Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Photocatalytic Performance of the BaSn-based Nanoscale Materials for the Organic Pollutants Enhanced by Sm (Er) Doping

Author(s): Xiaoyu Wang, Zizhan Sun, Feihu Tao, Xu Zhang and Lizhai Pei*

Volume 17, Issue 2, 2024

Published on: 17 April, 2023

Page: [167 - 184] Pages: 18

DOI: 10.2174/2666145416666230302114712

Price: $65

Abstract

Background: Sm (Er) doping is an effective strategy for enhancing the photocatalytic activity of the semiconductor photocatalysts for the degradation of organic pollutants. BaSnbased nanorods possess wide band gap energy, which limits the photocatalytic application. It is important to research the feasibility of the improved photocatalytic performance of the BaSnbased nanorods by doping with Sm (Er).

Objective: The aim is to synthesize Sm (Er)-doped BaSn-based nanoscale materials through a simple hydrothermal process and research the photocatalytic performance of the Sm (Er)-doped BaSn-based nanoscale materials for the gentian violet degradation.

Methods: Sm (Er)-doped BaSn-based nanoscale materials with a polycrystalline structure were synthesized through a simple hydrothermal process. The Sm (Er)-doped composites were analyzed by X-ray diffraction, electron microscopy, solid diffuse reflectance spectrum, X-ray photoelectron spectroscopy, photoluminescence, and electrochemical impedance spectroscopy.

Results: Sm (Er) doping induces the morphological evolution of the BaSn-based nanoscale materials from the nanorods to irregular nanoscale particles. Sm (Er) in the doped BaSn-based nanoscale materials exists in the form of the cubic Sm2Sn2O7 and orthorhombic ErF3 phases. The band gap value is decreased with increasing the Sm (Er) dopant contents. Sm (Er)-doped BnSnbased nanoscale materials with the Sm (Er) content of 8wt.% have the lowest band gap and show the strongest light absorption ability. Compared with the un-doped BaSn-based nanoscale materials, the Sm (Er)-doped BnSn-based nanoscale materials exhibit higher photocatalytic activity for the gentian violet degradation. 8wt.% Sm-doped BnSn-based nanoscale materials show the highest photocatalytic activity for the degradation of the gentian violet. 20 mL gentian violet solution (concentration of 10 mg·L-1) can be totally degraded using 20 mg 8wt.% Sm-doped BnSnbased nanoscale materials under UV light illumination for 150 min.

Conclusion: The enhanced photocatalytic activity of the Sm (Er)-doped BnSn-based nanoscale materials can be attributed to the decreased band gap, enhanced light absorption ability, and decreased recombination of the photo-generated electron-hole pairs.

« Previous
Graphical Abstract

[1]
Xue Z, Li F, Yu C, et al. Synthesis of hexahydroxy strontium stannate nanorods for photocatalytic degradation of organic pollutants. Toxicol Environ Chem 2021; 103(4): 326-41.
[http://dx.doi.org/10.1080/02772248.2021.1999453]
[2]
Jiang Y, Hu J, Li J. Synthesis and visible light responsed photocatalytic activity of Sn doped Bi 2 S 3 microspheres assembled by nanosheets. RSC Advances 2016; 6(46): 39810-7.
[http://dx.doi.org/10.1039/C6RA02621D]
[3]
Udawatte CP, Yoshimura M. Preparation of well-crystallized BaSnO3 powders under hydrothermal conditions. Mater Lett 2001; 47(1-2): 7-10.
[http://dx.doi.org/10.1016/S0167-577X(00)00202-0]
[4]
Jena H, Kutty KVG, Kutty TRN. Ionic transport and structural investigations on MSn(OH)6 (M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet sonochemical methods. Mater Chem Phys 2004; 88(1): 167-79.
[http://dx.doi.org/10.1016/j.matchemphys.2004.07.003]
[5]
Medvedev AG, Mikhaylov AA, Shames AI, et al. Identification of barium hydroxo-hydroperoxostannate precursor for low-temperature formation of perovskite barium stannate. Inorg Chem 2020; 59(24): 18358-65.
[http://dx.doi.org/10.1021/acs.inorgchem.0c02993] [PMID: 33285066]
[6]
Peng T, Wen Y, Wang C, et al. Preparation of SnO2/conjugated polyvinyl alcohol derivative nanohybrid with good performance in visible light-induced photocatalytic reduction of Cr(VI). Mater Sci Semicond Process 2019; 102: 104586.
[http://dx.doi.org/10.1016/j.mssp.2019.104586]
[7]
Pan J, Ganesan R, Shen H, Mathur S. Plasma-modified SnO2 nanowires for enhanced gas sensing. J Phys Chem C 2010; 114(18): 8245-50.
[http://dx.doi.org/10.1021/jp101072f]
[8]
Pan J, Li J, Yan Z, Zhou B, Wu H, Xiong X. SnO2@CdS nanowire-quantum dots heterostructures: Tailoring optical properties of SnO2 for enhanced photodetection and photocatalysis. Nanoscale 2013; 5(7): 3022-9.
[http://dx.doi.org/10.1039/c3nr34096a] [PMID: 23463463]
[9]
Manjula P, Boppella R, Manorama SV. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: Application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl Mater Interfaces 2012; 4(11): 6252-60.
[http://dx.doi.org/10.1021/am301840s] [PMID: 23088260]
[10]
Kang J, Kuang Q, Xie ZX, Zheng LS. Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property. J Phys Chem C 2011; 115(16): 7874-9.
[http://dx.doi.org/10.1021/jp111419w]
[11]
Tao F, Li F, Huang J, et al. A general hydrothermal growth and photocatalytic performance of barium tin hydroxide/tin dioxide nanorods. Cryst Res Technol 2022; 57(2): 2100156.
[http://dx.doi.org/10.1002/crat.202100156]
[12]
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, et al. Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review. J Water Process Eng 2022; 47: 102696.
[http://dx.doi.org/10.1016/j.jwpe.2022.102696]
[13]
Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 2004; 8(3-4): 501-51.
[http://dx.doi.org/10.1016/S1093-0191(03)00032-7]
[14]
Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 2008; 26(8): 450-9.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.008] [PMID: 18585807]
[15]
Preethi T, Abarna B, Vidhya KN, Rajarajeswari GR. Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet. Ceram Int 2014; 40(8): 13159-67.
[http://dx.doi.org/10.1016/j.ceramint.2014.05.020]
[16]
Hoang LH, Phu ND, Do Chung P, Guo PC, Chen XB, Chou WC. Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Gd-doping via microwave assisted method. J Mater Sci Mater Electron 2017; 28(16): 12191-6.
[http://dx.doi.org/10.1007/s10854-017-7034-z]
[17]
Iwase A, Kato H, Okutomi H, Kudo A. Formation of surface nano-step structures and improvement of photocatalytic activities of NaTO3 by doping of alkaline earth metal ions. Chem Lett 2004; 33(10): 1260-1.
[http://dx.doi.org/10.1246/cl.2004.1260]
[18]
Gurushantha K, Anantharaju KS, Sharma SC, et al. Bio-mediated Sm doped nano cubic zirconia: Photoluminescent, Judd–Ofelt analysis, electrochemical impedance spectroscopy and photocatalytic performance. J Alloys Compd 2016; 685: 761-73.
[http://dx.doi.org/10.1016/j.jallcom.2016.06.105]
[19]
Arasi SE, Madhavan J, Antony Raj MV. Effect of samarium (Sm 3+) doping on structural, optical properties and photocatalytic activity of titanium dioxide nanoparticles. J Taibah Univ Sci 2018; 12(2): 186-90.
[http://dx.doi.org/10.1080/16583655.2018.1451057]
[20]
Zhang X, Dong S, Zhou X, et al. A facile one-pot synthesis of Er–Al co-doped ZnO nanoparticles with enhanced photocatalytic performance under visible light. Mater Lett 2015; 143: 312-4.
[http://dx.doi.org/10.1016/j.matlet.2014.12.094]
[21]
Liu Y, Zhu G, Gao J, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation. Appl Catal B 2017; 205: 421-32.
[http://dx.doi.org/10.1016/j.apcatb.2016.12.061]
[22]
Liu S, Cai Y, Cai X, et al. Catalytic photodegradation of Congo red in aqueous solution by Ln(OH)3 (Ln = Nd, Sm, Eu, Gd, Tb, and Dy) nanorods. Appl Catal A Gen 2013; 453: 45-53.
[http://dx.doi.org/10.1016/j.apcata.2012.12.004]
[23]
Ma Y, Liu H, Han Z, Yang L, Liu J. Non-ultraviolet photocatalytic kinetics of NaYF 4:Yb,Tm@TiO 2/Ag core@comby shell nanostructures. J Mater Chem A Mater Energy Sustain 2015; 3(28): 14642-50.
[http://dx.doi.org/10.1039/C5TA03143E]
[24]
Obregón S, Colón G. Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl Catal B 2014; 158-159: 242-9.
[http://dx.doi.org/10.1016/j.apcatb.2014.04.029]
[25]
Sukriti CP, Chand P, Singh V. Enhanced visible-light photocatalytic activity of samarium-doped zinc oxide nanostructures. J Rare Earths 2020; 38(1): 29-38.
[http://dx.doi.org/10.1016/j.jre.2019.02.009]
[26]
Hu Z, Chen D, Wang S, Zhang N, Qin L, Huang Y. Facile synthesis of Sm-doped BiFeO 3 nanoparticles for enhanced visible light photocatalytic performance. Mater Sci Eng B 2017; 220: 1-12.
[http://dx.doi.org/10.1016/j.mseb.2017.03.005]
[27]
Zheng Y, Wang W. Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge. J Solid State Chem 2014; 210(1): 206-12.
[http://dx.doi.org/10.1016/j.jssc.2013.11.029]
[28]
Fan N, Chen Y, Feng Q, et al. Enhanced photocatalytic activity and upconversion luminescence of flowerlike hierarchical Bi 2 MoO 6 microspheres by Er 3+ doping. J Mater Res 2012; 27(11): 1471-5.
[http://dx.doi.org/10.1557/jmr.2012.89]
[29]
Deng A, Yu C, Xue Z, Huang J, Pan H, Pei L. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants. J Mater Res Technol 2022; 19: 1073-89.
[http://dx.doi.org/10.1016/j.jmrt.2022.05.104]
[30]
Liang CH, Li FB, Liu CS, Lü JL, Wang XG. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes Pigments 2008; 76(2): 477-84.
[http://dx.doi.org/10.1016/j.dyepig.2006.10.006]
[31]
Yang X, Zhu L, Yang L, Zhou W, Xu Y. Preparation and photocatalytic activity of neodymium doping titania loaded to silicon dioxide. Trans Nonferrous Met Soc China 2011; 21(2): 335-9.
[http://dx.doi.org/10.1016/S1003-6326(11)60718-8]
[32]
Hajipour P, Eslami A, Bahrami A, et al. Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics. Ceram Int 2021; 47(23): 33875-85.
[http://dx.doi.org/10.1016/j.ceramint.2021.08.300]
[33]
Hajipour P, Bahrami A, Mehr MY, van Driel WD, Zhang K. Facile Synthesis of Ag nanowire/TiO2 and Ag nanowire/TiO2/GO nanocomposites for photocatalytic degradation of Rhodamine B. Materials 2021; 14(4): 763.
[http://dx.doi.org/10.3390/ma14040763] [PMID: 33561955]
[34]
Luo Y, Chen J, Liu J, Shao Y, Li X, Li D. Hydroxide SrSn(OH) 6: A new photocatalyst for degradation of benzene and rhodamine B. Appl Catal B 2016; 182: 533-40.
[http://dx.doi.org/10.1016/j.apcatb.2015.09.051]
[35]
Ruan W, Zhang R, Zhong Q, Fu Y, Yang Z, Xie M. Preparation and wide band emission characteristics of Eu 2+/Eu 3+ co-doped Ba 3 P 4 O 13 phosphors. RSC Adv 2022; 12(23): 14819-26.
[http://dx.doi.org/10.1039/D2RA02478K] [PMID: 35702196]
[36]
Wang M, You M, Guo P, et al. Hydrothermal synthesis of Sm-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B. J Alloys Compd 2017; 728: 739-46.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.066]
[37]
Eskandarloo H, Badiei A, Behnajady MA, Ziarani GM. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrason Sonochem 2016; 28: 169-77.
[http://dx.doi.org/10.1016/j.ultsonch.2015.07.012] [PMID: 26384896]
[38]
Ding L, Zhang C, Jiang Q, Chen H, Sun W, Hu J. Er3+ doped bismuth oxychloride hierarchical microspheres with enhanced photocatalytic properties. Mater Lett 2015; 158: 229-32.
[http://dx.doi.org/10.1016/j.matlet.2015.05.173]
[39]
Hojamberdiev M, Zhu G, Li S, et al. Er3+-doping induced formation of orthorhombic/monoclinic Bi5O7I heterostructure with enhanced visible-light photocatalytic activity for removal of contaminants. Mater Res Bull 2020; 123: 110701.
[http://dx.doi.org/10.1016/j.materresbull.2019.110701]
[40]
Liang Y, Guo N, Li L, Li R, Ji G, Gan S. Preparation of porous 3D Ce-doped ZnO microflowers with enhanced photocatalytic performance. RSC Advances 2015; 5(74): 59887-94.
[http://dx.doi.org/10.1039/C5RA08519E]
[41]
Pandiyarajan T, Mangalaraja RV, Karthikeyan B, et al. UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures. Appl Phys, A Mater Sci Process 2015; 119(2): 487-95.
[http://dx.doi.org/10.1007/s00339-015-9102-7]
[42]
Hemmati Borji S, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. J Environ Health Sci Eng 2014; 12(1): 101.
[http://dx.doi.org/10.1186/2052-336X-12-101] [PMID: 25105016]
[43]
Pei LZ, Wang S, Liu HD, Lin N, Yu HY. Vanadium doped barium germanate microrods and photocatalytic properties under solar light. Solid State Commun 2015; 202: 35-8.
[http://dx.doi.org/10.1016/j.ssc.2014.10.036]
[44]
Chen H, Yu C, Xue Z, et al. Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification, and good photocatalytic activity toward organic pollutants. Toxicol Environ Chem 2020; 102(7-8): 356-85.
[http://dx.doi.org/10.1080/02772248.2020.1798448]
[45]
Fang Q, Chen C, Yang Z, Chen X, Chen X, Liu T. Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres. J Alloys Compd 2020; 826: 154084.
[http://dx.doi.org/10.1016/j.jallcom.2020.154084]
[46]
Pei LZ, Lin FF, Qiu FL, Wang WL, Zhang Y, Fan CG. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid. Mater Res Express 2017; 4(7): 075047.
[http://dx.doi.org/10.1088/2053-1591/aa7e04]
[47]
Pei LZ, Wei T, Lin N, Cai ZY, Fan CG, Yang Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J Electrochem Soc 2016; 163(2): H1-8.
[http://dx.doi.org/10.1149/2.0041602jes]
[48]
Pei LZ, Wang S, Jiang YX, Xie YK, Li Y, Guo YH. Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue. CrystEngComm 2013; 15(38): 7815-23.
[http://dx.doi.org/10.1039/c3ce40989a]
[49]
Reddy DA, Park H, Ma R, Kumar DP, Lim M, Kim TK. Heterostructured WS2-MoS2 ultrathin nanosheets integrated on CdS nanorods to promote charge separation and migration and improve solar-driven photocatalytic hydrogen evolution. ChemSusChem 2017; 10(7): 1563-70.
[http://dx.doi.org/10.1002/cssc.201601799] [PMID: 28121391]
[50]
Gan X, Zheng R, Liu T, et al. N-doped mesoporous In2O3 for photocatalytic oxygen evolution from the In-based metal-organic frameworks. Chemistry 2017; 23(30): 7264-71.
[http://dx.doi.org/10.1002/chem.201605576] [PMID: 28233355]
[51]
Liu ZS, Liu ZL, Liu JL, Zhang JW, Zhou TF, Ji X. Enhanced photocatalytic performance of Er-doped Bi 24 O 31 Br 10: Facile synthesis and photocatalytic mechanism. Mater Res Bull 2016; 76: 256-63.
[http://dx.doi.org/10.1016/j.materresbull.2015.12.033]
[52]
Oppong SOB, Opoku F, Anku WW, Govender PP. Insights into the complementary behaviour of Gd doping in GO/Gd/ZnO composites as an efficient candidate towards photocatalytic degradation of indigo carmine dye. J Mater Sci 2021; 56(14): 8511-27.
[http://dx.doi.org/10.1007/s10853-021-05846-w]
[53]
Zhou T, Hu J, Li J. Er3+ doped bismuth molybdate nanosheets with exposed 010 facets and enhanced photocatalytic performance. Appl Catal B 2011; 110: 221-30.
[http://dx.doi.org/10.1016/j.apcatb.2011.09.004]
[54]
Hou J, Yang C, Wang Z, Zhou W, Jiao S, Zhu H. In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Appl Catal B 2013; 142-143: 504-11.
[http://dx.doi.org/10.1016/j.apcatb.2013.05.050]
[55]
Guan Y, Wu J, Liu Q, et al. Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light. Mater Res Bull 2019; 120: 110579.
[http://dx.doi.org/10.1016/j.materresbull.2019.110579]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy