Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease

Author(s): Gunel Ayyubova*

Volume 23, Issue 3, 2024

Published on: 04 May, 2023

Page: [342 - 352] Pages: 11

DOI: 10.2174/1871527322666230303114425

Price: $65

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease, the main pathological hallmark of which is the loss of neurons, resulting in cognitive and memory impairments. Sporadic late-onset AD is a prevalent form of the disease and the apolipoprotein E4 (APOE4) genotype is the strongest predictor of the disease development. The structural variations of APOE isoforms affect their roles in synaptic maintenance, lipid trafficking, energy metabolism, inflammatory response, and BBB integrity. In the context of AD, APOE isoforms variously control the key pathological elements of the disease, including Aβ plaque formation, tau aggregation, and neuroinflammation. Taking into consideration the limited number of therapy choices that can alleviate symptoms and have little impact on the AD etiology and progression to date, the precise research strategies guided by apolipoprotein E (APOE) polymorphisms are required to assess the potential risk of age-related cognitive decline in people carrying APOE4 genotype. In this review, we summarize the evidence implicating the significance of APOE isoforms on brain functions in health and pathology with the aim to identify the possible targets that should be addressed to prevent AD manifestation in individuals with the APOE4 genotype and to explore proper treatment strategies.

Graphical Abstract

[1]
Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat Rev Neurol 2019; 15(9): 501-18.
[http://dx.doi.org/10.1038/s41582-019-0228-7] [PMID: 31367008]
[2]
Beffert U, Cohn JS, Petit-Turcotte C, et al. Apolipoprotein E and β-amyloid levels in the hippocampus and frontal cortex of Alzheimer’s disease subjects are disease-related and apolipoprotein E genotype dependent. Brain Res 1999; 843(1-2): 87-94.
[http://dx.doi.org/10.1016/S0006-8993(99)01894-6] [PMID: 10528114]
[3]
Ward A, Crean S, Mercaldi CJ, et al. Prevalence of apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with Alzheimer’s disease: A systematic review and meta-analysis. Neuroepidemiology 2012; 38(1): 1-17.
[http://dx.doi.org/10.1159/000334607] [PMID: 22179327]
[4]
Cosentino S, Scarmeas N, Helzner E, et al. APOE 4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 2008; 70(19, Part 2): 1842-9.
[http://dx.doi.org/10.1212/01.wnl.0000304038.37421.cc] [PMID: 18401023]
[5]
Snellman A, Ekblad LL, Koivumäki M, et al. ASIC-E4: Interplay of beta-amyloid, synaptic density and neuroinflammation in cognitively normal volunteers with three levels of genetic risk for late-onset alzheimer’s disease – study protocol and baseline characteristics. Front Neurol 2022; 13: 826423.
[http://dx.doi.org/10.3389/fneur.2022.826423] [PMID: 35222254]
[6]
Liu CC, Hu J, Zhao N, et al. Astrocytic LRP1 mediates brain Aβ clearance and impacts amyloid deposition. J Neurosci 2017; 37(15): 4023-31.
[http://dx.doi.org/10.1523/JNEUROSCI.3442-16.2017] [PMID: 28275161]
[7]
Safieh M, Korczyn AD, Michaelson DM. ApoE4: An emerging therapeutic target for Alzheimer’s disease. BMC Med 2019; 17(1): 64.
[http://dx.doi.org/10.1186/s12916-019-1299-4] [PMID: 30890171]
[8]
Rahman MA, Rahman MR, Zaman T, et al. Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr Pharm Des 2020; 26(7): 772-9.
[http://dx.doi.org/10.2174/1381612826666200107142541] [PMID: 31914904]
[9]
Uddin MS, Kabir MT, Jeandet P, et al. Novel anti-alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid Med Cell Longev 2020; 2020: 1-19.
[http://dx.doi.org/10.1155/2020/7039138] [PMID: 32411333]
[10]
Patel K, Srivastava S, Kushwah S, Mani A. Perspectives on the role of APOE4 as a therapeutic target for alzheimer’s disease. J Alzheimers Dis Rep 2021; 5(1): 899-910.
[http://dx.doi.org/10.3233/ADR-210027] [PMID: 35088039]
[11]
Corder EH, Ghebremedhin E, Taylor MG, Thal DR, Ohm TG, Braak H. The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and APOE polymorphism. Ann N Y Acad Sci 2004; 1019(1): 24-8.
[http://dx.doi.org/10.1196/annals.1297.005] [PMID: 15246987]
[12]
Chen Y, Hong T, Chen F, Sun Y, Wang Y, Cui L. Interplay between microglia and Alzheimer’s disease—focus on the most relevant risks: APOE genotype, sex and age. Front Aging Neurosci 2021; 13: 631827.
[http://dx.doi.org/10.3389/fnagi.2021.631827] [PMID: 33897406]
[13]
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners? Neuron 2014; 81(4): 740-54.
[http://dx.doi.org/10.1016/j.neuron.2014.01.045] [PMID: 24559670]
[14]
Husain MA, Laurent B, Plourde M. APOE and Alzheimer’s disease: From lipid transport to physiopathology and therapeutics. Front Neurosci 2021; 15: 630502.
[http://dx.doi.org/10.3389/fnins.2021.630502] [PMID: 33679311]
[15]
Yassine HN, Finch CE. APOE alleles and diet in brain aging and Alzheimer’s disease. Front Aging Neurosci 2020; 12: 150.
[http://dx.doi.org/10.3389/fnagi.2020.00150] [PMID: 32587511]
[16]
Flowers SA, Rebeck GW. APOE in the normal brain. Neurobiol Dis 2020; 136: 104724.
[http://dx.doi.org/10.1016/j.nbd.2019.104724] [PMID: 31911114]
[17]
Koldamova R, Fitz N F, Lefterov I. TP-binding cassette transporter A1: From metabolism to neurodegeneration. Neurobiol Dis 2014; 72(pt A ): 13-21.
[http://dx.doi.org/ 10.1016/j.nbd.2014.05.007]
[18]
Hu J, Liu CC, Chen XF, Zhang Y, Xu H, Bu G. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice. Mol Neurodegener 2015; 10(1): 6.
[http://dx.doi.org/10.1186/s13024-015-0001-3] [PMID: 25871773]
[19]
Nguyen AT, Wang K, Hu G, et al. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta Neuropathol 2020; 140(4): 477-93.
[http://dx.doi.org/10.1007/s00401-020-02200-3] [PMID: 32840654]
[20]
Hubin E, Verghese PB, Nuland N, Broersen K. Apolipoprotein E associated with reconstituted high‐density lipoprotein‐like particles is protected from aggregation. FEBS Lett 2019; 593(11): 1144-53.
[http://dx.doi.org/10.1002/1873-3468.13428] [PMID: 31058310]
[21]
Zhao N, Liu CC, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron 2017; 96(1): 115-129.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.09.003] [PMID: 28957663]
[22]
Rawat V, Wang S, Sima J, et al. ApoE4 alters ABCA1 membrane trafficking in astrocytes. J Neurosci 2019; 39(48): 9611-22.
[http://dx.doi.org/10.1523/JNEUROSCI.1400-19.2019] [PMID: 31641056]
[23]
Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 2018; 98(6): 1141-54.
[http://dx.doi.org/10.1016/j.neuron.2018.05.008] [PMID: 29861287]
[24]
Craft S, Cholerton B, Baker LD. Insulin and Alzheimer’s disease: Untangling the web. J Alzheimers Dis 2012; 33(s1): S263-75.
[http://dx.doi.org/10.3233/JAD-2012-129042] [PMID: 22936011]
[25]
Jagust WJ, Landau SM. Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci 2012; 32(50): 18227-33.
[http://dx.doi.org/10.1523/JNEUROSCI.3266-12.2012] [PMID: 23238736]
[26]
Mosconi L, Nacmias B, Sorbi S, et al. Brain metabolic decreases related to the dose of the ApoE e4 allele in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004; 75(3): 370-6.
[http://dx.doi.org/10.1136/jnnp.2003.014993] [PMID: 14966149]
[27]
Drzezga A, Riemenschneider M. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology 2005; 64(1): 102-7.
[http://dx.doi.org/10.1212/01.WNL.0000148478.39691.D3]
[28]
Williams HC, Farmer BC, Piron MA, et al. APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiol Dis 2020; 136: 104742.
[http://dx.doi.org/10.1016/j.nbd.2020.104742] [PMID: 31931141]
[29]
Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front Aging Neurosci 2019; 11: 14.
[http://dx.doi.org/10.3389/fnagi.2019.00014] [PMID: 30804776]
[30]
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers. Int J Mol Sci 2019; 20(15): 3810.
[http://dx.doi.org/10.3390/ijms20153810] [PMID: 31382686]
[31]
Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108: 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004] [PMID: 23850509]
[32]
Chen HK, Ji ZS, Dodson SE, et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J Biol Chem 2011; 286(7): 5215-21.
[http://dx.doi.org/10.1074/jbc.M110.151084] [PMID: 21118811]
[33]
Wolf AB, Caselli RJ, Reiman EM, Valla J. APOE and neuroenergetics: an emerging paradigm in Alzheimer’s disease. Neurobiol Aging 2013; 34(4): 1007-17.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.10.011] [PMID: 23159550]
[34]
Friedland-Leuner K, Stockburger C, Denzer I, Eckert GP, Müller WE. Mitochondrial Dysfunction. Prog Mol Biol Transl Sci 2014; 127: 183-210.
[http://dx.doi.org/10.1016/B978-0-12-394625-6.00007-6] [PMID: 25149218]
[35]
Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 2011; 69(1): 181-92.
[http://dx.doi.org/10.1002/ana.22248] [PMID: 21280088]
[36]
Mecca AP, Barcelos NM, Wang S, et al. Cortical β-amyloid burden, gray matter, and memory in adults at varying APOE ε4 risk for Alzheimer’s disease. Neurobiol Aging 2018; 61: 207-14.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.09.027] [PMID: 29111487]
[37]
Huang YWA, Zhou B, Nabet AM, Wernig M, Südhof TC. Differential signaling mediated by ApoE2, ApoE3, and ApoE4 in human neurons parallels Alzheimer’s disease risk. J Neurosci 2019; 39(37): 7408-27.
[http://dx.doi.org/10.1523/JNEUROSCI.2994-18.2019] [PMID: 31331998]
[38]
Tachibana M, Holm ML, Liu CC, et al. APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP1. J Clin Invest 2019; 129(3): 1272-7.
[http://dx.doi.org/10.1172/JCI124853] [PMID: 30741718]
[39]
Lane-Donovan C, Herz J. The ApoE receptors Vldlr and Apoer2 in central nervous system function and disease. J Lipid Res 2017; 58(6): 1036-43.
[http://dx.doi.org/10.1194/jlr.R075507] [PMID: 28292942]
[40]
Kloske CM, Wilcock DM. The important interface between apolipoprotein E and neuroinflammation in Alzheimer’s disease. Front Immunol 2020; 11: 754.
[http://dx.doi.org/10.3389/fimmu.2020.00754] [PMID: 32425941]
[41]
Liao F, Li A, Xiong M, et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest 2018; 128(5): 2144-55.
[http://dx.doi.org/10.1172/JCI96429] [PMID: 29600961]
[42]
Yang Y, Cudaback E, Jorstad NL, et al. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease. Am J Pathol 2013; 183(3): 905-17.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.009] [PMID: 23831297]
[43]
Najm R, Zalocusky KA, Zilberter M, et al. In vivo chimeric Alzheimer’s disease modeling of apolipoprotein E4 toxicity in human neurons. Cell Rep 2020; 32(4): 107962.
[http://dx.doi.org/10.1016/j.celrep.2020.107962] [PMID: 32726626]
[44]
Holtzman DM, Herz J, Bu G, Apolipoprotein E, Apolipoprotein E. Receptors: Normal Biology and Roles in Alzheimer Disease. Cold Spring Harb Perspect Med 2012; 2(3): a006312.
[45]
Parhizkar S, Arzberger T, Brendel M, et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci 2019; 22(2): 191-204.
[http://dx.doi.org/10.1038/s41593-018-0296-9] [PMID: 30617257]
[46]
Yuan P, Condello C, Keene CD, et al. TREM2 Haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 2016; 90(4): 724-39.
[http://dx.doi.org/10.1016/j.neuron.2016.05.003] [PMID: 27196974]
[47]
Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 2016; 91(2): 328-40.
[http://dx.doi.org/10.1016/j.neuron.2016.06.015] [PMID: 27477018]
[48]
Prasad H, Rao R. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci 2018; 115(28): E6640-9.
[http://dx.doi.org/10.1073/pnas.1801612115] [PMID: 29946028]
[49]
Koch G, Di Lorenzo F, Loizzo S, et al. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease. Sci Rep 2017; 7(1): 13728.
[http://dx.doi.org/10.1038/s41598-017-14204-3] [PMID: 29062035]
[50]
Shi Y, Yamada K, Liddelow SA, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 2017; 549(7673): 523-7.
[http://dx.doi.org/10.1038/nature24016] [PMID: 28959956]
[51]
Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 2018; 24(5): 647-57.
[http://dx.doi.org/10.1038/s41591-018-0004-z] [PMID: 29632371]
[52]
Ikeda K, Akiyama H, Arai T, et al. A subset of senile dementia with high incidence of the apolipoprotein E? 2 allele. Ann Neurol 1997; 41(5): 693-5.
[http://dx.doi.org/10.1002/ana.410410522] [PMID: 9153535]
[53]
Farfel JM, Yu L, De Jager PL, Schneider JA, Bennett DA. Association of APOE with tau-tangle pathology with and without β-amyloid. Neurobiol Aging 2016; 37: 19-25.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.09.011] [PMID: 26481403]
[54]
Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer’s disease. Acta Neuropathol 2013; 126(4): 461-77.
[http://dx.doi.org/10.1007/s00401-013-1182-x] [PMID: 24224195]
[55]
Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of alzheimer’s disease. Cell 2017; 169(7): 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[56]
Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 2017; 47(3): 566-581.e9.
[http://dx.doi.org/10.1016/j.immuni.2017.08.008] [PMID: 28930663]
[57]
Vitek MP, Brown CM, Colton CA. APOE genotype-specific differences in the innate immune response. Neurobiol Aging 2009; 30(9): 1350-60.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.014] [PMID: 18155324]
[58]
Reale M, Kamal MA, Velluto L, Gambi D, Di Nicola M, Greig NH. Relationship between inflammatory mediators, Aβ levels and ApoE genotype in Alzheimer disease. Curr Alzheimer Res 2012; 9(4): 447-57.
[http://dx.doi.org/10.2174/156720512800492549] [PMID: 22272623]
[59]
Dorey E, Chang N, Liu QY, Yang Z, Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer’s disease. Neurosci Bull 2014; 30(2): 317-30.
[http://dx.doi.org/10.1007/s12264-013-1422-z] [PMID: 24652457]
[60]
Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J Neuroinflammation 2014; 11(1): 111.
[http://dx.doi.org/10.1186/1742-2094-11-111] [PMID: 24948358]
[61]
Fan YY, Cai QL, Gao ZY, et al. APOE ε4 allele elevates the expressions of inflammatory factors and promotes Alzheimer’s disease progression: A comparative study based on Han and She populations in the Wenzhou area. Brain Res Bull 2017; 132: 39-43.
[http://dx.doi.org/10.1016/j.brainresbull.2017.04.017] [PMID: 28461186]
[62]
Singh RK, Haka AS, Asmal A, et al. TLR4 (Toll-Like Receptor 4)-dependent signaling drives extracellular catabolism of LDL (low-density lipoprotein) Aggregates. Arterioscler Thromb Vasc Biol 2020; 40(1): 86-102.
[http://dx.doi.org/10.1161/ATVBAHA.119.313200] [PMID: 31597445]
[63]
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2018; 18(12): 759-72.
[http://dx.doi.org/10.1038/s41577-018-0051-1] [PMID: 30140051]
[64]
Teter B, LaDu MJ, Sullivan PM, Frautschy SA, Cole GM. Apolipoprotein E isotype-dependent modulation of microRNA-146a in plasma and brain. Neuroreport 2016; 27(11): 791-5.
[http://dx.doi.org/10.1097/WNR.0000000000000608] [PMID: 27281274]
[65]
Davidson Y, Gibbons L, Purandare N, et al. Apolipoprotein E epsilon4 allele frequency in vascular dementia. Dement Geriatr Cogn Disord 2006; 22(1): 15-9.
[http://dx.doi.org/10.1159/000092960] [PMID: 16645276]
[66]
Sun J-H, Tan L, Wang H-F. Genetics of vascular dementia: Systematic review and meta-analysis. J Alzheimers Dis 2015; 46(3): 611-29.
[http://dx.doi.org/10.3233/JAD-143102]
[67]
Halliday MR, Pomara N, Sagare AP, Mack WJ, Frangione B, Zlokovic BV. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown. JAMA Neurol 2013; 70(9): 1198-200.
[http://dx.doi.org/10.1001/jamaneurol.2013.3841] [PMID: 24030206]
[68]
Michels L, Warnock G, Buck A, et al. Arterial spin labeling imaging reveals widespread and Aβ-independent reductions in cerebral blood flow in elderly apolipoprotein epsilon-4 carriers. J Cereb Blood Flow Metab 2016; 36(3): 581-95.
[http://dx.doi.org/10.1177/0271678X15605847] [PMID: 26661143]
[69]
Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 2020; 581(7806): 71-6.
[http://dx.doi.org/10.1038/s41586-020-2247-3] [PMID: 32376954]
[70]
Montagne A, Nikolakopoulou AM, Huuskonen MT, et al. APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β. Nature Aging 2021; 1(6): 506-20.
[http://dx.doi.org/10.1038/s43587-021-00073-z] [PMID: 35291561]
[71]
Nikolakopoulou AM, Montagne A, Kisler K, et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci 2019; 22(7): 1089-98.
[http://dx.doi.org/10.1038/s41593-019-0434-z] [PMID: 31235908]
[72]
Halliday MR, Rege SV, Ma Q, et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 2016; 36(1): 216-27.
[http://dx.doi.org/10.1038/jcbfm.2015.44] [PMID: 25757756]
[73]
Hultman K, Strickland S, Norris EH. The APOE ɛ4/ɛ4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J Cereb Blood Flow Metab 2013; 33(8): 1251-8.
[http://dx.doi.org/10.1038/jcbfm.2013.76] [PMID: 23652625]
[74]
Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer’s disease. J Alzheimers Dis 2012; 32(3): 599-608.
[http://dx.doi.org/10.3233/JAD-2012-120820] [PMID: 22869464]
[75]
Ahn HJ, Chen ZL, Zamolodchikov D, Norris EH, Strickland S. Interactions of β-amyloid peptide with fibrinogen and coagulation factor XII may contribute to Alzheimerʼs disease. Curr Opin Hematol 2017; 24(5): 427-31.
[http://dx.doi.org/10.1097/MOH.0000000000000368] [PMID: 28661939]
[76]
Androuin A, Potier B, Nägerl UV, et al. Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model. Acta Neuropathol 2018; 135(6): 839-54.
[http://dx.doi.org/10.1007/s00401-018-1847-6] [PMID: 29696365]
[77]
Boros BD, Greathouse KM, Gentry EG, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol 2017; 82(4): 602-14.
[http://dx.doi.org/10.1002/ana.25049] [PMID: 28921611]
[78]
Klein RC, Mace BE, Moore SD, Sullivan PM. Progressive loss of synaptic integrity in human apolipoprotein E4 targeted replacement mice and attenuation by apolipoprotein E2. Neuroscience 2010; 171(4): 1265-72.
[http://dx.doi.org/10.1016/j.neuroscience.2010.10.027] [PMID: 20951774]
[79]
Tensaouti Y, Stephanz E P, Yu T-S. ApoE regulates the development of adult newborn hippocampal neurons. eNeuro 2018; 5(4): ENEURO.0155-.
[http://dx.doi.org/ 10.1523/ENEURO.0155-18.]
[80]
Vanmierlo T, Rutten K, Dederen J, et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2011; 32(7): 1262-72.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.07.005] [PMID: 19674815]
[81]
LaClair KD, Manaye KF, Lee DL, et al. Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 2013; 8(1): 18.
[http://dx.doi.org/10.1186/1750-1326-8-18] [PMID: 23764200]
[82]
Cummings JL, Zhong K, Kinney JW, et al. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease. Alzheimers Res Ther 2016; 8(1): 4.
[http://dx.doi.org/10.1186/s13195-016-0173-2] [PMID: 26822146]
[83]
Ghosal K, Haag M, Verghese PB, et al. A randomized controlled study to evaluate the effect of bexarotene on amyloid-β and apolipoprotein E metabolism in healthy subjects. Alzheimers Dement 2016; 2(2): 110-20.
[http://dx.doi.org/10.1016/j.trci.2016.06.001] [PMID: 26238576]
[84]
Wahrle SE, Jiang H, Parsadanian M, et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 2008; 118(2): 671-82.
[http://dx.doi.org/10.1172/JCI33622] [PMID: 18202749]
[85]
Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T, et al. APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Mol Psychiatry 2014; 19(11): 1243-50.
[http://dx.doi.org/10.1038/mp.2013.194] [PMID: 24492349]
[86]
Staehelin HB, Perrig-Chiello P, Mitrache C, Miserez AR, Perrig WJ. Apolipoprotein E genotypes and cognitive functions in healthy elderly persons. Acta Neurol Scand 1999; 100(1): 53-60.
[http://dx.doi.org/10.1111/j.1600-0404.1999.tb00723.x] [PMID: 10416512]
[87]
Wilson RS, Bienias JL, Berry-Kravis E, Evans DA, Bennett DA. The apolipoprotein E varepsilon2 allele and decline in episodic memory. J Neurol Neurosurg Psychiatry 2002; 73(6): 672-7.
[http://dx.doi.org/10.1136/jnnp.73.6.672] [PMID: 12438469]
[88]
Dodart JC, Marr RA, Koistinaho M, et al. Gene delivery of human apolipoprotein E alters brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 2005; 102(4): 1211-6.
[http://dx.doi.org/10.1073/pnas.0409072102] [PMID: 15657137]
[89]
Suri S, Heise V, Trachtenberg AJ, Mackay CE. The forgotten APOE allele: A review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev 2013; 37(10): 2878-86.
[http://dx.doi.org/10.1016/j.neubiorev.2013.10.010] [PMID: 24183852]
[90]
Hudry E, Dashkoff J, Roe AD, et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci Transl Med 2013; 5(212): 212ra161.
[http://dx.doi.org/10.1126/scitranslmed.3007000] [PMID: 24259049]
[91]
15th Conference Clinical Trials Alzheimer’s Disease, November 29- December 2, 2022, San Francisco, CA, USA: Symposia - Oral Communications - Late Breaking Abstracts (Clinical Trial Alzheimer’s Disease). J Prev Alzheimers Dis 2022; 9 (Suppl. 1): 8-50.
[http://dx.doi.org/10.14283/jpad.2022.96]
[92]
Bien-Ly N, Gillespie AK, Walker D, Yoon SY, Huang Y. Reducing human apolipoprotein E levels attenuates age-dependent Aβ accumulation in mutant human amyloid precursor protein transgenic mice. J Neurosci 2012; 32(14): 4803-11.
[http://dx.doi.org/10.1523/JNEUROSCI.0033-12.2012] [PMID: 22492035]
[93]
Vecchio F, Bisceglia P, Imbimbo B, et al. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 2022; 13: 204062232210816..
[http://dx.doi.org/10.1177/20406223221081605] [PMID: 35321401]
[94]
Litvinchuk A, Huynh T, Shi Y, et al. Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Ann Neurol 2021; 89: 952-66.
[http://dx.doi.org/10.1002/ana.26043.] [PMID: 33550655]
[95]
Luz I, Liraz O, Michaelson DM. An Anti-apoE4 specific monoclonal antibody counteracts the pathological effects of apoE4 in vivo. Curr Alzheimer Res 2016; 13(8): 918-29.
[http://dx.doi.org/10.2174/1567205013666160404120817] [PMID: 27040139]
[96]
Mahley RW. Central nervous system lipoproteins. Arterioscler Thromb Vasc Biol 2016; 36(7): 1305-15.
[http://dx.doi.org/10.1161/ATVBAHA.116.307023] [PMID: 27174096]
[97]
Ma Y, Smith CE, Lai CQ, et al. Genetic variants modify the effect of age on APOE methylation in the Genetics of Lipid Lowering Drugs and Diet Network study. Aging Cell 2015; 14(1): 49-59.
[http://dx.doi.org/10.1111/acel.12293] [PMID: 25476875]
[98]
Pankiewicz JE, Guridi M, Kim J, et al. Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE ε2 and ε4 targeted replacement Alzheimer model mice. Acta Neuropathol Commun 2014; 2(1): 75.
[http://dx.doi.org/10.1186/s40478-014-0075-0] [PMID: 24972680]
[99]
Brodbeck J, McGuire J, Liu Z, et al. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. J Biol Chem 2011; 286(19): 17217-26.
[http://dx.doi.org/10.1074/jbc.M110.217380] [PMID: 21454574]
[100]
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[101]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[102]
Zhong N, Scearce-Levie K, Ramaswamy G, Weisgraber KH. Apolipoprotein E4 domain interaction: Synaptic and cognitive deficits in mice. Alzheimers Dement 2008; 4(3): 179-92.
[http://dx.doi.org/10.1016/j.jalz.2008.01.006] [PMID: 18631967]
[103]
Sawmiller D, Habib A, Hou H, et al. A novel apolipoprotein e antagonist functionally blocks apolipoprotein e interaction with n-terminal amyloid precursor protein, reduces β-amyloid-associated pathology, and improves cognition. Biol Psychiatry 2019; 86(3): 208-20.
[http://dx.doi.org/10.1016/j.biopsych.2019.04.026] [PMID: 31208706]
[104]
Chernick D, Ortiz-Valle S, Jeong A, et al. High‐density lipoprotein mimetic peptide 4F mitigates amyloid‐β‐induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147(5): 647-62.
[http://dx.doi.org/10.1111/jnc.14554] [PMID: 30028014]
[105]
Krishnamurthy K, Cantillana V, Wang H, et al. ApoE mimetic improves pathology and memory in a model of Alzheimer’s disease. Brain Res 2020; 1733: 146685.
[http://dx.doi.org/10.1016/j.brainres.2020.146685] [PMID: 32007397]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy