Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Nanostructured Lipid Carrier of Cinacalcet HCl: Formulation, BBD Enabled Optimization, Pharmacokinetic and In-Vitro Cytotoxicity Study

Author(s): Sabita Nayak*, Jammula Sruti, Chinam Niranjan Patra, Goutam Kumar Jena, Kanhu Charan Panigrahi and Nandika Khirod Kumar

Volume 13, Issue 3, 2023

Published on: 27 March, 2023

Page: [213 - 224] Pages: 12

DOI: 10.2174/2210303113666230307115408

Price: $65

Abstract

Background: Cinacalcet hydrochloride (CINH) is a BCS class IV drug. It is mainly used for the treatment of chronic renal disease and parathyroid cancer. It exhibits poor oral bioavailability of less than 25%.

Objectives: The main objective is to improve the bioavailability of CINH by formulating the nanostructure lipid carrier (NLC).

Methods: In this research, glyceryl monostearate (GMS), labrasol, and tween 20 were the main excipients selected for the formulation of NLC. Hot high-speed homogenization and ultra-sonication method was used for the NLC formulation of CINH. The characterization of the NLCs was done as per standard procedures. Optimization of the formulated NLC was carried out by applying Box- Behnken Design (BBD) with the help of the Design Expert software. The pharmacokinetic study was conducted to determine the improvement in the bioavailability of the CINH. The cytotoxicity study was performed by using the MTT assay method to know the cell viability.

Results: The optimized NLC formulation exhibited high drug content with a particle size of less than 200nm. A pharmacokinetic study showed 4 fold increase in oral bioavailability for the optimized NLC in comparison to the aqueous suspension of CINH. Minimum viability was determined as 94%, which indicates the safety of the incubated formulations.

Conclusion: NLC formulation has the potential to improve oral bioavailability with high drug loading and cell viability for CINH.

Graphical Abstract

[1]
Palmer, S.C.; Nistor, I.; Craig, J.C.; Pellegrini, F.; Messa, P.; Tonelli, M.; Covic, A.; Strippoli, G.F.M. Cinacalcet in patients with chronic kidney disease: a cumulative meta-analysis of randomized controlled trials. PLoS Med., 2013, 10(4), e1001436.
[http://dx.doi.org/10.1371/journal.pmed.1001436] [PMID: 23637579]
[2]
Padhi, D.; Harris, R. Clinical pharmacokinetic and pharmacodynamic profile of cinacalcet hydrochloride. Clin. Pharmacokinet., 2009, 48(5), 303-311.
[http://dx.doi.org/10.2165/00003088-200948050-00002] [PMID: 19566113]
[3]
Panigrahi, K.C.; Patra, C.N.; Rao, M.E.B. Quality by design enabled development of oral self-nanoemulsifying drug delivery system of a novel calcimimetic cinacalcet HCl using a porous carrier: In vitro and in vivo characterisation. AAPS PharmSciTech, 2019, 20.
[http://dx.doi.org/10.1208/s12249-019-1411-2]
[4]
Xu, X.; Chen, G.; Li, Y.; Wang, J.; Yin, J.; Ren, L. Enhanced dissolution and oral bioavailbility of cinacalcet hydrochlorde nanocrystals with no food effect. Nanotechnology, 2019, 30(5), 055102.
[http://dx.doi.org/10.1088/1361-6528/aaef46] [PMID: 30511665]
[5]
Cao, M.; Xue, X.; Pei, X.; Qian, Y.; Liu, L.; Ren, L.; Chen, G. Formulation optimization and pharmacokinetics evaluation of oral self-microemulsifying drug delivery system for poorly water soluble drug cinacalcet and no food effect. Drug Dev. Ind. Pharm., 2018, 44(6), 969-981.
[http://dx.doi.org/10.1080/03639045.2018.1425428] [PMID: 29313395]
[6]
Routray, S.B.; Patra, C.N.; Raju, R.; Panigrahi, K.C.; Jena, G.K. Lyophilized SLN of Cinnacalcet HCl: BBD enabled optimization, characterization and pharmacokinetic study. Drug Dev. Ind. Pharm., 2020, 46(7), 1080-1091.
[http://dx.doi.org/10.1080/03639045.2020.1775632] [PMID: 32486863]
[7]
Ghose, D.; Patra, C.N.; Ravi Kumar, B.V.V.; Swain, S.; Jena, B.R.; Choudhury, P.; Shree, D. QbD-based formulation optimization and characterization of polymeric nanoparticles of cinacalcet hydrochloride with improved biopharmaceutical attributes. Turkish J. Pharm. Sci., 2021, 18(4), 452-464.
[http://dx.doi.org/10.4274/tjps.galenos.2020.08522] [PMID: 34496552]
[8]
Doktorovova, S.; Souto, E.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opin. Drug Deliv., 2009, 6(2), 165-176.
[http://dx.doi.org/10.1517/17425240802712590] [PMID: 19239388]
[9]
Elmowafy, M.; Ibrahim, H.M.; Ahmed, M.A.; Shalaby, K.; Salama, A.; Hefesha, H. Atorvastatin-loaded nanostructured lipid carriers (NLCs): strategy to overcome oral delivery drawbacks. Drug Deliv., 2017, 24(1), 932-941.
[http://dx.doi.org/10.1080/10717544.2017.1337823] [PMID: 28617150]
[10]
Kushwaha, A.K.; Vuddanda, P.R.; Karunanidhi, P.; Singh, S.K.; Singh, S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed Res. Int., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/584549] [PMID: 24228255]
[11]
Burra, M.; Jukanti, R.; Janga, K.Y.; Sunkavalli, S.; Velpula, A.; Ampati, S.; Jayaveera, K.N. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv. Powder Technol., 2013, 24(1), 393-402.
[http://dx.doi.org/10.1016/j.apt.2012.09.002]
[12]
Shishu; Rajan, S.; Kamalpreet, Development of novel microemulsion-based topical formulations of acyclovir for the treatment of cutaneous herpetic infections. AAPS PharmSciTech, 2009, 10(2), 559-565.
[http://dx.doi.org/10.1208/s12249-009-9242-1] [PMID: 19504745]
[13]
Singh, A.; Neupane, Y.R.; Mangla, B.; Kohli, K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J. Pharm. Sci., 2019, 108(10), 3382-3395.
[http://dx.doi.org/10.1016/j.xphs.2019.06.003] [PMID: 31201904]
[14]
Kumar, N.; Goindi, S. Development and optimization of itraconazole-loaded solid lipid nanoparticles for topical administration using high shear homogenization process by design of experiments: In vitro, ex vivo and in vivo evaluation. AAPS PharmSciTech, 2021, 22, 1-21.
[http://dx.doi.org/10.1208/s12249-021-02118-3]
[15]
Zhang, J.Q.; Liu, J.; Li, X.L.; Jasti, B.R. Preparation and characterization of solid lipid nanoparticles containing silibinin. Drug Deliv., 2007, 14(6), 381-387.
[http://dx.doi.org/10.1080/10717540701203034] [PMID: 17701527]
[16]
Varshosaz, J.; Tabbakhian, M.; Mohammadi, M.Y. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J. Liposome Res., 2010, 20(4), 286-296.
[http://dx.doi.org/10.3109/08982100903443065] [PMID: 19958118]
[17]
Patra, C.N.; Routray, S.B.; Swain, S.; Jena, B. Analytical quality by design based systematic development and optimization of a sensitive bioanalytical method for estimation cinacalcet HCl in rabbit serum. J. Pharm. Bioallied Sci., 2021, 13(4), 360-366.
[http://dx.doi.org/10.4103/jpbs.jpbs_604_21] [PMID: 35399796]
[18]
Schäferkorting, M.; Mehnert, W.; Korting, H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 2007, 59(6), 427-443.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[19]
Zahir-Jouzdani, F.; Khonsari, F.; Soleimani, M.; Mahbod, M.; Arefian, E.; Heydari, M.; Shahhosseini, S.; Dinarvand, R.; Atyabi, F. Nanostructured lipid carriers containing rapamycin for prevention of corneal fibroblasts proliferation and haze propagation after burn injuries: In vitro and in vivo. J. Cell. Physiol., 2019, 234(4), 4702-4712.
[http://dx.doi.org/10.1002/jcp.27243] [PMID: 30191977]
[20]
Dudhipala, N.; Janga, K.Y.; Gorre, T. Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 616-625.
[http://dx.doi.org/10.1080/21691401.2018.1465068] [PMID: 29688077]
[21]
Patil, A.; Lakhani, P.; Taskar, P.; Wu, K.W.; Sweeney, C.; Avula, B.; Wang, Y.H.; Khan, I.A.; Majumdar, S. Formulation development, optimization, and in vitro-in vivo characterization of natamycin-loaded PEGylated nano-lipid carriers for ocular applications. J. Pharm. Sci., 2018, 107(8), 2160-2171.
[http://dx.doi.org/10.1016/j.xphs.2018.04.014] [PMID: 29698725]
[22]
Girotra, P.; Singh, S.K.; Kumar, G. Development of zolmitriptan loaded PLGA/poloxamer nanoparticles for migraine using quality by design approach. Int. J. Biol. Macromol., 2016, 85, 92-101.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.069] [PMID: 26724690]
[23]
Üstündağ-Okur, N.; Yurdasiper, A.; Gündoğdu, E.; Homan Gökçe, E. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: Polyethylene glycol versus chitosan oligosaccharide lactate. J. Microencapsul., 2016, 33(1), 30-42.
[http://dx.doi.org/10.3109/02652048.2015.1094532] [PMID: 26444187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy