Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

An Insight into MptpB Inhibitors as a Key Strategy to Treat MDR and XDRTuberculosis

Author(s): Madhur Jain, Sirisha Gollapudi and Gopal L. Khatik*

Volume 29, Issue 8, 2023

Published on: 22 March, 2023

Page: [562 - 575] Pages: 14

DOI: 10.2174/1381612829666230308112634

Price: $65

Abstract

Tuberculosis (TB) is a chronic, air-borne infectious disease caused by Mycobacterium tuberculosis (Mtb), which prominently affects the lungs and usually manifests in other organs. TB is preventable and curable but what makes it challenging is the emergence of resistance to the available treatment options. MDR-continued TB's expansion is one of the world's most pressing and difficult problems. Mtb revives via the reciprocity between Mycobacterium and host signalling pathways. Mtb secretes a virulence component called Mycobacterium tuberculosis protein tyrosine phosphatase (MptpB), which helps to survive against host macrophages. It indicates that targeting secreted virulence factors offers more benefits to circumvent the emergence of resistance. Many effective inhibitors of MptpA and MptpB have been discovered, providing a solid foundation for future research and development. Aside from possessing a structurally unique binding site in the Mtb enzyme, MptpB's minimal resemblance to other human phosphatases provides a broad platform for improving selectivity over host PTPs. We believe that addressing several parts of infection processes in the host and bacteria with combination therapy is the greatest way to reduce treatment burden and medication resistance. We have discussed the recent potent, selective, and efficacious MptpB inhibitors, such as natural and marine-based, isoxazole- linked carboxylic acid-based, oxamic acid-based, and lactone-based inhibitors, as potential strategies for treating TB.

[1]
WHO. Global Tuberculosis Report 2020. 2020. Available From: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/9789240013131
[2]
Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3): 268-81.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[3]
Michael JS, John TJ. Extensively drug-resistant tuberculosis in India: A review. Indian J Med Res 2012; 136(4): 599-604.
[PMID: 23168700]
[4]
Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: An update. Arch Toxicol 2016; 90(7): 1585-604.
[http://dx.doi.org/10.1007/s00204-016-1727-6] [PMID: 27161440]
[5]
Houben ENG, Nguyen L, Pieters J. Interaction of pathogenic mycobacteria with the host immune system. Curr Opin Microbiol 2006; 9(1): 76-85.
[http://dx.doi.org/10.1016/j.mib.2005.12.014] [PMID: 16406837]
[6]
Grosset J. Mycobacterium tuberculosis in the extracellular compartment: An underestimated adversary. Antimicrob Agents Chemother 2003; 47(3): 833-6.
[http://dx.doi.org/10.1128/AAC.47.3.833-836.2003] [PMID: 12604509]
[7]
Astarie-Dequeker C, N’Diaye EN, Le Cabec V, Rittig MG, Prandi J, Maridonneau-Parini I. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 1999; 67(2): 469-77.
[http://dx.doi.org/10.1128/IAI.67.2.469-477.1999] [PMID: 9916047]
[8]
N’Diaye EN, Darzacq X, Astarie-Dequeker C, Daffé M, Calafat J, Maridonneau-Parini I. Fusion of azurophil granules with phagosomes and activation of the tyrosine kinase Hck are specifically inhibited during phagocytosis of mycobacteria by human neutrophils. J Immunol 1998; 161(9): 4983-91.
[http://dx.doi.org/10.4049/jimmunol.161.9.4983] [PMID: 9794435]
[9]
Timmins GS, Deretic V. Mechanisms of action of isoniazid. Mol Microbiol 2006; 62(5): 1220-7.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05467.x] [PMID: 17074073]
[10]
De La Iglesia AI, Morbidoni HR. Mechanisms of action of and resistance to rifampicin and isoniazid in Mycobacterium tuberculosis: New information on old friends. Rev Argent Microbiol 2006; 38: 97-109.
[11]
Xiang X, Gong Z, Deng W, Sun Q, Xie J. Mycobacterial ethambutol responsive genes and implications in antibiotics resistance. J Drug Target 2021; 29: 284-93.
[12]
Nangraj AS, Khan A, Umbreen S, et al. Insights into mutations induced conformational changes and rearrangement of Fe2+ Ion in pncA Gene of Mycobacterium tuberculosis to decipher the mechanism of resistance to pyrazinamide. Front Mol Biosci 2021; 8: 633365.
[http://dx.doi.org/10.3389/fmolb.2021.633365] [PMID: 34095218]
[13]
Karampela I, Dalamaga M. Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19. Arch Med Res 2020; 51(7): 741-2.
[http://dx.doi.org/10.1016/j.arcmed.2020.06.004] [PMID: 32546446]
[14]
Hashemian SM, Farhadi T, Ganjparvar M. Linezolid: A review of its properties, function, and use in critical care. Drug Des Devel Ther 2018; 12: 1759-67.
[http://dx.doi.org/10.2147/DDDT.S164515] [PMID: 29950810]
[15]
Kempker RR, Mikiashvili L, Zhao Y, et al. Clinical outcomes among patients with drug-resistant tuberculosis receiving bedaquiline- or delamanid-containing regimens. Clin Infect Dis 2020; 71(9): 2336-44.
[PMID: 31712809]
[16]
Guo H, Courbon GM, Bueler SA, Mai J, Liu J, Rubinstein JL. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature 2021; 589(7840): 143-7.
[http://dx.doi.org/10.1038/s41586-020-3004-3] [PMID: 33299175]
[17]
Sizar O, Rahman S, Sundareshan V. Amikacin. StatPearls. Treasure Island, FL: StatPearls Publishing 2021. Available From: https://pubmed.ncbi.nlm.nih.gov/28613658/
[18]
Udhaya Kumar S, Saleem A, Thirumal Kumar D, et al. Chapter Eleven - A systemic approach to explore the mechanisms of drug resistance and altered signaling cascades in extensively drugresistant tuberculosis. Advances in Protein Chemistry and Structural Biology, Academic Press, Cambridge 2021; 127: pp. 343-64.
[http://dx.doi.org/10.1016/bs.apcsb.2021.02.002]
[19]
Lu Y, Zheng M, Wang B, et al. Clofazimine analogs with efficacy against experimental tuberculosis and reduced potential for accumulation. Antimicrob Agents Chemother 2011; 55(11): 5185-93.
[http://dx.doi.org/10.1128/AAC.00699-11] [PMID: 21844321]
[20]
Lee NH, Myeong SH, Son HJ, et al. Ethionamide preconditioning enhances the proliferation and migration of human wharton’s jelly-derived mesenchymal stem cells. Int J Mol Sci 2020; 21(19): 7013.
[http://dx.doi.org/10.3390/ijms21197013] [PMID: 32977637]
[21]
Lima LM, Silva BNM, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem 2020; 208: 112829.
[http://dx.doi.org/10.1016/j.ejmech.2020.112829] [PMID: 33002736]
[22]
Satta G, Witney AA, Begum N, Ortiz Canseco J, Boa AN, McHugh TD. Role of whole-genome sequencing in characterizing the mechanism of action of para-aminosalicylic acid and its resistance. Antimicrob Agents Chemother 2020; 64(9): e00675-20.
[http://dx.doi.org/10.1128/AAC.00675-20] [PMID: 32571810]
[23]
Akhavan BJ, Khanna NR, Vijhani P. Amoxicillin. Treasure Island, FL: StatPearls Publishing 2021.
[24]
WHO. WHO consolidated guidelines on tuberculosis Module 4: Treatment - drug-resistant tuberculosis treatment Online annexes. WHO 2020; pp. 1-120. https://www.who.int/publications/i/item/9789240007048.
[25]
Divita KM, Khatik GL. Current Perspective of ATP Synthase Inhibitors in the Management of the Tuberculosis. Curr Top Med Chem 2021; 21(18): 1623-43.
[http://dx.doi.org/10.2174/1568026621666210913122346] [PMID: 34517802]
[26]
Narang R, Kumar R, Kalra S, et al. Recent advancements in mechanistic studies and structure activity relationship of FoF1 ATP synthase inhibitor as antimicrobial agent. Eur J Med Chem 2019; 182: 111644.
[http://dx.doi.org/10.1016/j.ejmech.2019.111644] [PMID: 31493745]
[27]
Beatty WL, Rhoades ER, Ullrich HJ, Chatterjee D, Heuser JE, Russell DG. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 2000; 1(3): 235-47.
[http://dx.doi.org/10.1034/j.1600-0854.2000.010306.x] [PMID: 11208107]
[28]
Vieira OV, Botelho RJ, Grinstein S. Phagosome maturation: Aging gracefully. Biochem J 2002; 366(3): 689-704.
[http://dx.doi.org/10.1042/bj20020691] [PMID: 12061891]
[29]
Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, et al. Lack of acidification in mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678-81.1994;
[http://dx.doi.org/10.1126/science.8303277]
[30]
Armstrong JA, Hart PD. Phagosome-lysosome interactions in cultured macrophages infected with virulent Tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 1975; 142(1): 1-16.
[http://dx.doi.org/10.1084/jem.142.1.1] [PMID: 807671]
[31]
Jaconi ME, Lew DP, Carpentier JL, Magnusson KE, Sjögren M, Stendahl O. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J Cell Biol 1990; 110(5): 1555-64.
[http://dx.doi.org/10.1083/jcb.110.5.1555] [PMID: 2110568]
[32]
Rojas M, García LF, Nigou J, Puzo G, Olivier M. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+2-dependent cell signaling. J Infect Dis 2000; 182(1): 240-51.
[http://dx.doi.org/10.1086/315676] [PMID: 10882603]
[33]
Malik ZA, Thompson CR, Hashimi S, Porter B, Iyer SS, Kusner DJ. Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J Immunol 2003; 170(6): 2811-5.
[http://dx.doi.org/10.4049/jimmunol.170.6.2811] [PMID: 12626530]
[34]
Szalai G, Krishnamurthy R, Hajnóczky G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J 1999; 18(22): 6349-61.
[http://dx.doi.org/10.1093/emboj/18.22.6349] [PMID: 10562547]
[35]
Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol 1998; 161(5): 2636-41.
[http://dx.doi.org/10.4049/jimmunol.161.5.2636] [PMID: 9725266]
[36]
Roach SK, Schorey JS. Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Infect Immun 2002; 70(6): 3040-52.
[http://dx.doi.org/10.1128/IAI.70.6.3040-3052.2002] [PMID: 12010996]
[37]
Blumenthal A, Ehlers S, Ernst M, Flad HD, Reiling N. Control of mycobacterial replication in human macrophages: Roles of extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinase pathways. Infect Immun 2002; 70(9): 4961-7.
[http://dx.doi.org/10.1128/IAI.70.9.4961-4967.2002] [PMID: 12183542]
[38]
Decker T, Stockinger S, Karaghiosoff M, Müller M, Kovarik P. IFNs and STATs in innate immunity to microorganisms. J Clin Invest 2002; 109(10): 1271-7.
[http://dx.doi.org/10.1172/JCI0215770] [PMID: 12021240]
[39]
MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302: 654-9.2003;
[40]
Pai RK, Convery M, Hamilton TA, Boom WH, Harding CV. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: A potential mechanism for immune evasion. J Immunol 2003; 171(1): 175-84.
[http://dx.doi.org/10.4049/jimmunol.171.1.175] [PMID: 12816996]
[41]
Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 1999; 163: 3898-906.
[42]
Pancholi P, Mirza A, Bhardwaj N, Steinman RM. Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 1993; 260: 984-6.
[43]
Wojciechowski W, DeSanctis J, Skamene E, Radzioch D. Attenuation of MHC class II expression in macrophages infected with Mycobacterium bovis bacillus Calmette-Guérin involves class II transactivator and depends on the Nramp1 gene. J Immunol 1999; 163: 2688-96.
[44]
Mariotti S, Teloni R, Iona E, et al. Mycobacterium tuberculosis subverts the differentiation of human monocytes into dendritic cells. Eur J Immunol 2002; 32(11): 3050-8.
[http://dx.doi.org/10.1002/1521-4141(200211)32:11<3050::AID-IMMU3050>3.0.CO;2-K] [PMID: 12385024]
[45]
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393(6685): 537-44.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[46]
Kaniga K, Uralil J, Bliska JB, Galán JE. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurlum. Mol Microbiol 1996; 21(3): 633-41.
[http://dx.doi.org/10.1111/j.1365-2958.1996.tb02571.x] [PMID: 8866485]
[47]
Selbach M, Moese S, Hurwitz R, Hauck CR, Meyer TF, Backert S. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J 2003; 22(3): 515-28.
[http://dx.doi.org/10.1093/emboj/cdg050] [PMID: 12554652]
[48]
Koul A, Choidas A, Treder M, et al. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol 2000; 182(19): 5425-32.
[http://dx.doi.org/10.1128/JB.182.19.5425-5432.2000] [PMID: 10986245]
[49]
Singh R, Rao V, Shakila H, et al. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol 2003; 50(3): 751-62.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03712.x] [PMID: 14617138]
[50]
Zhou B, He Y, Zhang X, et al. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA 2010; 107(10): 4573-8.
[http://dx.doi.org/10.1073/pnas.0909133107] [PMID: 20167798]
[51]
Zhang M, Zhou M, Van Etten RL, Stauffacher CV. Crystal structure of bovine low molecular weight phosphotyrosyl phosphatase complexed with the transition state analog vanadate. Biochemistry 1997; 36(1): 15-23.
[http://dx.doi.org/10.1021/bi961804n] [PMID: 8993313]
[52]
Tonks NK, Neel BG. Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol 2001; 13(2): 182-95.
[http://dx.doi.org/10.1016/S0955-0674(00)00196-4] [PMID: 11248552]
[53]
Zhang ZY. Protein tyrosine phosphatases: Prospects for therapeutics. Curr Opin Chem Biol 2001; 5(4): 416-23.
[http://dx.doi.org/10.1016/S1367-5931(00)00223-4] [PMID: 11470605]
[54]
Mullard A. Phosphatases start shedding their stigma of undruggability. Nat Rev Drug Discov 2018; 17(12): 847-9.
[http://dx.doi.org/10.1038/nrd.2018.201] [PMID: 30482950]
[55]
Bright NA, Gratian MJ, Luzio JP. Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr Biol 2005; 15(4): 360-5.
[http://dx.doi.org/10.1016/j.cub.2005.01.049] [PMID: 15723798]
[56]
Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA 2011; 108(48): 19371-6.
[http://dx.doi.org/10.1073/pnas.1109201108] [PMID: 22087003]
[57]
Madhurantakam C, Rajakumara E, Mazumdar PA, et al. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution. J Bacteriol 2005; 187(6): 2175-81.
[http://dx.doi.org/10.1128/JB.187.6.2175-2181.2005] [PMID: 15743966]
[58]
Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 2008; 3(5): 316-22.
[http://dx.doi.org/10.1016/j.chom.2008.03.008] [PMID: 18474358]
[59]
Castandet J, Prost JF, Peyron P, et al. Tyrosine phosphatase MptpA of Mycobacterium tuberculosis inhibits phagocytosis and increases actin polymerization in macrophages. Res Microbiol 2005; 156(10): 1005-13.
[http://dx.doi.org/10.1016/j.resmic.2005.05.013] [PMID: 16085396]
[60]
Jackson MD, Denu JM. Molecular reactions of protein phosphatases-insights from structure and chemistry. Chem Rev 2001; 101(8): 2313-40.
[http://dx.doi.org/10.1021/cr000247e] [PMID: 11749375]
[61]
Beresford N, Patel S, Armstrong J, Szöor B, Fordham-Skelton AP, Tabernero L. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 2007; 406(1): 13-8.
[http://dx.doi.org/10.1042/BJ20070670] [PMID: 17584180]
[62]
Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010; 9(2): 117-28.
[http://dx.doi.org/10.1038/nrd3013] [PMID: 20081869]
[63]
Silva APG, Tabernero L. New strategies in fighting TB: Targeting Mycobacterium tuberculosis -secreted phosphatases MptpA & MptpB. Future Med Chem 2010; 2(8): 1325-37.
[http://dx.doi.org/10.4155/fmc.10.214] [PMID: 21426021]
[64]
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16(7): 457-71.
[http://dx.doi.org/10.1038/nrd.2017.23] [PMID: 28337021]
[65]
Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006; 443(7112): 651-7.
[http://dx.doi.org/10.1038/nature05185] [PMID: 17035995]
[66]
Nören-Müller A, Reis-Corrêa I Jr, Prinz H, et al. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc Natl Acad Sci USA 2006; 103(28): 10606-11.
[http://dx.doi.org/10.1073/pnas.0601490103] [PMID: 16809424]
[67]
Chen D, Liu L, Lu Y, Chen S. Identification of fusarielin M as a novel inhibitor of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB). Bioorg Chem 2021; 106: 104495.
[http://dx.doi.org/10.1016/j.bioorg.2020.104495] [PMID: 33293055]
[68]
Chen D, Chen H, She Z, Lu Y. Identification of bostrycin derivatives as potential inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase (MptpB). Med Chem 2016; 12(3): 296-302.
[http://dx.doi.org/10.2174/1573406411666151005105857] [PMID: 26434800]
[69]
He R, Yu Z, He Y, et al. Double click reaction for the acquisition of a highly potent and selective mPTPB inhibitor. ChemMedChem 2010; 5(12): 2051-6.
[http://dx.doi.org/10.1002/cmdc.201000348] [PMID: 20957718]
[70]
Tan LP, Wu H, Yang PY, et al. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry. Org Lett 2009; 11(22): 5102-5.
[http://dx.doi.org/10.1021/ol9023419] [PMID: 19852491]
[71]
Chen L, Zhou B, Zhang S, et al. Identification and characterization of novel inhibitors of mPTPB, an essential virulent phosphatase from Mycobacterium tuberculosis. ACS Med Chem Lett 2010; 1(7): 355-9.
[http://dx.doi.org/10.1021/ml1001135] [PMID: 21116447]
[72]
Weide T, Arve L, Prinz H, Waldmann H, Kessler H. 3-Substituted indolizine-1-carbonitrile derivatives as phosphatase inhibitors. Bioorg Med Chem Lett 2006; 16(1): 59-63.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.051] [PMID: 16236508]
[73]
Soellner MB, Rawls KA, Grundner C, Alber T, Ellman JA. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB. J Am Chem Soc 2007; 129(31): 9613-5.
[http://dx.doi.org/10.1021/ja0727520] [PMID: 17636914]
[74]
Vickers CF, Silva APG, Chakraborty A, et al. Structure-based design of mptpb inhibitors that reduce multidrug-resistant Mycobacterium tuberculosis survival and infection burden in vivo. J Med Chem 2018; 61(18): 8337-52.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00832] [PMID: 30153005]
[75]
He Y, Xu J, Yu ZH, et al. Discovery and evaluation of novel inhibitors of mycobacterium protein tyrosine phosphatase B from the 6-Hydroxy-benzofuran-5-carboxylic acid scaffold. J Med Chem 2013; 56(3): 832-42.
[http://dx.doi.org/10.1021/jm301781p] [PMID: 23305444]
[76]
He R, Zeng LF, He Y, Wu L, Michelle Gunawan A, Zhang ZY. Organocatalytic multicomponent reaction for the acquisition of a selective inhibitor of mPTPB, a virulence factor of tuberculosis. Chem Commun 2013; 49(20): 2064-6.
[http://dx.doi.org/10.1039/c3cc38961h] [PMID: 23380872]
[77]
He R, Bai Y, Yu ZH, Wu L, Gunawan AM, Zhang ZY. Diversity-oriented synthesis for novel, selective and drug-like inhibitors for a phosphatase from Mycobacterium tuberculosis. MedChem-Comm 2014; 5(10): 1496-9.
[http://dx.doi.org/10.1039/C4MD00099D] [PMID: 25505942]
[78]
He R, Yu ZH, Zhang RY, Wu L, Gunawan AM, Zhang ZY. Cefsulodin inspired potent and selective inhibitors of mPTPB, a virulent phosphatase from Mycobacterium tuberculosis. ACS Med Chem Lett 2015; 6(12): 1231-5.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00373] [PMID: 26713110]
[79]
Li Y, Xia G, Guo Q, et al. Design, synthesis and evaluation of novel 19F magnetic resonance sensitive protein tyrosine phosphatase inhibitors. MedChemComm 2016; 7(8): 1672-80.
[http://dx.doi.org/10.1039/C6MD00277C] [PMID: 27529021]
[80]
Grundner C, Perrin D, Hooft van Huijsduijnen R, et al. Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB. Structure 2007; 15(4): 499-509.
[http://dx.doi.org/10.1016/j.str.2007.03.003] [PMID: 17437721]
[81]
Ruddraraju KV, Aggarwal D, Niu C, et al. Highly potent and selective n-aryl oxamic acid-based inhibitors for Mycobacterium tuberculosis protein tyrosine phosphatase B. J Med Chem 2020; 63(17): 9212-27.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00302] [PMID: 32787087]
[82]
Zhang D, Lin Y, Chen X, et al. Docking- and pharmacophore-based virtual screening for the identification of novel Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitor with a thiobarbiturate scaffold. Bioorg Chem 2019; 85: 229-39.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.038] [PMID: 30641319]
[83]
Dong L, Shi J, Liu Y. Theoretical studies on the interaction of biphenyl inhibitors with Mycobacterium tuberculosis protein tyrosine phosphatase MptpB. J Mol Model 2012; 18(8): 3847-56.
[http://dx.doi.org/10.1007/s00894-012-1384-5] [PMID: 22406969]
[84]
Zeng LF, Xu J, He Y, et al. A facile hydroxyindole carboxylic acid based focused library approach for potent and selective inhibitors of Mycobacterium protein tyrosine phosphatase B. ChemMedChem 2013; 8(6): 904-8.
[http://dx.doi.org/10.1002/cmdc.201300115] [PMID: 23568546]
[85]
Xia G, Li J, Li H, et al. Alterporriol-type dimers from the mangrove endophytic fungus, Alternaria sp. (SK11), and their MptpB inhibitions. Mar Drugs 2014; 12(5): 2953-69.
[http://dx.doi.org/10.3390/md12052953] [PMID: 24840716]
[86]
Zhang HB, Du X, Pu JX, et al. Two novel diterpenoids from Isodon rubescens var. lushanensis. Tetrahedron Lett 2010; 51(32): 4225-8.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.015]
[87]
Cazzaniga G, Mori M, Meneghetti F, et al. Virtual screening and crystallographic studies reveal an unexpected γ-lactone derivative active against MptpB as a potential antitubercular agent. Eur J Med Chem 2022; 234: 114235.
[http://dx.doi.org/10.1016/j.ejmech.2022.114235] [PMID: 35286928]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy