Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Systematic Review Article

Counting and Identifying Probiotics: From a Systematic Comparison of Three Common Methods to Proposing an Appropriate Method for Identification

Author(s): Setayesh Zamanpour, Asma Afshari*, Mohammad Hashemi and Tayebeh Zeinali

Volume 20, Issue 2, 2024

Published on: 12 May, 2023

Page: [175 - 190] Pages: 16

DOI: 10.2174/1573401319666230306115057

Price: $65

Abstract

Background: The plate count technique had traditionally been used for the determination of viability and counting of probiotic bacteria, which had obvious disadvantages. Efficient tools to identify and count probiotics (alone or in combination) have evolved.

Objective: This study aimed to compare two methods of counting and identifying probiotics such as Real-time PCR and flow cytometry, with the culture method and suggest an inexpensive method for the diagnosis of probiotics in dairy products.

Methods: Electronic databases such as Scopus, PubMed, and Science Direct were systematically searched, identified, screened, and reviewed from June 2001 to December 2022.

Results: This study showed that each technology has its strengths, advantages, and disadvantages, but the Real-time PCR method is more suitable than other methods and can identify and count live cells of probiotics.

Conclusion: In conclusion, it should be mentioned that due to the superiority of the Real-time PCR method, we recommend the use of this molecular method, but for more assurance and comparison, several methods can be used to count and correctly identify probiotic strains.

Graphical Abstract

[1]
Fallico V, Rea M, Stanton C, Ilestam N, McKinney J. Next-generation multiparameter flow cytometry assay improves the assessment of oxidative stress in probiotics. Food Microbiol 2020; 91: 103501.
[http://dx.doi.org/10.1016/j.fm.2020.103501] [PMID: 32539981]
[2]
Yadav R, Shukla P. An overview of advanced technologies for selection of probiotics and their expediency: A review. Crit Rev Food Sci Nutr 2017; 57(15): 3233-42.
[http://dx.doi.org/10.1080/10408398.2015.1108957] [PMID: 26505073]
[3]
Food J. Agriculture Organization of the United Nations and World Health Organization Working Group Joint FAO/WHO Working Group report on drafting guidelines for the evaluation of probiotics in Food. FAO/WHO 2002; pp. 1-11.
[4]
Davis C. Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 2014; 103: 9-17.
[http://dx.doi.org/10.1016/j.mimet.2014.04.012] [PMID: 24814752]
[5]
Vasiljevic T, Shah NP. Probiotics—from Metchnikoff to bioactives. Int Dairy J 2008; 18(7): 714-28.
[http://dx.doi.org/10.1016/j.idairyj.2008.03.004]
[6]
Kaur IP, Chopra K, Saini A. Probiotics: Potential pharmaceutical applications. Eur J Pharm Sci 2002; 15(1): 1-9.
[http://dx.doi.org/10.1016/S0928-0987(01)00209-3] [PMID: 11803126]
[7]
Vrese Md. Probiotics, prebiotics, and synbiotics. Food biotechnology 2008; 1-66.
[8]
Gomes AMP, Malcata FX. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 1999; 10(4-5): 139-57.
[http://dx.doi.org/10.1016/S0924-2244(99)00033-3]
[9]
Gill H, Prasad J. Probiotics, immunomodulation, and health benefits. Bioactive Components of Milk 2008; pp. 423-54.
[http://dx.doi.org/10.1007/978-0-387-74087-4_17]
[10]
Shah NP. Functional cultures and health benefits. Int Dairy J 2007; 17(11): 1262-77.
[http://dx.doi.org/10.1016/j.idairyj.2007.01.014]
[11]
Tuohy KM, Probert HM, Smejkal CW, Gibson GR. Using probiotics and prebiotics to improve gut health. Drug Discov Today 2003; 8(15): 692-700.
[http://dx.doi.org/10.1016/S1359-6446(03)02746-6] [PMID: 12927512]
[12]
Itsaranuwat P, Al-Haddad KSH, Robinson RK. The potential therapeutic benefits of consuming ‘health-promoting’ fermented dairy products: a brief update. Int J Dairy Technol 2003; 56(4): 203-10.
[http://dx.doi.org/10.1046/j.1471-0307.2003.00106.x]
[13]
Russell DA, Ross RP, Fitzgerald GF, Stanton C. Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 2011; 149(1): 88-105.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.06.003] [PMID: 21763022]
[14]
Priebe MG, Vonk RJ, Sun X, He T, Harmsen HJM, Welling GW. The physiology of colonic metabolism. Possibilities for interventions with pre- and probiotics. Eur J Nutr 2002; 41 (Suppl. 1): 1.
[http://dx.doi.org/10.1007/s00394-002-1101-8] [PMID: 12420110]
[15]
Im E, Pothoulakis C. Recent advances in Saccharomyces boulardii research. Gastroenterol Clin Biol 2010; 34 (Suppl. 1): S62-70.
[http://dx.doi.org/10.1016/S0399-8320(10)70023-3] [PMID: 20889007]
[16]
Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012; 12(4): 496-508.
[http://dx.doi.org/10.1016/j.chom.2012.09.009] [PMID: 23084918]
[17]
Gao J, Li X, Zhang G, et al. Probiotics in the dairy industry—Advances and opportunities. Compr Rev Food Sci Food Saf 2021; 20(4): 3937-82.
[http://dx.doi.org/10.1111/1541-4337.12755] [PMID: 33938124]
[18]
Wilkinson MG. Flow cytometry as a potential method of measuring bacterial viability in probiotic products: A review. Trends Food Sci Technol 2018; 78: 1-10.
[19]
Dong K, Pan H, Yang D, et al. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2020; 19(1): 149-83.
[http://dx.doi.org/10.1111/1541-4337.12513] [PMID: 33319518]
[20]
Chiron C, Tompkins TA, Burguière P. Flow cytometry: A versatile technology for specific quantification and viability assessment of micro-organisms in multistrain probiotic products. J Appl Microbiol 2018; 124(2): 572-84.
[http://dx.doi.org/10.1111/jam.13666] [PMID: 29236340]
[21]
Shah NP, Lankaputhra WEV, Britz ML, Kyle WSA. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int Dairy J 1995; 5(5): 515-21.
[http://dx.doi.org/10.1016/0958-6946(95)00028-2]
[22]
Ghoddusi HB, Robinson RK. Enumeration of starter cultures in fermented milks. J Dairy Res 1996; 63(1): 151-8.
[http://dx.doi.org/10.1017/S0022029900031629]
[23]
Talwalkar A, Kailasapathy K. Comparison of selective and differential media for the accurate enumeration of strains of Lactobacillus acidophilus, Bifidobacterium spp. and Lactobacillus casei complex from commercial yoghurts. Int Dairy J 2004; 14(2): 143-9.
[http://dx.doi.org/10.1016/S0958-6946(03)00172-9]
[24]
Shah NP. Cruz AGd, Faria JAF Probiotic and prebiotic foods: Technology, stability and benefits to human health. New York, USA: Nova Sciences Publishers 2010.
[25]
Farahmand N, Ouoba LII, Raeisi NS, Sutherland J, Ghoddusi HB. Probiotic lactobacilli in fermented dairy products: Selective detection, enumeration and identification scheme. Microorganisms 2021; 9(8): 1600.
[http://dx.doi.org/10.3390/microorganisms9081600] [PMID: 34442679]
[26]
Sohier D, Pavan S, Riou A, Combrisson J, Postollec F. Evolution of microbiological analytical methods for dairy industry needs. Front Microbiol 2014; 5: 16.
[http://dx.doi.org/10.3389/fmicb.2014.00016] [PMID: 24570675]
[27]
Food and D. Administration Draft guidance for industry: policy regarding quantitative labeling of dietary supplements containing live microbials: guidance for industry. 2018. Available from: https://www.fda.gov/media/115730/download
[28]
Breeuwer P, Abee T. Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 2000; 55(1-3): 193-200.
[http://dx.doi.org/10.1016/S0168-1605(00)00163-X] [PMID: 10791743]
[29]
Kramer M, Obermajer N, Matijašić B, Rogelj I, Kmetec V. Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry. Appl Microbiol Biotechnol 2009; 84(6): 1137-47.
[http://dx.doi.org/10.1007/s00253-009-2068-7] [PMID: 19529931]
[30]
Lahtinen SJ, Gueimonde M, Ouwehand AC, Reinikainen JP, Salminen SJ. Comparison of four methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiol 2006; 23(6): 571-7.
[http://dx.doi.org/10.1016/j.fm.2005.09.001] [PMID: 16943053]
[31]
Ouwehand AC, Tölkkö S, Kulmala J, Salminen S, Salminen E. Adhesion of inactivated probiotic strains to intestinal mucus. Lett Appl Microbiol 2000; 31(1): 82-6.
[http://dx.doi.org/10.1046/j.1472-765x.2000.00773.x] [PMID: 10886621]
[32]
Ashraf R, Shah NP. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt-A review. Int J Food Microbiol 2011; 149(3): 194-208.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.008] [PMID: 21807435]
[33]
Cronin UP, Wilkinson MG. The use of flow cytometry to study the germination of Bacillus cereus endospores. Cytometry A 2007; 71A(3): 143-53.
[http://dx.doi.org/10.1002/cyto.a.20368] [PMID: 17200957]
[34]
Bunthof CJ, Abee T. Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters. Appl Environ Microbiol 2002; 68(6): 2934-42.
[http://dx.doi.org/10.1128/AEM.68.6.2934-2942.2002] [PMID: 12039752]
[35]
Kim E, Kim D, Yang SM, Kim HY. Validation of probiotic species or subspecies identity in commercial probiotic products using highresolution PCR method based on large-scale genomic analysis. Food Res Int 2022; 154: 111011.
[http://dx.doi.org/10.1016/j.foodres.2022.111011] [PMID: 35337569]
[36]
Sul S-Y, Kim HJ, Kim TW, Kim HY. Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using multiplex PCR. J Microbiol Biotechnol 2007; 17(3): 490-5.
[PMID: 18050954]
[37]
Herbel SR, Lauzat B, von Nickisch-Rosenegk M, et al. Speciesspecific quantification of probiotic lactobacilli in yoghurt by quantitative real-time PCR. J Appl Microbiol 2013; 115(6): 1402-10.
[http://dx.doi.org/10.1111/jam.12341] [PMID: 24024971]
[38]
Choi Y, Park E, Kim S, et al. Fermented milk with Lactobacillus curvatus SMFM2016-NK alleviates periodontal and gut inflammation, and alters oral and gut microbiota. J Dairy Sci 2021; 104(5): 5197-207.
[http://dx.doi.org/10.3168/jds.2020-19625] [PMID: 33685682]
[39]
Fujimoto J, Matsuki T, Sasamoto M, Tomii Y, Watanabe K. Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. Int J Food Microbiol 2008; 126(1-2): 210-5.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.05.022] [PMID: 18573558]
[40]
Baele M, Vaneechoutte M, Verhelst R, Vancanneyt M, Devriese LA, Haesebrouck F. Identification of Lactobacillus species using tDNA-PCR. J Microbiol Methods 2002; 50(3): 263-71.
[http://dx.doi.org/10.1016/S0167-7012(02)00035-0] [PMID: 12031576]
[41]
Temmerman R, Scheirlinck I, Huys G, Swings J. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol 2003; 69(1): 220-6.
[http://dx.doi.org/10.1128/AEM.69.1.220-226.2003] [PMID: 12513998]
[42]
Versalovic J. Bruijn FJd, Lupski JR Repetitive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes Bacterial genomes. Springer 1998; pp. 437-54.
[http://dx.doi.org/10.1007/978-1-4615-6369-3_34]
[43]
Hansen SJZ, Tang P, Kiefer A, Galles K, Wong C, Morovic W. Droplet digital PCR is an improved alternative method for highquality enumeration of viable probiotic strains. Front Microbiol 2020; 10: 3025.
[http://dx.doi.org/10.3389/fmicb.2019.03025] [PMID: 32038522]
[44]
Meng XC, Pang R, Wang C, Wang LQ. Rapid and direct quantitative detection of viable bifidobacteria in probiotic yogurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach. J Dairy Res 2010; 77(4): 498-504.
[http://dx.doi.org/10.1017/S0022029910000658] [PMID: 20822571]
[45]
Scariot MC, Venturelli GL, Prudêncio ES, Arisi ACM. Quantification of Lactobacillus paracasei viable cells in probiotic yoghurt by propidium monoazide combined with quantitative PCR. Int J Food Microbiol 2018; 264: 1-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.10.021] [PMID: 29073460]
[46]
Magalhães JT, Uetanabaro APT, Moraes CA. Identification of Lactobacillus UFV H2b20 (probiotic strain) using DNA-DNA hybridization. Braz J Microbiol 2008; 39(3): 542-6.
[http://dx.doi.org/10.1590/S1517-83822008000300026] [PMID: 24031263]
[47]
Prasad J, Gill H, Smart J, Gopal PK. Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 1998; 8(12): 993-1002.
[http://dx.doi.org/10.1016/S0958-6946(99)00024-2]
[48]
Briczinski EP, Roberts RF. Technical note: A rapid pulsed-field gel electrophoresis method for analysis of bifidobacteria. J Dairy Sci 2006; 89(7): 2424-7.
[http://dx.doi.org/10.3168/jds.S0022-0302(06)72315-3] [PMID: 16772558]
[49]
Dimitrov Z. Development of strain discriminative amplified fragment length polymorpfic DNA for Bifidobacteria. Design of strainspecific markers. BiotechnolBiotechnol Equip 2012; 26((sup1)): 35-8.
[50]
Lim O, Suntornsuk W, Suntornsuk L. Capillary zone electrophoresis for enumeration of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in yogurt. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877(8-9): 710-8.
[http://dx.doi.org/10.1016/j.jchromb.2009.02.014] [PMID: 19243999]
[51]
Machado A, Almeida C, Carvalho A, et al. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. Int J Food Microbiol 2013; 162(1): 64-70.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2012.09.024] [PMID: 23357093]
[52]
Pohjavuori E, Viljanen M, Korpela R, et al. Lactobacillus GG effect in increasing IFN-γ production in infants with cow’s milk allergy. J Allergy Clin Immunol 2004; 114(1): 131-6.
[http://dx.doi.org/10.1016/j.jaci.2004.03.036] [PMID: 15241356]
[53]
Haghshenas B, Nami Y, Almasi A, et al. Isolation and characterization of probiotics from dairies. Iran J Microbiol 2017; 9(4): 234-43.
[PMID: 29238459]
[54]
Mancini A, Lazzi C, Bernini V, Neviani E, Gatti M. Identification of dairy lactic acid bacteria by tRNAAla–23S rDNA-RFLP. J Microbiol Methods 2012; 91(3): 380-90.
[http://dx.doi.org/10.1016/j.mimet.2012.10.003] [PMID: 23079024]
[55]
Zhang C, Yang L, Ding Z, et al. New selective media for isolation and enumeration of Lactobacillus rhamnosus and Streptococcus thermophilus. J Food Meas Charact 2019; 13(2): 1431-9.
[http://dx.doi.org/10.1007/s11694-019-00059-x]
[56]
Hayek SA, Gyawali R, Aljaloud SO, Krastanov A, Ibrahim SA. Cultivation media for lactic acid bacteria used in dairy products. J Dairy Res 2019; 86(4): 490-502.
[http://dx.doi.org/10.1017/S002202991900075X] [PMID: 31722773]
[57]
Di Lena M, Quero GM, Santovito E, Verran J, De Angelis M, Fusco V. A selective medium for isolation and accurate enumeration of Lactobacillus casei-group members in probiotic milks and dairy products. Int Dairy J 2015; 47: 27-36.
[http://dx.doi.org/10.1016/j.idairyj.2015.01.018]
[58]
Süle J, Kõrösi T, Hucker A, Varga L. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Braz J Microbiol 2014; 45(3): 1023-30.
[http://dx.doi.org/10.1590/S1517-83822014000300035] [PMID: 25477939]
[59]
Cho YH, Hong SM, Kim CH. Isolation and characterization of lactic acid bacteria from kimchi, Korean traditional fermented food to apply into fermented dairy products. Han-gug Chugsan Sigpum Hag-hoeji 2013; 33(1): 75-82.
[http://dx.doi.org/10.5851/kosfa.2013.33.1.75]
[60]
Saccaro DM, Hirota CY, Tamime AY, de Oliveira MN, et al. Evaluation of different selective media for enumeration of probiotic micro-organisms in combination with yogurt starter cultures in fermented milk. Afr J Microbiol Res 2012; 6(10): 2239-45.
[61]
Lima KGC, Kruger MF, Behrens J, Destro MT, Landgraf M, Gombossy de Melo Franco BD. Evaluation of culture media for enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus. Lebensm Wiss Technol 2009; 42(2): 491-5.
[http://dx.doi.org/10.1016/j.lwt.2008.08.011]
[62]
Vélez MP, Hermans K, Verhoeven TLA, Lebeer SE, Vanderleyden J, De Keersmaecker SCJ. Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products. J Appl Microbiol 2007; 103(3): 666-74.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03294.x] [PMID: 17714400]
[63]
Van de Casteele S, Vanheuverzwijn T, Ruyssen T, Van Assche P, Swings J, Huys G. Evaluation of culture media for selective enumeration of probiotic strains of lactobacilli and bifidobacteria in combination with yoghurt or cheese starters. Int Dairy J 2006; 16(12): 1470-6.
[http://dx.doi.org/10.1016/j.idairyj.2005.12.002]
[64]
Vlková E, Rada V, Trojanová I. Enumeration, isolation and identification of bifidobacteria from dairy products. Acta Agric Slov 2004; 84(1): 31-6.
[65]
Elliot E, Teversham K. An evaluation of nine probiotics available in South Africa, August 2003. S Afr Med J 2004; 94(2): 121-4.
[PMID: 15034991]
[66]
Roy D. Media for the isolation and enumeration of bifidobacteria in dairy products. Int J Food Microbiol 2001; 69(3): 167-82.
[http://dx.doi.org/10.1016/S0168-1605(01)00496-2] [PMID: 11603854]
[67]
Vinderola CG, Reinheimer JA. Enumeration of Lactobacillus casei in the presence of L. acidophilus, bifidobacteria and lactic starter bacteria in fermented dairy products. Int Dairy J 2000; 10(4): 271-5.
[http://dx.doi.org/10.1016/S0958-6946(00)00045-5]
[68]
Vinderola CG, Reinheimer JA. Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. Int Dairy J 1999; 9(8): 497-505.
[http://dx.doi.org/10.1016/S0958-6946(99)00120-X]
[69]
Zhao L, Zhang D, Liu Y, et al. Quantitative Pcr Assays for the Strain-Specific Identification and Enumeration of Probiotic Strain Lacticaseibacillus Rhamnosus X253. Foods 2022; 11(15): 2282.
[70]
Shehata HR, Newmaster SG. Enumeration of probiotic strain Lacticaseibacillus rhamnosus GG (ATCC 53103) using viability realtime PCR. Probiotics Antimicrob Proteins 2021; 13(6): 1611-20.
[http://dx.doi.org/10.1007/s12602-021-09849-6] [PMID: 34591288]
[71]
Fan X, Li X, Zhang T, et al. A Novel qPCR method for the detection of lactic acid bacteria in fermented milk. Foods 2021; 10(12): 3066.
[http://dx.doi.org/10.3390/foods10123066] [PMID: 34945617]
[72]
Kim HB, Kim E, Yang SM, Lee S, Kim MJ, Kim HY. Development of RealTime PCR assay to specifically detect 22 Bifidobacterium species and subspecies using comparative genomics. Front Microbiol 2020; 11: 2087.
[http://dx.doi.org/10.3389/fmicb.2020.02087] [PMID: 33013760]
[73]
Shehata HR, Newmaster SG. A validated real-time PCR method for the specific identification of probiotic strain Lactobacillus rhamnosus GG (ATCC 53103). J AOAC Int 2020; 103(6): 1604-9.
[http://dx.doi.org/10.1093/jaoacint/qsaa063] [PMID: 33247747]
[74]
Kim E, Yang SM, Cho EJ, Kim HY. Novel real-time PCR assay for Lactobacillus casei group species using comparative genomics. Food Microbiol 2020; 90: 103485.
[http://dx.doi.org/10.1016/j.fm.2020.103485] [PMID: 32336352]
[75]
Shehata HR, Ragupathy S, Shanmughanandhan D, Kesanakurti P, Ehlinger TM, Newmaster SG. Guidelines for validation of qualitative real-time PCR methods for molecular diagnostic identification of probiotics. J AOAC Int 2019; 102(6): 1774-8.
[http://dx.doi.org/10.5740/jaoacint.18-0320] [PMID: 30940283]
[76]
Odooli S, Khalvati B, Safari A, Mehraban MH, Kargar M. Ghasemi Y. Comparison of tuf gene-based qPCR assay and selective plate count for Bifidobacterium animalis subsp. lactis BB-12 quantification in commercial probiotic yoghurts. Int Food Res J 2018; 25(4): 1708-19.
[77]
Achilleos C, Berthier F. Evaluation of qPCR and plate counting for quantifying thermophilic starters in cheese. Food Microbiol 2017; 65: 149-59.
[http://dx.doi.org/10.1016/j.fm.2017.01.024] [PMID: 28399997]
[78]
Kim DH, Kang I-B, Jeong D, et al. Development of rapid and highly specific TaqMan probe-based real-time PCR assay for the identification and enumeration of Lactobacillus kefiri in kefir milk. Int Dairy J 2016; 61: 18-21.
[http://dx.doi.org/10.1016/j.idairyj.2016.03.007]
[79]
Ilha EC, et al. Comparison of real-time PCR assay and plate count for Lactobacillus paracasei enumeration in yoghurt. Ann Microbiol 2016; 66(2): 597-606.
[http://dx.doi.org/10.1007/s13213-015-1137-7]
[80]
Öz Ö. Real-time PCR as a molecular tool for the enumeration of probiotics in commercial products. Turkey: Izmir Institute of Technology 2016.
[81]
Wang D, Liu W, Ren Y, et al. Isolation and identification of lactic acid bacteria from traditional dairy products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR analysis of predominant species. Han-gug Chugsan Sigpum Hag-hoeji 2016; 36(4): 499-507.
[http://dx.doi.org/10.5851/kosfa.2016.36.4.499] [PMID: 27621691]
[82]
Kim DH, Chon JW, Kim HS, Yim JH, Kim H, Seo KH. Rapid detection of Lactobacillus kefiranofaciens in kefir grain and kefirmilk using newly developed real-time PCR. J Food Prot 2015; 78(4): 855-8.
[http://dx.doi.org/10.4315/0362-028X.JFP-14-329] [PMID: 25836417]
[83]
Sheu SJ, Hwang WZ, Chiang YC, Lin WH, Chen HC, Tsen HY. Use of tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods. J Food Sci 2010; 75(8): M521-7.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01816.x] [PMID: 21535508]
[84]
García-Cayuela T, Tabasco R, Peláez C, Requena T. Simultaneous detection and enumeration of viable lactic acid bacteria and bifidobacteria in fermented milk by using propidium monoazide and real-time PCR. Int Dairy J 2009; 19(6-7): 405-9.
[http://dx.doi.org/10.1016/j.idairyj.2009.02.001]
[85]
Kao YT, Liu YS, Shyu YT. Identification of Lactobacillus spp. in probiotic products by real-time PCR and melting curve analysis. Food Res Int 2007; 40(1): 71-9.
[http://dx.doi.org/10.1016/j.foodres.2006.07.018]
[86]
Masco L, Vanhoutte T, Temmerman R, Swings J, Huys G. Evaluation of real-time PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products. Int J Food Microbiol 2007; 113(3): 351-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.07.021] [PMID: 17088006]
[87]
Furet JP, Quénée P, Tailliez P. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 2004; 97(2): 197-207.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.04.020] [PMID: 15541806]
[88]
Pane M, Allesina S, Amoruso A, Nicola S, Deidda F, Mogna L. Flow Cytometry. J Clin Gastroenterol 2018; 52 (Suppl. 1): S41-5.
[http://dx.doi.org/10.1097/MCG.0000000000001057] [PMID: 29762266]
[89]
He S, Hong X, Huang T, et al. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry. Methods Appl Fluoresc 2017; 5(2): 024002.
[http://dx.doi.org/10.1088/2050-6120/aa64e4] [PMID: 28357994]
[90]
Mudroňová D. Flow cytometry as an auxiliary tool for the selection of probiotic bacteria. Benef Microbes 2015; 6(5): 727-34.
[http://dx.doi.org/10.3920/BM2014.0145] [PMID: 25869279]
[91]
Geng J, Chiron C, Combrisson J. Rapid and specific enumeration of viable Bifidobacteria in dairy products based on flow cytometry technology: A proof of concept study. Int Dairy J 2014; 37(1): 1-4.
[http://dx.doi.org/10.1016/j.idairyj.2014.02.002]
[92]
Comas-Riu J, Rius N. Flow cytometry applications in the food industry. J Ind Microbiol Biotechnol 2009; 36(8): 999-1011.
[http://dx.doi.org/10.1007/s10295-009-0608-x] [PMID: 19557445]
[93]
Kim MJ, Shin SW, Kim HB, Kim E, Kim HY. Direct loop-mediated isothermal amplification (LAMP) assay for rapid on-site detection of Bifidobacterium longum subspecies longum, infantis, and suis in probiotic products. Food Chem 2021; 346: 128887.
[http://dx.doi.org/10.1016/j.foodchem.2020.128887] [PMID: 33385916]
[94]
Berezhnaya Y, Bikaeva I, Gachkovskaia A, et al. Temporal dynamics of probiotic Lacticaseibacillus casei and rhamnosus abundance in a fermented dairy product evaluated using a combination of cultivation-dependent and -independent methods. Lebensm Wiss Technol 2021; 148: 111750.
[http://dx.doi.org/10.1016/j.lwt.2021.111750]
[95]
Sharma A, Lee S, Park YS. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol 2020; 29(10): 1301-18.
[http://dx.doi.org/10.1007/s10068-020-00802-x] [PMID: 32995049]
[96]
Vinderola G, Reinheimer J, Salminen S. The enumeration of probiotic issues: From unavailable standardised culture media to a recommended procedure? Int Dairy J 2019; 96: 58-65.
[http://dx.doi.org/10.1016/j.idairyj.2019.04.010]
[97]
Bagheripoor-Fallah N, Mortazavian A, Hosseini H, Khoshgozaran-Abras S, Rad AH. Comparison of molecular techniques with other methods for identification and enumeration of probiotics in fermented milk products. Crit Rev Food Sci Nutr 2015; 55(3): 396-413.
[http://dx.doi.org/10.1080/10408398.2012.656771] [PMID: 24915385]
[98]
Monnet C, Matijašić BB. Application of PCR-based methods to dairy products and to non-dairy probiotic products. Polymerase Chain Reaction 2012; pp. 11-50.
[http://dx.doi.org/10.5772/36897]
[99]
Friedrich U, Lenke J. Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry-fluorescence in situ hybridization. Appl Environ Microbiol 2006; 72(6): 4163-71.
[http://dx.doi.org/10.1128/AEM.02283-05] [PMID: 16751528]
[100]
Ward P, Roy D. Review of molecular methods for identification, characterization and detection of bifidobacteria. Lait 2005; 85(1-2): 23-32.
[http://dx.doi.org/10.1051/lait:2004024]
[101]
Masco L, Huys G, De Brandt E, Temmerman R, Swings J. Culturedependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int J Food Microbiol 2005; 102(2): 221-30.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.11.018] [PMID: 15992621]
[102]
Temmerman R. Culture dependent and culture-independent microbial analysis of probiotics. Ghent University 2003.
[103]
Davey HM. Life, death, and in-between: Meanings and methods in microbiology. Appl Environ Microbiol 2011; 77(16): 5571-6.
[http://dx.doi.org/10.1128/AEM.00744-11] [PMID: 21705550]
[104]
Shakeri M. Comparison of dna standards for real-time pcr-based quantification of lactobacillus acidophilus in dairy products: DNA standards for quantification of probiotics. J Microbiol Biotechnol Food Sci 2022; 11(4): e3738-8.
[http://dx.doi.org/10.55251/jmbfs.3738]
[105]
Ben Amor K, Vaughan EE, de Vos WM. Advanced molecular tools for the identification of lactic acid bacteria. J Nutr 2007; 137(3) (Suppl. 2): 741S-7S.
[http://dx.doi.org/10.1093/jn/137.3.741S] [PMID: 17311970]
[106]
Anonymous . microbiology of food and animal feeding stuffs. polymerase chain reaction (PCR) for the detection of food‐borne pathogens. general requirements and definitions (EN ISO 22174) 2005.
[107]
Le Dréan G, Mounier J, Vasseur V, Arzur D, Habrylo O, Barbier G. Quantification of Penicillium camemberti and P. roqueforti mycelium by real-time PCR to assess their growth dynamics during ripening cheese. Int J Food Microbiol 2010; 138(1-2): 100-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.12.013] [PMID: 20060187]
[108]
Randazzo CL, Caggia C, Neviani E. Application of molecular approaches to study lactic acid bacteria in artisanal cheeses. J Microbiol Methods 2009; 78(1): 1-9.
[http://dx.doi.org/10.1016/j.mimet.2009.04.001] [PMID: 19362112]
[109]
Sheu SJ, Hwang WZ, Chen HC, Chiang YC, Tsen HY. Development and use of tuf gene-based primers for the multiplex PCR detection of Lactobacillus acidophilus, Lactobacillus casei group, Lactobacillus delbrueckii, and Bifidobacterium longum in commercial dairy products. J Food Prot 2009; 72(1): 93-100.
[http://dx.doi.org/10.4315/0362-028X-72.1.93] [PMID: 19205469]
[110]
Abdulamir AS, Yoke TS, Nordin N, Abu BF. Detection and quantification of probiotic bacteria using optimized DNA extraction, traditional and real-time PCR methods in complex microbial communities. Afr J Biotechnol 2010; 9(10): 1481-92.
[http://dx.doi.org/10.5897/AJB09.1322]
[111]
Lahtinen SJ, Ahokoski H, Reinikainen JP, et al. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett Appl Microbiol 2008; 46(6): 693-8.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02374.x] [PMID: 18444975]
[112]
Gueimonde M, Delgado S, Mayo B, Ruas-Madiedo P, Margolles A, de los Reyes-Gavilán CG. Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res Int 2004; 37(9): 839-50.
[http://dx.doi.org/10.1016/j.foodres.2004.04.006]
[113]
Tabasco R, Paarup T, Janer C, Peláez C, Requena T. Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. Int Dairy J 2007; 17(9): 1107-14.
[http://dx.doi.org/10.1016/j.idairyj.2007.01.010]
[114]
Schaad NW, Frederick RD. Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 2002; 24(3): 250-8.
[http://dx.doi.org/10.1080/07060660209507006]
[115]
Keshavarz M, Karbalaie Niya MH, Tavakoli A, Keyvani H, Yaghubi KMA, et al. A review on different types of Real-time PCR methods and its optimization. J Inflamm Dis 2017; 21(3): 90-76.
[116]
Michelutti L, Bulfoni M, Nencioni E. A novel pharmaceutical approach for the analytical validation of probiotic bacterial count by flow cytometry. J Microbiol Methods 2020; 170: 105834.
[http://dx.doi.org/10.1016/j.mimet.2020.105834] [PMID: 31917164]
[117]
Assunção P, Davey HM, Rosales RS, et al. Detection of mycoplasmas in goat milk by flow cytometry. Cytometry A 2007; 71A(12): 1034-8.
[http://dx.doi.org/10.1002/cyto.a.20476] [PMID: 17972304]
[118]
Álvarez-Barrientos A, Arroyo J, Cantón R, Nombela C, Sánchez-Pérez M. Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 2000; 13(2): 167-95.
[http://dx.doi.org/10.1128/CMR.13.2.167] [PMID: 10755996]
[119]
Wilkes JG, Tucker RK, Montgomery JA, Cooper WM, Sutherland JB, Buzatu DA. Reduction of food matrix interference by a combination of sample preparation and multi-dimensional gating techniques to facilitate rapid, high sensitivity analysis for Escherichia coli serotype O157 by flow cytometry. Food Microbiol 2012; 30(1): 281-8.
[http://dx.doi.org/10.1016/j.fm.2011.11.002] [PMID: 22265313]
[120]
Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 2000; 42(1): 97-114.
[http://dx.doi.org/10.1016/S0167-7012(00)00181-0] [PMID: 11000436]
[121]
Buzatu DA, Moskal TJ, Williams AJ, Cooper WM, Mattes WB, Wilkes JG. An integrated flow cytometry-based system for realtime, high sensitivity bacterial detection and identification. PLoS One 2014; 9(4): e94254.
[http://dx.doi.org/10.1371/journal.pone.0094254] [PMID: 24718659]
[122]
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010; 48(3): 385-407.
[http://dx.doi.org/10.1016/j.bej.2009.07.013]
[123]
Tracy BP, Gaida SM, Papoutsakis ET. Development and application of flow-cytometric techniques for analyzing and sorting endospore-forming clostridia. Appl Environ Microbiol 2008; 74(24): 7497-506.
[http://dx.doi.org/10.1128/AEM.01626-08] [PMID: 18931289]
[124]
Comas-Riu J, Vives-Rego J. Cytometric monitoring of growth, sporogenesis and spore cell sorting in Paenibacillus polymyxa (formerly Bacillus polymyxa). J Appl Microbiol 2002; 92(3): 475-81.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01549.x] [PMID: 11872123]
[125]
Doherty SB, Wang L, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A. Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus GG in complex protein matrices. J Microbiol Methods 2010; 82(3): 301-10.
[http://dx.doi.org/10.1016/j.mimet.2010.07.003] [PMID: 20638420]
[126]
Gunasekera TS, Attfield PV, Veal DA. A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol 2000; 66(3): 1228-32.
[http://dx.doi.org/10.1128/AEM.66.3.1228-1232.2000] [PMID: 10698799]
[127]
Tracy BP, Gaida SM, Papoutsakis ET. Flow cytometry for bacteria: Enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr Opin Biotechnol 2010; 21(1): 85-99.
[http://dx.doi.org/10.1016/j.copbio.2010.02.006] [PMID: 20206495]
[128]
Kalvatchev Z, Tsekov I, Kalvatchev N. Loop-mediated amplification for sensitive and specific detection of viruses. Biotechnol Biotechnol Equip 2010; 24(1): 1559-61.
[http://dx.doi.org/10.2478/V10133-010-0004-8]
[129]
Foo PC, Nurul Najian AB, Muhamad NA, et al. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: a comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample. BMC Biotechnol 2020; 20(1): 34.
[http://dx.doi.org/10.1186/s12896-020-00629-8] [PMID: 32571286]
[130]
Wang G, Shang Y, Wang Y, Tian H, Liu X. Comparison of a loopmediated isothermal amplification for orf virus withquantitative real-time PCR. Virol J 2013; 10(1): 138.
[http://dx.doi.org/10.1186/1743-422X-10-138]
[131]
Karami A, et al. Comparing fluorescent loop-mediated isothermal amplification and PCR in detecting salmonella. J Mazandaran Univ Med Sci 2012; 22(95): 48-55.
[132]
Lawley B, Munro K, Hughes A, et al. Differentiation of Bifidobacterium longum subspecies longum and infantis by quantitative PCR using functional gene targets. PeerJ 2017; 5: e3375.
[http://dx.doi.org/10.7717/peerj.3375] [PMID: 28560114]
[133]
Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 2012; 12(18): 3249-66.
[http://dx.doi.org/10.1039/c2lc40630f] [PMID: 22859057]
[134]
Kiddle G, Hardinge P, Buttigieg N, et al. GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnol 2012; 12(1): 15.
[http://dx.doi.org/10.1186/1472-6750-12-15] [PMID: 22546148]
[135]
Kim MJ, Kim HY. Direct duplex real-time loop mediated isothermal amplification assay for the simultaneous detection of cow and goat species origin of milk and yogurt products for field use. Food Chem 2018; 246: 26-31.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.014] [PMID: 29291848]
[136]
Draz MS, Lu X. Development of a loop mediated isothermal amplification (LAMP)-surface enhanced Raman spectroscopy (SERS) assay for the detection of Salmonella enterica serotype Enteritidis. Theranostics 2016; 6(4): 522-32.
[http://dx.doi.org/10.7150/thno.14391] [PMID: 26941845]
[137]
Khan M, Wang R, Li B, Liu P, Weng Q, Chen Q. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Front Microbiol 2018; 9: 2089.
[http://dx.doi.org/10.3389/fmicb.2018.02089] [PMID: 30233554]
[138]
Lin Z, Zhang Y, Zhang H, Zhou Y, Cao J, Zhou J. Comparison of loop-mediated isothermal amplification (LAMP) and real-time PCR method targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Vet Parasitol 2012; 185(2-4): 296-300.
[http://dx.doi.org/10.1016/j.vetpar.2011.10.016] [PMID: 22051073]
[139]
Plutzer J, Karanis P. Rapid identification of Giardia duodenalis by loop-mediated isothermal amplification (LAMP) from faecal and environmental samples and comparative findings by PCR and real-time PCR methods. Parasitol Res 2009; 104(6): 1527-33.
[http://dx.doi.org/10.1007/s00436-009-1391-3] [PMID: 19288133]
[140]
Karanis P, Ongerth J. LAMP – a powerful and flexible tool for monitoring microbial pathogens. Trends Parasitol 2009; 25(11): 498-9.
[http://dx.doi.org/10.1016/j.pt.2009.07.010] [PMID: 19734095]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy