Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Curcumin Alleviates Oxidative Stress, Neuroinflammation, and Promotes Behavioral Recovery After Traumatic Brain Injury

Author(s): Bing Chen, Quan-xing Shi, Chuang Nie, Zhi-ping Zhao, Tao Wang, Qiang Zhou* and Jianwen Gu*

Volume 20, Issue 1, 2023

Published on: 22 March, 2023

Page: [43 - 53] Pages: 11

DOI: 10.2174/1567202620666230303144323

Price: $65

Abstract

Background: Neuroinflammation and oxidative stress after traumatic brain injury (TBI) can further lead to neuronal apoptosis, which plays a crucial role in the process of neuron death. Curcumin, which is derived from the rhizome of the Curcuma longa plant, has multiple pharmacological effects.

Objective: The objective of this study was to investigate whether curcumin treatment has neuroprotective effects after TBI, and to elucidate the underlying mechanism.

Methods: A total of 124 mice were randomly divided into 4 groups: Sham group, TBI group, TBI+Vehicle group, and TBI+Curcumin group. The TBI mice model used in this study was constructed with TBI device induced by compressed gas, and 50 mg/kg curcumin was injected intraperitoneally 15 minutes after TBI. Then, the blood-brain barrier permeability, cerebral edema, oxidative stress, inflammation, apoptosis-related protein, and behavioral tests of neurological function were utilized to evaluate the protective effect of curcumin after TBI.

Results: Curcumin treatment markedly alleviated post-trauma cerebral edema and blood-brain barrier integrity, and suppressed neuronal apoptosis, reduced mitochondrial injury and the expression of apoptosis-related proteins. Moreover, curcumin also attenuates TBI-induced inflammatory response and oxidative stress in brain tissue and improves cognitive dysfunction after TBI.

Conclusion: These data provide substantial evidence that curcumin has neuroprotective effects in animal TBI models, possibly through the inhibition of inflammatory response and oxidative stress.

[1]
Howlett JR, Nelson LD, Stein MB. Mental health consequences of traumatic brain injury. Biol Psychiatry 2022; 91(5): 413-20.
[http://dx.doi.org/10.1016/j.biopsych.2021.09.024] [PMID: 34893317]
[2]
Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic brain injury and risk of neurodegenerative disorder. Biol Psychiatry 2022; 91(5): 498-507.
[http://dx.doi.org/10.1016/j.biopsych.2021.05.025] [PMID: 34364650]
[3]
Faul M, Coronado V. Epidemiology of traumatic brain injury. Handb Clin Neurol 2015; 127: 3-13.
[http://dx.doi.org/10.1016/B978-0-444-52892-6.00001-5] [PMID: 25702206]
[4]
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46(1): 5-20.
[http://dx.doi.org/10.1002/biof.1566] [PMID: 31580521]
[5]
Adami R, Bottai D. Curcumin and neurological diseases. Nutr Neurosci 2022; 25(3): 441-61.
[http://dx.doi.org/10.1080/1028415X.2020.1760531] [PMID: 32441587]
[6]
Tao L, Zhang L, Gao R, Jiang F, Cao J, Liu H. Andrographolide alleviates acute brain injury in a rat model of traumatic brain injury: Possible involvement of inflammatory signaling. Front Neurosci 2018; 12: 657.
[http://dx.doi.org/10.3389/fnins.2018.00657] [PMID: 30294256]
[7]
Pavlovic D, Pekic S, Stojanovic M, Popovic V. Traumatic brain injury: Neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 2019; 22(3): 270-82.
[http://dx.doi.org/10.1007/s11102-019-00957-9] [PMID: 30929221]
[8]
Chenxu G, Xianling D, Qin K, et al. Fisetin protects against high fat diet-induced nephropathy by inhibiting inflammation and oxidative stress via the blockage of iRhom2/NF-κB signaling. Int Immunopharmacol 2021; 92: 107353.
[http://dx.doi.org/10.1016/j.intimp.2020.107353] [PMID: 33429334]
[9]
Esih K, Goričar K, Rener-Primec Z, Dolžan V, Soltirovska-Šalamon A. CARD8 and IL1B polymorphisms influence MRI brain patterns in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Antioxidants 2021; 10(1): 96.
[http://dx.doi.org/10.3390/antiox10010096] [PMID: 33445495]
[10]
Wang M, Chen Z, Yang L, Ding L, Sappanone A. Sappanone A protects against inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by alleviating endoplasmic reticulum stress. Inflammation 2021; 44(3): 934-45.
[http://dx.doi.org/10.1007/s10753-020-01388-6] [PMID: 33411101]
[11]
McCarty MF, Lerner A. Nutraceutical induction and mimicry of heme oxygenase activity as a strategy for controlling excitotoxicity in brain trauma and ischemic stroke: Focus on oxidative stress. Expert Rev Neurother 2020; 21(2): 157-68.
[PMID: 33287596]
[12]
Li W-Z, Yang W-C, Cao H-L, et al. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury. Neural Regen Res 2021; 16(8): 1574-81.
[http://dx.doi.org/10.4103/1673-5374.303035] [PMID: 33433486]
[13]
Akyuva Y, Naziroglu M, Yildizhan K. Selenium prevents interferon-gamma induced activation of TRPM2 channel and inhibits inflammation, mitochondrial oxidative stress, and apoptosis in microglia. Metab Brain Dis 2020; 36(2): 285-98.
[PMID: 33044639]
[14]
Chen JJ, Chen J, Jiang ZX, Zhou Z, Zhou CN. Resolvin D1 alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 signaling pathway. J Biol Regul Homeost Agents 2020; 34(5)
[PMID: 33107268]
[15]
Viegas FPD, Gontijo VS, de Freitas Silva M, et al. Curcumin, resveratrol and cannabidiol as natural key prototypes in drug design for neuroprotective agents. Curr Neuropharmacol 2022; 20(7): 1297-328.
[http://dx.doi.org/10.2174/1570159X19666210712152532] [PMID: 34825873]
[16]
Mohammadi A, Hosseinzadeh Colagar A, Khorshidian A, Amini SM. The functional roles of curcumin on astrocytes in neurodegenerative diseases. Neuroimmunomodulation 2022; 29(1): 4-14.
[http://dx.doi.org/10.1159/000517901] [PMID: 34496365]
[17]
Chamani S, Moossavi M, Naghizadeh A, et al. Immunomodulatory effects of curcumin in systemic autoimmune diseases. Phytother Res 2022; 36(4): 1616-32.
[http://dx.doi.org/10.1002/ptr.7417] [PMID: 35302258]
[18]
Dong W, Yang B, Wang L, et al. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol Appl Pharmacol 2018; 346: 28-36.
[http://dx.doi.org/10.1016/j.taap.2018.03.020] [PMID: 29571711]
[19]
Xu L, Ding L, Su Y, Shao R, Liu J, Huang Y. Neuroprotective effects of curcumin against rats with focal cerebral ischemia-reperfusion injury. Int J Mol Med 2019; 43(4): 1879-87.
[http://dx.doi.org/10.3892/ijmm.2019.4094] [PMID: 30816425]
[20]
Shi Q, Chen B, Nie C, et al. A novel model of blast induced traumatic brain injury caused by compressed gas produced sustained cognitive deficits in rats: Involvement of phosphorylation of tau at the Thr205 epitope. Brain Res Bull 2020; 157: 149-61.
[http://dx.doi.org/10.1016/j.brainresbull.2020.02.002] [PMID: 32044361]
[21]
Chen B, Shi Q, Nie C, et al. Establishment and evaluation of a novel high-efficiency model of graded traumatic brain injury in mice. World Neurosurg 2021; 154: e7-e18.
[http://dx.doi.org/10.1016/j.wneu.2021.05.012] [PMID: 33992827]
[22]
Zhou Y, Wen LL, Wang HD, et al. Blast-induced traumatic brain injury triggered by moderate intensity shock wave using a modified experimental model of injury in mice. Chin Med J 2018; 131(20): 2447-60.
[http://dx.doi.org/10.4103/0366-6999.243558] [PMID: 30334530]
[23]
Li Y, Zhao W, Wang H, et al. Silencing of LncRNA steroid receptor RNA activator attenuates polycystic ovary syndrome in mice. Biochimie 2019; 157: 48-56.
[http://dx.doi.org/10.1016/j.biochi.2018.10.021] [PMID: 30391287]
[24]
Cui R, Liu S, Wang C, et al. Methane-rich saline alleviates CA/CPR brain injury by inhibiting oxidative stress, microglial activation-induced inflammatory responses, and ER stress-mediated apoptosis. Oxid Med Cell Longev 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/8829328] [PMID: 33149813]
[25]
Peng QY, Wang YM, Chen CX, et al. Inhibiting the CD38/cADPR pathway protected rats against sepsis associated brain injury. Brain Res 2018; 1678: 56-63.
[http://dx.doi.org/10.1016/j.brainres.2017.09.029] [PMID: 29030054]
[26]
Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nat Protoc 2009; 4(9): 1328-37.
[http://dx.doi.org/10.1038/nprot.2009.148] [PMID: 19713954]
[27]
Alqahtani F, Assiri MA, Mohany M, et al. Coadministration of ketamine and perampanel improves behavioral function and reduces inflammation in acute traumatic brain injury mouse model. BioMed Res Int 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/3193725] [PMID: 33381547]
[28]
Wang B, Cui Z, Zhong Z, et al. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin 2015; 36(8): 939-48.
[http://dx.doi.org/10.1038/aps.2015.47] [PMID: 26119880]
[29]
Xie CJ, Gu AP, Cai J, Wu Y, Chen RC. Curcumin protects neural cells against ischemic injury in N2a cells and mouse brain with ischemic stroke. Brain Behav 2018; 8(2): e00921.
[http://dx.doi.org/10.1002/brb3.921] [PMID: 29484272]
[30]
Yuan J, Liu W, Zhu H, et al. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J Surg Res 2017; 207: 85-91.
[http://dx.doi.org/10.1016/j.jss.2016.08.090] [PMID: 27979493]
[31]
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory effect of myokines on reactive oxygen species in ischemia/reperfusion. Int J Mol Sci 2020; 21(24): 9382.
[http://dx.doi.org/10.3390/ijms21249382] [PMID: 33317180]
[32]
Zhang XS, Lu Y, Li W, Tao T, Peng L, Wang WH. Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 2020; 178(5): 1114-32.
[PMID: 33326114]
[33]
Maas AIR, Menon DK, Manley GT, et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol 2022; 21(11): 1004-60.
[http://dx.doi.org/10.1016/S1474-4422(22)00309-X] [PMID: 36183712]
[34]
Maas AIR, Fitzgerald M, Gao G, et al. Traumatic brain injury over the past 20 years: Research and clinical progress. Lancet Neurol 2022; 21(9): 768-70.
[http://dx.doi.org/10.1016/S1474-4422(22)00307-6] [PMID: 35963251]
[35]
Cash A, Theus MH. Mechanisms of blood–brain barrier dysfunction in traumatic brain injury. Int J Mol Sci 2020; 21(9): 3344.
[http://dx.doi.org/10.3390/ijms21093344] [PMID: 32397302]
[36]
Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: Pathophysiology and role of inflammatory mediators. FEBS J 2009; 276(1): 13-26.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06766.x] [PMID: 19087196]
[37]
Yu L, Su X, Li S, Zhao F, Mu D, Qu Y. Microglia and their promising role in ischemic brain injuries: An update. Front Cell Neurosci 2020; 14: 211.
[http://dx.doi.org/10.3389/fncel.2020.00211] [PMID: 32754016]
[38]
Khayatan D, Razavi SM, Arab ZN, et al. Protective effects of curcumin against traumatic brain injury. Biomed Pharmacother 2022; 154: 113621.
[http://dx.doi.org/10.1016/j.biopha.2022.113621] [PMID: 36055110]
[39]
Porro C, Cianciulli A, Trotta T, Lofrumento DD, Panaro MA. Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in BV-2 microglial cells. Biology 2019; 8(3): 51.
[http://dx.doi.org/10.3390/biology8030051] [PMID: 31252572]
[40]
Huang Y, Long X, Tang J, et al. The Attenuation of traumatic brain injury via inhibition of oxidative stress and apoptosis by tanshinone IIA. Oxid Med Cell Longev 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/4170156] [PMID: 32454938]
[41]
Sun G, Miao Z, Ye Y, et al. Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res Bull 2020; 162: 84-93.
[http://dx.doi.org/10.1016/j.brainresbull.2020.05.009] [PMID: 32502596]
[42]
Piao CS, Loane DJ, Stoica BA, et al. Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury. Neurobiol Dis 2012; 46(3): 745-58.
[http://dx.doi.org/10.1016/j.nbd.2012.03.018] [PMID: 22426396]
[43]
Zhu Y, Wang H, Fang J, et al. SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury. Oxid Med Cell Longev 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/4783602] [PMID: 30224944]
[44]
Zhang H, Tu X, Song S, Liang R, Shi S. Baicalin reduces early brain injury after subarachnoid hemorrhage in rats. Chin J Integr Med 2020; 26(7): 510-8.
[http://dx.doi.org/10.1007/s11655-020-3183-7] [PMID: 31970676]
[45]
Zhuang S, Liu B, Guo S, et al. Germacrone alleviates neurological deficits following traumatic brain injury by modulating neuroinflammation and oxidative stress. BMC Complementary Medicine and Therapies 2021; 21(1): 6.
[http://dx.doi.org/10.1186/s12906-020-03175-0] [PMID: 33402180]
[46]
Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res 2011; 1374: 100-9.
[http://dx.doi.org/10.1016/j.brainres.2010.11.061] [PMID: 21111721]
[47]
Nesic-Taylor O, Cittelly D, Ye Z, et al. Exogenous Bcl-xl fusion protein spares neurons after spinal cord injury. J Neurosci Res 2005; 79(5): 628-37.
[http://dx.doi.org/10.1002/jnr.20400] [PMID: 15668909]
[48]
Wu T, Yin F, Kong H, Peng J. Germacrone attenuates cerebral ischemia/reperfusion injury in rats via antioxidative and antiapoptotic mechanisms. J Cell Biochem 2019; 120(11): 18901-9.
[http://dx.doi.org/10.1002/jcb.29210] [PMID: 31318092]
[49]
Zhang J, Yuan L, Wang S, et al. Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells. BMC Complementary Medicine and Therapies 2020; 20(1): 77.
[http://dx.doi.org/10.1186/s12906-020-2865-1] [PMID: 32145743]
[50]
Marques MS, Cordeiro MF, Marinho MAG, et al. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res 2020; 1746: 147007.
[http://dx.doi.org/10.1016/j.brainres.2020.147007] [PMID: 32645380]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy