Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Dynamic Play between Human N-α-acetyltransferase D and H4-mutant Histones: Molecular Dynamics Study

Author(s): Shravan B. Rathod* and Kinshuk Raj Srivastava*

Volume 24, Issue 4, 2023

Published on: 10 April, 2023

Page: [339 - 354] Pages: 16

DOI: 10.2174/1389203724666230315121434

Price: $65

Abstract

Background: Many N-terminal acetyltransferases (NATs) play important role in the posttranslational modifications of histone tails. Research showed that these enzymes have been reported upregulated in many cancers. NatD is known to acetylate H4/H2A at the N-terminal. During lung cancer, this enzyme competes with the protein kinase CK2α and blocks the phosphorylation of H4 and, acetylates. It also, we observed that H4 has various mutations at the N-terminal and we considered only four mutations (S1C, R3C, G4D and G4S) to study the impacts of these mutations on H4 binding with NatD using MD simulation.

Objective: Our main objective in this study was to understand the structure and dynamics of hNatD under the influence of WT and MT H4 histones bindings. The previous experimental study reported that mutations on H4 N-terminus reduce the catalytic efficiency of N-Terminal acetylation. But here, we performed a molecular- level study thus, we can understand how these mutations (S1C, R3C, G4D and G4S) cause significant depletion in catalytic efficiency of hNatD.

Methods: Purely computational approaches were employed to investigate the impacts of four mutations in human histone H4 on its binding with the N-α-acetyltransferase D. Initially, molecular docking was used to dock the histone H4 peptide with the N-α-acetyltransferase. Next, all-atom molecular dynamics simulation was performed to probe the structural deviation and dynamics of N-α-acetyltransferase D under the binding of WT and MT H4 histones.

Results: Our results show that R3C stabilizes the NatD whereas the remaining mutations destabilize the NatD. Thus, mutations have significant impacts on NatD structure. Our finding supports the previous analysis also. Another interesting observation is that the enzymatic activity of hNatD is altered due to the considerably large deviation of acetyl-CoA from its original position (G4D). Further, simulation and correlation data suggest which regions of the hNatD are highly flexible and rigid and, which domains or residues have the correlation and anticorrelation. As hNatD is overexpressed in lung cancer, it is an important drug target for cancer hence, our study provides structural information to target hNatD.

Conclusion: In this study, we examined the impacts of WT and MTs (S1C, R3C, G4D and G4S) histone H4 decapeptides on their bindings with hNatD by using 100 ns all-atom MD simulation. Our results support the previous finding that the mutant H4 histones reduce the catalytic efficiency of hNatD. The MD posttrajectory analyses revealed that S1C, G4S and G4D mutants remarkably alter the residue network in hNatD. The intramolecular hydrogen bond analysis suggested that there is a considerable number of loss of hydrogen bonds in hNatD of hNatD-H4_G4D and hNatD-H4_G4S complexes whereas a large number of hydrogen bonds were increased in hNatD of hNatD-H4_R3C complex during the entire simulations. This implies that R3C mutant binding to hNatD brings stability in hNatD in comparison with WT and other MTs complexes. The linear mutual information (LMI) and Betweenness centrality (BC) suggest that S1C, G4D and G4S significantly disrupt the catalytic site residue network as compared to R3C mutation in H4 histone. Thus, this might be the cause of a notable reduction in the catalytic efficiency of hNatD in these three mutant complexes. Further, interaction analysis supports that E126 is the important residue for the acetyltransferase mechanisms as it is dominantly found to have interactions with numerous residues of MTs histones in MD frames. Additionally, intermolecular hydrogen bond and RMSD analyses of acetyl-CoA predict the higher stability of acetyl-CoA inside the WT complex of hNatD and R3C complex. Also, we report here the structural and dynamic aspects and residue interactions network (RIN) of hNatD to target it to control cell proliferation in lung cancer conditions.

Graphical Abstract

[1]
Wan, Y.C.E.; Liu, J.; Chan, K.M. Histone H3 mutations in cancer. Curr. Pharmacol. Rep., 2018, 4(4), 292-300.
[http://dx.doi.org/10.1007/s40495-018-0141-6] [PMID: 30101054]
[2]
Yusufova, N.; Kloetgen, A.; Teater, M.; Osunsade, A.; Camarillo, J.M.; Chin, C.R.; Doane, A.S.; Venters, B.J.; Portillo-Ledesma, S.; Conway, J.; Phillip, J.M.; Elemento, O.; Scott, D.W.; Béguelin, W.; Licht, J.D.; Kelleher, N.L.; Staudt, L.M.; Skoultchi, A.I.; Keogh, M.C.; Apostolou, E.; Mason, C.E.; Imielinski, M.; Schlick, T.; David, Y.; Tsirigos, A.; Allis, C.D.; Soshnev, A.A.; Cesarman, E.; Melnick, A.M. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature, 2021, 589(7841), 299-305.
[http://dx.doi.org/10.1038/s41586-020-3017-y] [PMID: 33299181]
[3]
Nacev, B.A.; Feng, L.; Bagert, J.D.; Lemiesz, A.E.; Gao, J.; Soshnev, A.A.; Kundra, R.; Schultz, N.; Muir, T.W.; Allis, C.D. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature, 2019, 567(7749), 473-478.
[http://dx.doi.org/10.1038/s41586-019-1038-1] [PMID: 30894748]
[4]
Biancotto, C.; Frigè, G.; Minucci, S. Histone modification therapy of cancer. Adv. Genet., 2010, 70, 341-386.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60013-7] [PMID: 20920755]
[5]
Cavalieri, V. Histones, their variants and post-translational modifications in zebrafish development. Front. Cell Dev. Biol., 2020, 8, 456.
[http://dx.doi.org/10.3389/fcell.2020.00456] [PMID: 32582716]
[6]
Aksnes, H.; Drazic, A.; Marie, M.; Arnesen, T. First things first: Vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci., 2016, 41(9), 746-760.
[http://dx.doi.org/10.1016/j.tibs.2016.07.005] [PMID: 27498224]
[7]
Arnesen, T.; Van Damme, P.; Polevoda, B.; Helsens, K.; Evjenth, R.; Colaert, N.; Varhaug, J.E.; Vandekerckhove, J.; Lillehaug, J.R.; Sherman, F.; Gevaert, K. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci., 2009, 106(20), 8157-8162.
[http://dx.doi.org/10.1073/pnas.0901931106] [PMID: 19420222]
[8]
Brown, J.L.; Roberts, W.K. Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated. J. Biol. Chem., 1976, 251(4), 1009-1014.
[http://dx.doi.org/10.1016/S0021-9258(17)33793-6] [PMID: 1249063]
[9]
Starheim, K.K.; Gevaert, K.; Arnesen, T. Protein N-terminal acetyltransferases: When the start matters. Trends Biochem. Sci., 2012, 37(4), 152-161.
[http://dx.doi.org/10.1016/j.tibs.2012.02.003] [PMID: 22405572]
[10]
Forte, G.M.A.; Pool, M.R.; Stirling, C.J. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol., 2011, 9(5), e1001073.
[http://dx.doi.org/10.1371/journal.pbio.1001073] [PMID: 21655302]
[11]
Hwang, C.S.; Shemorry, A.; Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science, 2010, 327(5968), 973-977.
[http://dx.doi.org/10.1126/science.1183147] [PMID: 20110468]
[12]
Yi, C.H.; Pan, H.; Seebacher, J.; Jang, I.H.; Hyberts, S.G.; Heffron, G.J.; Vander Heiden, M.G.; Yang, R.; Li, F.; Locasale, J.W.; Sharfi, H.; Zhai, B.; Rodriguez-Mias, R.; Luithardt, H.; Cantley, L.C.; Daley, G.Q.; Asara, J.M.; Gygi, S.P.; Wagner, G.; Liu, C.F.; Yuan, J. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell, 2011, 146(4), 607-620.
[http://dx.doi.org/10.1016/j.cell.2011.06.050] [PMID: 21854985]
[13]
Magin, R.S.; Liszczak, G.P.; Marmorstein, R. The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD. Structure, 2015, 23(2), 332-341.
[http://dx.doi.org/10.1016/j.str.2014.10.025] [PMID: 25619998]
[14]
Mullen, J.R.; Kayne, P.S.; Moerschell, R.P.; Tsunasawa, S.; Gribskov, M.; Colavito-Shepanski, M.; Grunstein, M.; Sherman, F.; Sternglanz, R. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J., 1989, 8(7), 2067-2075.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb03615.x] [PMID: 2551674]
[15]
Tran, J.C.; Zamdborg, L.; Ahlf, D.R.; Lee, J.E.; Catherman, A.D.; Durbin, K.R.; Tipton, J.D.; Vellaichamy, A.; Kellie, J.F.; Li, M.; Wu, C.; Sweet, S.M.M.; Early, B.P.; Siuti, N.; LeDuc, R.D.; Compton, P.D.; Thomas, P.M.; Kelleher, N.L. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature, 2011, 480(7376), 254-258.
[http://dx.doi.org/10.1038/nature10575] [PMID: 22037311]
[16]
Ju, J.; Chen, A.; Deng, Y.; Liu, M.; Wang, Y.; Wang, Y.; Nie, M.; Wang, C.; Ding, H.; Yao, B.; Gui, T.; Li, X.; Xu, Z.; Ma, C.; Song, Y.; Kvansakul, M.; Zen, K.; Zhang, C.Y.; Luo, C.; Fang, M.; Huang, D.C.S.; Allis, C.D.; Tan, R.; Zeng, C.K.; Wei, J.; Zhao, Q. NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression. Nat. Commun., 2017, 8(1), 928.
[http://dx.doi.org/10.1038/s41467-017-00988-5] [PMID: 29030587]
[17]
Ho, Y.H.; Huang, R. Effects of oncohistone mutations and PTM crosstalk on the N-terminal acetylation activities of NatD. ACS Chem. Biol., 2022, acschembio.1c00840.
[http://dx.doi.org/10.1021/acschembio.1c00840] [PMID: 35044762]
[18]
Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res., 2003, 31(13), 3381-3385.
[http://dx.doi.org/10.1093/nar/gkg520] [PMID: 12824332]
[19]
Schrodinger, L.L.C. The PyMOL molecular graphics system. Version 2.4.1. 2010. (Computer Software).
[20]
Zhou, P.; Jin, B.; Li, H.; Huang, S.Y. HPEPDOCK: A web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res., 2018, 46(W1), W443-W450.
[http://dx.doi.org/10.1093/nar/gky357] [PMID: 29746661]
[21]
Yan, Y.; Zhang, D.; Huang, S.Y. Efficient conformational ensemble generation of protein-bound peptides. J. Cheminform., 2017, 9(1), 59.
[http://dx.doi.org/10.1186/s13321-017-0246-7] [PMID: 29168051]
[22]
Huang, S.Y.; Zou, X. Construction and test of ligand decoy sets using MDock: Community structure-activity resource benchmarks for binding mode prediction. J. Chem. Inf. Model., 2011, 51(9), 2107-2114.
[http://dx.doi.org/10.1021/ci200080g] [PMID: 21755952]
[23]
Biovia, D.S. Discovery Studio Modeling Environment; Dassault Syst; Release: San Diego, 2020, p. 4. https://www.3ds.com/products-services/biovia/resource-center/citations-and-references/
[24]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[25]
Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput., 2012, 8(9), 3257-3273.
[http://dx.doi.org/10.1021/ct300400x] [PMID: 23341755]
[26]
MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616.
[http://dx.doi.org/10.1021/jp973084f] [PMID: 24889800]
[27]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[28]
Allouche, A.R. Gabedit-A graphical user interface for computational chemistry softwares. J. Comput. Chem., 2011, 32(1), 174-182.
[http://dx.doi.org/10.1002/jcc.21600] [PMID: 20607691]
[29]
Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A.D., Jr Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J. Comput. Chem., 2012, 33(31), 2451-2468.
[http://dx.doi.org/10.1002/jcc.23067] [PMID: 22821581]
[30]
Chen, C.; Huang, Y.; Ji, X.; Xiao, Y. Efficiently finding the minimum free energy path from steepest descent path. J. Chem. Phys., 2013, 138(16), 164122.
[http://dx.doi.org/10.1063/1.4799236] [PMID: 23635126]
[31]
Verlet, L. Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 1967, 159(1), 98-103.
[http://dx.doi.org/10.1103/PhysRev.159.98]
[32]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[33]
Lippert, R.A.; Bowers, K.J.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Shaw, D.E. A common, avoidable source of error in molecular dynamics integrators. J. Chem. Phys., 2007, 126(4), 046101.
[http://dx.doi.org/10.1063/1.2431176] [PMID: 17286520]
[34]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[35]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[36]
Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput., 2008, 4(1), 116-122.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
[37]
Mathew, O.; Sowdhamini, R. PIMA: Protein-protein interactions in macromolecular assembly - a web server for its Analysis and Visualization. Bioinformation, 2016, 12(1), 9-11.
[http://dx.doi.org/10.6026/97320630012009] [PMID: 27212837]
[38]
Negre, C.F.A.; Morzan, U.N.; Hendrickson, H.P.; Pal, R.; Lisi, G.P.; Loria, J.P.; Rivalta, I.; Ho, J.; Batista, V.S. Eigenvector centrality for characterization of protein allosteric pathways. Proc. Natl. Acad. Sci., 2018, 115(52), E12201-E12208.
[http://dx.doi.org/10.1073/pnas.1810452115] [PMID: 30530700]
[39]
Penkler, D.L.; Atilgan, C.; Tastan Bishop, Ö. Allosteric modulation of human Hsp90α conformational dynamics. J. Chem. Inf. Model., 2018, 58(2), 383-404.
[http://dx.doi.org/10.1021/acs.jcim.7b00630] [PMID: 29378140]
[40]
Sethi, A.; Eargle, J.; Black, A.A.; Luthey-Schulten, Z. Dynamical networks in tRNA: Protein complexes. Proc. Natl. Acad. Sci., 2009, 106(16), 6620-6625.
[http://dx.doi.org/10.1073/pnas.0810961106] [PMID: 19351898]
[41]
Van Wart, A.T.; Durrant, J.; Votapka, L.; Amaro, R.E. Weighted Implementation of Suboptimal Paths (WISP): An optimized algorithm and tool for dynamical network analysis. J. Chem. Theory Comput., 2014, 10(2), 511-517.
[http://dx.doi.org/10.1021/ct4008603] [PMID: 24803851]
[42]
Tekpinar, M.; Neron, B.; Delarue, M. Extracting dynamical correlations and identifying key residues for allosteric communication in proteins by correlationplus. J. Chem. Inf. Model., 2021, 61(10), 4832-4838.
[http://dx.doi.org/10.1021/acs.jcim.1c00742] [PMID: 34652149]
[43]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[44]
Liszczak, G.; Arnesen, T.; Marmorstein, R. Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. J. Biol. Chem., 2011, 286(42), 37002-37010.
[http://dx.doi.org/10.1074/jbc.M111.282863] [PMID: 21900231]
[45]
Liszczak, G.; Goldberg, J.M.; Foyn, H.; Petersson, E.J.; Arnesen, T.; Marmorstein, R. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nat. Struct. Mol. Biol., 2013, 20(9), 1098-1105.
[http://dx.doi.org/10.1038/nsmb.2636] [PMID: 23912279]
[46]
Liszczak, G.; Marmorstein, R. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog. Proc. Natl. Acad. Sci., 2013, 110(36), 14652-14657.
[http://dx.doi.org/10.1073/pnas.1310365110] [PMID: 23959863]
[47]
Weiner, P.K.; Langridge, R.; Blaney, J.M.; Schaefer, R.; Kollman, P.A. Electrostatic potential molecular surfaces. Proc. Natl. Acad. Sci., 1982, 79(12), 3754-3758.
[http://dx.doi.org/10.1073/pnas.79.12.3754] [PMID: 6285364]
[48]
Aamir, M.; Singh, V.K.; Dubey, M.K.; Meena, M.; Kashyap, S.P.; Katari, S.K.; Upadhyay, R.S.; Umamaheswari, A.; Singh, S. In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against fusarium wilt in tomato. Front. Pharmacol., 2018, 9, 1038.
[http://dx.doi.org/10.3389/fphar.2018.01038] [PMID: 30405403]
[49]
Azam, S.S.; Abbasi, S.W. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor. Biol. Med. Model., 2013, 10(1), 63.
[http://dx.doi.org/10.1186/1742-4682-10-63] [PMID: 24156411]
[50]
Delgado Blanco, J.; Radusky, L.G.; Cianferoni, D.; Serrano, L. Protein-assisted RNA fragment docking (RnaX) for modeling RNA–protein interactions using ModelX. Proc. Natl. Acad. Sci., 2019, 116(49), 24568-24573.
[http://dx.doi.org/10.1073/pnas.1910999116] [PMID: 31732673]
[51]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[52]
Panda, P.K.; Arul, M.N.; Patel, P.; Verma, S.K.; Luo, W.; Rubahn, H.G.; Mishra, Y.K.; Suar, M.; Ahuja, R. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv., 2020, 6(28), eabb8097.
[http://dx.doi.org/10.1126/sciadv.abb8097] [PMID: 32691011]
[53]
Parisien, M.; Freed, K.F.; Sosnick, T.R. On docking, scoring and assessing protein-DNA complexes in a rigid-body framework. PLoS One, 2012, 7(2), e32647.
[http://dx.doi.org/10.1371/journal.pone.0032647] [PMID: 22393431]
[54]
Rathod, S.B.; Prajapati, P.B.; Punjabi, L.B.; Prajapati, K.N.; Chauhan, N.; Mansuri, M.F. Peptide modelling and screening against human ACE2 and spike glycoprotein RBD of SARS-CoV-2. In Silico Pharmacol., 2020, 8(1), 3.
[http://dx.doi.org/10.1007/s40203-020-00055-w] [PMID: 33184600]
[55]
Celej, M.S.; Montich, G.G.; Fidelio, G.D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci., 2003, 12(7), 1496-1506.
[http://dx.doi.org/10.1110/ps.0240003] [PMID: 12824495]
[56]
Kumar, A.; Jernigan, R.L. Ligand binding introduces significant allosteric shifts in the locations of protein fluctuations. Front. Mol. Biosci., 2021, 8, 733148.
[http://dx.doi.org/10.3389/fmolb.2021.733148] [PMID: 34540902]
[57]
Settanni, G.; Serquera, D.; Marszalek, P.E.; Paci, E.; Itzhaki, L.S. Effects of ligand binding on the mechanical properties of ankyrin repeat protein gankyrin. PLOS Comput. Biol., 2013, 9(1), e1002864.
[http://dx.doi.org/10.1371/journal.pcbi.1002864] [PMID: 23341763]
[58]
Hubbard, R.E.; Kamran Haider, M. Hydrogen Bonds in Proteins: Role and Strength. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001.
[59]
Brown, D.K.; Penkler, D.L.; Sheik Amamuddy, O.; Ross, C.; Atilgan, A.R.; Atilgan, C.; Tastan Bishop, Ö. MD-TASK: A software suite for analyzing molecular dynamics trajectories. Bioinformatics, 2017, 33(17), 2768-2771.
[http://dx.doi.org/10.1093/bioinformatics/btx349] [PMID: 28575169]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy