Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Investigation of the Pharmacokinetic Properties and Theoretical Chemical Activities of 7,8-Dihydroxyflavone and 4'-Dimethylamino-7,8-Dihydroxyflavone

Author(s): Muhammed Fatih Karakaya, Faik Gokalp, Erol Sener and Orhan Tansel Korkmaz*

Volume 19, Issue 4, 2023

Published on: 31 March, 2023

Page: [317 - 323] Pages: 7

DOI: 10.2174/1573412919666230313143549

Price: $65

Abstract

Aims: Flavonoids naturally exist in plants as secondary metabolites. In this study, the aim is to determine and compare the theoretical and in vivo chemical activities of 7,8- dihydroxyflavone (7,8-DHF) and 4'dimethylamino-7,8-dihydroxyflavone (4’-DMA-7,8-DHF), tyrosine receptor kinase B (TrkB) receptor agonist flavonoid molecules with reported potent neuroprotective effects.

Methods: The density functional theory (DFT) (RB3LYP) method was used for the theoretical chemical analysis. For the in vivo studies, 6-month-old Wistar rats were used in two groups (n=8). 7,8-DHF and 4’-DMA-7,8-DHF (5 mg/kg) were administered intraperitoneally (ip) to each group. Then, plasma samples were collected by carotid catheterization, and brain samples by the microdialysis technique were collected simultaneously for 12 h from awake rats. The level of 7,8-DHF and 4’-DMA-7,8-DHF in blood and brain samples were analyzed and their pharmacokinetics were determined.

Results: Theoretical calculations show that 7,8-DHF is slightly more stable than 4’-DMA-7,8- DHF. The in vivo pharmacokinetic results show that the maximum concentration of 7,8-DHF was about 48 ng/mL, whereas it was only 8 ng/mL for 4’-DMA-7,8-DHF.

Conclusion: Our results suggest that the 4'-DMA-7,8-DHF is more unstable and is more prone to binding to TrkB than 7,8-DHF. On the other hand, the in vivo pharmacokinetic results show that 7,8-DHF is more stable than 4’-DMA-7,8-DHF when it is applied systemically at therapeutic concentrations.

Graphical Abstract

[1]
Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24(1), 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[2]
Taliaz, D.; Stall, N.; Dar, D.E.; Zangen, A. Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol. Psychiatry, 2010, 15(1), 80-92.
[http://dx.doi.org/10.1038/mp.2009.67] [PMID: 19621014]
[3]
Uren, R.T.; Turnley, A.M.; Vlachos, A.; Walter, T. Regulation of neurotrophin receptor (Trk) signaling: Suppressor of cytokine signaling 2 (SOCS2) is a new player. Front. Mol. Neurosci., 2014, 7, 39.
[http://dx.doi.org/10.3389/fnmol.2014.00039] [PMID: 24860421]
[4]
Mandolesi, G.; Menna, E.; Harauzov, A.; von Bartheld, C.S.; Caleo, M.; Maffei, L. A role for retinal brain-derived neurotrophic factor in ocular dominance plasticity. Curr. Biol., 2005, 15(23), 2119-2124.
[http://dx.doi.org/10.1016/j.cub.2005.10.045] [PMID: 16332537]
[5]
Sonoyama, T.; Stadler, L.K.J.; Zhu, M. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci. Rep., 2020, 10, 9028.
[http://dx.doi.org/10.1038/s41598-020-65531-x]
[6]
Barbacid, M. Neurotrophic factors and their receptors. Curr. Opin. Cell Biol., 1995, 7(2), 148-155.
[http://dx.doi.org/10.1016/0955-0674(95)80022-0] [PMID: 7612265]
[7]
Wei, C.; Sun, Y.; Chen, N.; Chen, S.; Xiu, M.; Zhang, X. Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology, 2020, 111, 104473.
[http://dx.doi.org/10.1016/j.psyneuen.2019.104473] [PMID: 31655452]
[8]
Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; Brunello, C.A.; Steinzeig, A.; Winkel, F.; Patil, S.; Vestring, S.; Serchov, T.; Diniz, C.R.A.F.; Laukkanen, L.; Cardon, I.; Antila, H.; Rog, T.; Piepponen, T.P.; Bramham, C.R.; Normann, C.; Lauri, S.E.; Saarma, M.; Vattulainen, I.; Castrén, E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell, 2021, 184(5), 1299-1313.e19.
[http://dx.doi.org/10.1016/j.cell.2021.01.034] [PMID: 33606976]
[9]
Khalin, I.; Kocherga, G.; Abu Bakar, M.; Alyautdin, R. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. Int. J. Nanomedicine, 2015, 10, 3245-3267.
[http://dx.doi.org/10.2147/IJN.S77480] [PMID: 25995632]
[10]
Price, R.; Milne, S.; Sharkey, J.; Matsuoka, N. Advances in small molecules promoting neurotrophic function. Pharmacol. Ther., 2007, 115(2), 292-306.
[http://dx.doi.org/10.1016/j.pharmthera.2007.03.005] [PMID: 17599430]
[11]
Han, X.; Zhu, S.; Wang, B.; Chen, L.; Li, R.; Yao, W.; Qu, Z. Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity. Neurochem. Int., 2014, 64, 18-23.
[http://dx.doi.org/10.1016/j.neuint.2013.10.018] [PMID: 24220540]
[12]
Zhang, Z.; Liu, X.; Schroeder, J.P.; Chan, C.B.; Song, M.; Yu, S.P.; Weinshenker, D.; Ye, K. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology, 2014, 39(3), 638-650.
[http://dx.doi.org/10.1038/npp.2013.243] [PMID: 24022672]
[13]
Aytan, N.; Choi, J.K.; Carreras, I.; Crabtree, L.; Nguyen, B.; Lehar, M.; Blusztajn, J.K.; Jenkins, B.G.; Dedeoglu, A. Protective effects of 7,8-dihydroxyflavone on neuropathological and neurochemical changes in a mouse model of Alzheimer’s disease. Eur. J. Pharmacol., 2018, 828, 9-17.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.045] [PMID: 29510124]
[14]
Castello, N.A.; Nguyen, M.H.; Tran, J.D.; Cheng, D.; Green, K.N.; LaFerla, F.M. 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS One, 2014, 9(3), e91453.
[http://dx.doi.org/10.1371/journal.pone.0091453] [PMID: 24614170]
[15]
Luo, D.; Shi, Y.; Wang, J.; Lin, Q.; Sun, Y.; Ye, K.; Yan, Q.; Zhang, H. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci. Lett., 2016, 620, 43-49.
[http://dx.doi.org/10.1016/j.neulet.2016.03.042] [PMID: 27019033]
[16]
Sconce, M.D.; Churchill, M.J.; Moore, C.; Meshul, C.K. Intervention with 7,8-dihydroxyflavone blocks further striatal terminal loss and restores motor deficits in a progressive mouse model of Parkinson’s disease. Neuroscience, 2015, 290, 454-471.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.080] [PMID: 25655214]
[17]
Nie, S.; Ma, K.; Sun, M.; Lee, M.; Tan, Y.; Chen, G.; Zhang, Z.; Zhang, Z.; Cao, X. 7,8-dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents. Parkinsons Dis., 2019, 2019, 9193534.
[18]
Korkmaz, O.T.; Aytan, N.; Carreras, I.; Choi, J.K.; Kowall, N.W.; Jenkins, B.G.; Dedeoglu, A. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci. Lett., 2014, 566, 286-291.
[http://dx.doi.org/10.1016/j.neulet.2014.02.058] [PMID: 24637017]
[19]
Lee, R.H.; Shin, J.C.; Kim, K.H.; Choi, Y.H.; Chae, J.; Shim, J.H. Apoptotic effects of 7,8-dihydroxyflavone in human oral squamous cancer cells through suppression of Sp1. Oncol. Rep., 2015, 33(2), 631-638.
[http://dx.doi.org/10.3892/or.2014.3632] [PMID: 25434704]
[20]
Sim, D.Y.; Sohng, J.K.; Jung, H.J. Anticancer activity of 7,8-dihydroxyflavone in melanoma cells via downregulation of α-MSH/cAMP/MITF pathway. Oncol. Rep., 2016, 36(1), 528-534.
[http://dx.doi.org/10.3892/or.2016.4825] [PMID: 27220989]
[21]
Uluc, K.; Kendigelen, P.; Fidan, E.; Zhang, L.; Chanana, V.; Kintner, D.; Akture, E.; Song, C.; Ye, K.; Sun, D.; Ferrazzano, P.; Cengiz, P.; Trk, B. TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia. CNS Neurol. Disord. Drug Targets, 2013, 12(3), 360-370.
[http://dx.doi.org/10.2174/18715273113129990061] [PMID: 23469848]
[22]
Kang, J.S.; Choi, W.; Han, M.H.; Kim, G.Y.; Hong, S.H.; Park, C.; Hwang, H.J.; Kim, C.M.; Kim, B.W.; Choi, Y.H. The cytoprotective effects of 7,8-dihydroxyflavone against oxidative stress are mediated by the upregulation of Nrf2-dependent HO-1 expression through the activation of the PI3K/Akt and ERK pathways in C2C12 myoblasts. Int. J. Mol. Med., 2015, 36(2), 501-510.
[http://dx.doi.org/10.3892/ijmm.2015.2256] [PMID: 26096841]
[23]
Chen, C.; Wang, Z.; Zhang, Z.; Liu, X.; Kang, S.S.; Zhang, Y.; Ye, K. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2018, 115(3), 578-583.
[http://dx.doi.org/10.1073/pnas.1718683115] [PMID: 29295929]
[24]
LeWitt, P.A. Subcutaneously administered apomorphine: Pharmacokinetics and metabolism. Neurology, 2004, 62(6)(Suppl. 4), S8-S11.
[http://dx.doi.org/10.1212/WNL.62.6_suppl_4.S8] [PMID: 15037665]
[25]
Liu, X.; Chan, C.B.; Jang, S.W.; Pradoldej, S.; Huang, J.; He, K.; Phun, L.H.; France, S.; Xiao, G.; Jia, Y.; Luo, H.R.; Ye, K. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J. Med. Chem., 2010, 53(23), 8274-8286.
[http://dx.doi.org/10.1021/jm101206p] [PMID: 21073191]
[26]
Gökalp, F. A Study on the Chemical Properties of Eugenol and Eugenol Acetate, Clove Essential Oils. Sigma J. Eng. Nat. Sci., 2016, 34, 406-414.
[27]
Faik, G. A theoritical study of Curcuma longas anticancer agents, curcumin I and curcumin II, ın blood and gas by using density functional theory (DFT) and hartreefock (HF). Int. J. Med. Med. Sci., 2014, 6(6), 146-150.
[http://dx.doi.org/10.5897/IJMMS2014.1030]
[28]
Gökalp, F. The inhibition effect of garlic-derived compounds on human immunodeficiency virus type 1 and saquinavir. J. Biochem. Mol. Toxicol., 2018, 32(11), e22215.
[http://dx.doi.org/10.1002/jbt.22215] [PMID: 30194790]
[29]
Gaussian. GO9. Available From: https://gaussian.com/glossary/g09/ (Accessed Jan 11, 2023)
[30]
Gökalp, F. An investigation of the olive phenols activity as a natural medicine. Yao Wu Shi Pin Fen Xi, 2018, 26(2), 657-661.
[PMID: 29567235]
[31]
Gökalp, F. The effective ethanol rate against the toxicity of ethylene glycol. Turkish Comput. Theor. Chem., 2021, 5(1), 20-26.
[http://dx.doi.org/10.33435/tcandtc.813939]
[32]
Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates. Academic Press. 6th ed.; Cambridge: Academic Press, 2006.
[33]
Gökalp, F. An Investigation into the Usage of Monosaccharides with GLUT1 and GLUT3 as Prognostic Indicators for Cancer. Nutr. Cancer, 2022, 74(2), 515-519.
[http://dx.doi.org/10.1080/01635581.2021.1895233] [PMID: 33724114]
[34]
Liu, X.; Qi, Q.; Xiao, G.; Li, J.; Luo, H.R.; Ye, K. O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity. Pharmacology, 2013, 91(3-4), 185-200.
[http://dx.doi.org/10.1159/000346920] [PMID: 23445871]
[35]
Antonio, L.; Grillasca, J.P.; Taskinen, J.; Elovaara, E.; Burchell, B.; Piet, M.H.; Ethell, B.; Ouzzine, M.; Fournel-Gigleux, S.; Magdalou, J. Characterization of catechol glucuronidation in rat liver. Drug Metab. Dispos., 2002, 30(2), 199-207.
[http://dx.doi.org/10.1124/dmd.30.2.199] [PMID: 11792691]

© 2025 Bentham Science Publishers | Privacy Policy