terentjeva M, Vukovic N, et al. The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish Saudi Pharm J 2017; 25(8): 1108-6.
[http://dx.doi.org/10.1016/j.jsps.2017.07.005] [PMID: 30166897]
[78]
Rasooli I, Rezaei MB, Allameh A. Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int J Infect Dis 2006; 10(3): 236-41.
[http://dx.doi.org/10.1016/j.ijid.2005.05.006] [PMID: 16412677]
[79]
Braga PC, Alfieri M, Culici M, Dal Sasso M. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses 2007; 50(6): 502-6.
[http://dx.doi.org/10.1111/j.1439-0507.2007.01412.x] [PMID: 17944714]
[80]
Perry CC, Weatherly M, Beale T, Randriamahefa A. Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escherichia coli and Staphylococcus aureus. J Sci Food Agric 2009; 89(6): 958-64.
[http://dx.doi.org/10.1002/jsfa.3538]
[81]
Rammanee K, Hongpattarakere T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol 2011; 4(6): 1050-9.
[http://dx.doi.org/10.1007/s11947-010-0507-1]
[82]
Bajer T, Šilha D, Ventura K, Bajerová P. Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind Crops Prod 2017; 100: 95-105.
[http://dx.doi.org/10.1016/j.indcrop.2017.02.016]
[83]
Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002; 56(1): 187-209.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.160705] [PMID: 12142477]
[84]
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14(9): 563-75.
[http://dx.doi.org/10.1038/nrmicro.2016.94] [PMID: 27510863]
[85]
Cáceres M, Hidalgo W, Stashenko E, Torres R, Ortiz C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics 2020; 9(4): 147.
[http://dx.doi.org/10.3390/antibiotics9040147] [PMID: 32235590]
[86]
Chmit M, Kanaan H, Habib J, Abbass M, Mcheik A, Chokr A. Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pac J Trop Med 2014; 7: S546-52.
[http://dx.doi.org/10.1016/S1995-7645(14)60288-1] [PMID: 25312182]
[87]
Budzyńska A, Więckowska-Szakiel M, Sadowska B, Kalemba D, Różalska B. Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol 2011; 60(1): 35-41.
[http://dx.doi.org/10.33073/pjm-2011-005] [PMID: 21630572]
[88]
Camporese A. In vitro activity of Eucalyptus smithii and Juniperus communis essential oils against bacterial biofilms and efficacy perspectives of complementary inhalation therapy in chronic and recurrent upper respiratory tract infections. Infez Med 2013; 21(2): 117-24.
[PMID: 23774975]
[89]
Tang C, Chen J, Zhang L, et al. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. Int J Med Microbiol 2020; 310(5): 151435.
[http://dx.doi.org/10.1016/j.ijmm.2020.151435] [PMID: 32654773]
[90]
Schillaci D, Arizza V, Dayton T, Camarda L, Stefano VD. In vitro anti-biofilm activity of Boswellia spp. oleogum resin essential oils. Lett Appl Microbiol 2008; 47(5): 433-8.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02469.x] [PMID: 19146534]
[91]
Čabarkapa I, Čolović R, Đuragić O, et al. Antibiofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 2019; 35(3): 361-75.
[http://dx.doi.org/10.1080/08927014.2019.1610169] [PMID: 31088182]
[92]
Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 2014; 9(4): e93414.
[http://dx.doi.org/10.1371/journal.pone.0093414] [PMID: 24691035]
[93]
Manoharan RK, Lee JH, Lee J. Antibiofilm and antihyphal activities of cedar leaf essential oil, camphor, and fenchone derivatives against Candida albicans. Front Microbiol 2017; 8: 1476.
[http://dx.doi.org/10.3389/fmicb.2017.01476] [PMID: 28824600]
[94]
Kumari P, Mishra R, Arora N, et al. Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Front Microbiol 2017; 8: 2161.
[http://dx.doi.org/10.3389/fmicb.2017.02161] [PMID: 29163441]
[95]
Kim YG, Lee JH, Gwon G, Kim SI, Park JG, Lee J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci Rep 2016; 6(1): 36377.
[http://dx.doi.org/10.1038/srep36377] [PMID: 27808174]
[96]
Melo RS, Albuquerque AÁM, Gomes PAM, et al. Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019; 24(21): 3864.
[http://dx.doi.org/10.3390/molecules24213864] [PMID: 31717766]
[97]
Haeseler G, Maue D, Grosskreutz J, et al. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur J Anaesthesiol 2002; 19(8): 571-9.
[http://dx.doi.org/10.1017/S0265021502000923] [PMID: 12200946]
[98]
Horky P, Skalickova S, Smerkova K, Skladanka J. Essential oils as a feed additives: pharmacokinetics and potential toxicity in monogastric animals. Animals 2019; 9(6): 352.
[http://dx.doi.org/10.3390/ani9060352] [PMID: 31200591]
[99]
Agus HH. Chapter 4 -Terpene toxicity and oxidative stress. In: Toxicology-Oxidative Stress and Dietary Antioxidants. Cambridge, Massachusetts: Academic Press 2021; pp. 33-42.

[100]
Hollenbach CB, Bing RS, Stedile R, et al. Reproductive toxicity assessment of Origanum vulgare essential oil on male Wistar rats. Acta Sci Vet 2015; 43: 1295.
[101]
Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zin SR, Alshawsh MA. Prenatal developmental toxicity evaluation of Verbena officinalis during gestation period in female Sprague-Dawley rats. Chem Biol Interact 2019; 304: 28-42.
[http://dx.doi.org/10.1016/j.cbi.2019.02.016] [PMID: 30807743]
[102]
Al-Azem DA, Al-Derawi KH, Al-Saadi SAAM. The protective effects of Syzygium aromaticum essential oil extract against methotrexate induced hepatic and renal toxicity in rats. J Pure Appl Microbiol 2019; 13(1): 505-15.
[http://dx.doi.org/10.22207/JPAM.13.1.57]
[103]
Daneshbakhsh D, Asgarpanah J, Najafizadeh P, Rastegar T, Mousavi Z. Safety assessment of Mentha mozaffarianii essential oil: Acute and repeated toxicity studies. Iran J Med Sci 2018; 43(5): 479-86.
[PMID: 30214100]
[104]
Fallahi S, Beyranvand M, Mahmoudvand H, Nayebzadeh H, Kheirandish F, Jahanbakhsh S. Chemical composition, acute and sub-acute toxicity of Satureja khuzestanica essential oil in mice. Marmara Pharm J 2017; 21(3): 515-21.
[http://dx.doi.org/10.12991/marupj.318614]
[105]
Chaieb K, Zmantar T, Ksouri R, et al. Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 2007; 50(5): 403-6.
[http://dx.doi.org/10.1111/j.1439-0507.2007.01391.x] [PMID: 17714361]
[106]
Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog 2018; 120: 198-203.
[http://dx.doi.org/10.1016/j.micpath.2018.04.036] [PMID: 29702210]
[107]
Kwiatkowski P, Łopusiewicz Ł, Kostek M, et al. The antibacterial activity of lavender essential oil alone and in combination with octenidine dihydrochloride against MRSA strains. Molecules 2019; 25(1): 95.
[http://dx.doi.org/10.3390/molecules25010095] [PMID: 31888005]
[108]
Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 2006; 19(1): 50-62.
[http://dx.doi.org/10.1128/CMR.19.1.50-62.2006] [PMID: 16418522]
[109]
Ben Hsouna A, Ben Halima N, Smaoui S, Hamdi N. Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis 2017; 16(1): 146.
[http://dx.doi.org/10.1186/s12944-017-0487-5] [PMID: 28774297]
[110]
Ilić ZS, Milenković L, Šunić L, et al. Efficiency of basil essential oil antimicrobial agents under different shading treatments and harvest times. Agronomy 2021; 11(8): 1574.
[http://dx.doi.org/10.3390/agronomy11081574]
[111]
Macedo LM, Santos ÉM, Ataide JA, et al. Development and evaluation of an antimicrobial formulation containing Rosmarinus officinalis. Molecules 2022; 27(16): 5049.
[http://dx.doi.org/10.3390/molecules27165049] [PMID: 36014289]
[112]
Sadlon AE, Lamson DW. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern Med Rev 2010; 15(1): 33-47.
[PMID: 20359267]
[113]
Kligler B, Chaudhary S. Peppermint oil. Am Fam Physician 2007; 75(7): 1027-30.
[PMID: 17427617]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy