Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Interactions of Betel Quid Constituents with Drug Disposition Pathways: An Overview

Author(s): Jasmine Canlas and Alan L. Myers*

Volume 24, Issue 2, 2023

Published on: 27 March, 2023

Page: [92 - 105] Pages: 14

DOI: 10.2174/1389200224666230228142052

Price: $65

Abstract

Global estimates indicate that over 600 million individuals worldwide consume the areca (betel) nut in some form. Nonetheless, its consumption is associated with a myriad of oral and systemic ailments, such as precancerous oral lesions, oropharyngeal cancers, liver toxicity and hepatic carcinoma, cardiovascular distress, and addiction. Users commonly chew slivers of areca nut in a complex consumable preparation called betel quid (BQ). Consequently, the user is exposed to a wide array of chemicals with diverse pharmacokinetic behavior in the body. However, a comprehensive understanding of the metabolic pathways significant to BQ chemicals is lacking. Henceforth, we performed a literature search to identify prominent BQ constituents and examine each chemical's interplay with drug disposition proteins. In total, we uncovered over 20 major chemicals (e.g., arecoline, nicotine, menthol, quercetin, tannic acid) present in the BQ mixture that were substrates, inhibitors, and/or inducers of various phase I (e.g., CYP, FMO, hydrolases) and phase II (e.g., GST, UGT, SULT) drug metabolizing enzymes, along with several transporters (e.g., P-gp, BCRP, MRP). Altogether, over 80 potential interactivities were found. Utilizing this new information, we generated theoretical predictions of drug interactions precipitated by BQ consumption. Data suggests that BQ consumers are at risk for drug interactions (and possible adverse effects) when co-ingesting other substances (multiple therapeutic classes) with overlapping elimination mechanisms. Until now, prediction about interactions is not widely known among BQ consumers and their clinicians. Further research is necessary based on our speculations to elucidate the biological ramifications of specific BQ-induced interactions and to take measures that improve the health of BQ consumers.

Graphical Abstract

[1]
Gupta, P.C.; Warnakulasuriya, S. Global epidemiology of areca nut usage. Addict. Biol., 2002, 7(1), 77-83.
[http://dx.doi.org/10.1080/13556210020091437] [PMID: 11900626]
[2]
Humans, I.W.G.E.C.R. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval. Carcinog. Risks Hum., 2004, 85, 1-334.
[PMID: 15635762]
[3]
Moss, W.J. The seeds of ignorance-consequences of a booming betel-nut economy. N. Engl. J. Med., 2022, 387(12), 1059-1061.
[http://dx.doi.org/10.1056/NEJMp2203571] [PMID: 36121043]
[4]
Tungare, S.; Myers, A.L. Retail availability and characteristics of addictive areca nut products in a US metropolis. J. Psychoactive Drugs, 2021, 53(3), 256-271.
[http://dx.doi.org/10.1080/02791072.2020.1860272] [PMID: 33491557]
[5]
Winstock, A. Areca nut-abuse liability, dependence and public health. Addict. Biol., 2002, 7(1), 133-138.
[http://dx.doi.org/10.1080/13556210120091509] [PMID: 11900633]
[6]
Islam, S.; Muthumala, M.; Matsuoka, H.; Uehara, O.; Kuramitsu, Y.; Chiba, I.; Abiko, Y. How each component of betel quid is involved in oral carcinogenesis: Mutual interactions and synergistic effects with other carcinogens-A review article. Curr. Oncol. Rep., 2019, 21(6), 53.
[http://dx.doi.org/10.1007/s11912-019-0800-8] [PMID: 31028548]
[7]
Ko, Y.C.; Chiang, T.A.; Chang, S.J.; Hsieh, S.F. Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J. Oral Pathol. Med., 1992, 21(6), 261-264.
[http://dx.doi.org/10.1111/j.1600-0714.1992.tb01007.x] [PMID: 1501158]
[8]
Lan, T.Y.; Chang, W.C.; Tsai, Y.J.; Chuang, Y.L.; Lin, H.S.; Tai, T.Y. Areca nut chewing and mortality in an elderly cohort study. Am. J. Epidemiol., 2007, 165(6), 677-683.
[http://dx.doi.org/10.1093/aje/kwk056] [PMID: 17204513]
[9]
Huang, J.L.; McLeish, M.J. High-performance liquid chromatographic determination of the alkaloids in betel nut. J. Chromatogr. A, 1989, 475(2), 447-450.
[http://dx.doi.org/10.1016/S0021-9673(01)89702-8]
[10]
Shivashankar, S.; Dhanaraj, S.; Matthew, A.; Murthy, S.S.; Vyasamurthy, M.N.; Govindarajan, V.S. Physical and chemical characteristics of processed arecanuts. J. Food Sci. Technol., 1969, 6(2), 113-116.
[11]
Yang, Y.; Huang, H.; Cui, Z.; Chu, J.; Du, G. UPLC–MS/MS and network pharmacology-based analysis of bioactive anti-depression compounds in betel nut. Drug Des. Devel. Ther., 2021, 15, 4827-4836.
[http://dx.doi.org/10.2147/DDDT.S335312] [PMID: 34880597]
[12]
Franke, A.A.; Mendez, A.J.; Lai, J.F.; Arat-Cabading, C.; Li, X.; Custer, L.J. Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers. Food Chem. Toxicol., 2015, 80, 241-246.
[http://dx.doi.org/10.1016/j.fct.2015.03.012] [PMID: 25797484]
[13]
Jain, V.; Garg, A.; Parascandola, M.; Chaturvedi, P.; Khariwala, S.S.; Stepanov, I. Analysis of alkaloids in areca nut-containing products by liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem., 2017, 65(9), 1977-1983.
[http://dx.doi.org/10.1021/acs.jafc.6b05140] [PMID: 28190359]
[14]
Chang, Y.C.; Hu, C.C.; Tseng, T.H.; Tai, K.W.; Lii, C.K.; Chou, M.Y. Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts. J. Oral Pathol. Med., 2001, 30(8), 458-464.
[http://dx.doi.org/10.1034/j.1600-0714.2001.030008458.x] [PMID: 11545236]
[15]
Dasgupta, R.; Saha, I.; Pal, S.; Bhattacharyya, A.; Sa, G.; Nag, T.C.; Das, T.; Maiti, B.R. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice. Toxicology, 2006, 227(1-2), 94-104.
[http://dx.doi.org/10.1016/j.tox.2006.07.016] [PMID: 16945459]
[16]
Zhou, J.; Sun, Q.; Yang, Z.; Zhang, J. The hepatotoxicity and testicular toxicity induced by arecoline in mice and protective effects of vitamins C and e. Korean J. Physiol. Pharmacol., 2014, 18(2), 143-148.
[http://dx.doi.org/10.4196/kjpp.2014.18.2.143] [PMID: 24757376]
[17]
Singh, A.; Rao, A.R. Effects of arecoline on phase I and phase II drug metabolizing system enzymes, sulfhydryl content and lipid peroxidation in mouse liver. Biochem. Mol. Biol. Int., 1993, 30(4), 763-772.
[PMID: 8401332]
[18]
Giri, S.; Krausz, K.W.; Idle, J.R.; Gonzalez, F.J. The metabolomics of (±)-arecoline 1-oxide in the mouse and its formation by human flavin-containing monooxygenases. Biochem. Pharmacol., 2007, 73(4), 561-573.
[http://dx.doi.org/10.1016/j.bcp.2006.10.017] [PMID: 17123469]
[19]
Patterson, T.A.; Kosh, J.W. Elucidation of the rapid in vivo metabolism of arecoline. Gen. Pharmacol., 1993, 24(3), 641-647.
[http://dx.doi.org/10.1016/0306-3623(93)90224-L] [PMID: 8365645]
[20]
Run-mei, X.; Jun-jun, W.; Jing-ya, C.; Li-juan, S.; Yong, C. Effects of arecoline on hepatic cytochrome P450 activity and oxidative stress. J. Toxicol. Sci., 2014, 39(4), 609-614.
[http://dx.doi.org/10.2131/jts.39.609] [PMID: 25056785]
[21]
Voigt, V.; Laug, L.; Zebisch, K.; Thondorf, I.; Markwardt, F.; Brandsch, M. Transport of the areca nut alkaloid arecaidine by the human proton-coupled amino acid transporter 1 (hPAT1). J. Pharm. Pharmacol., 2013, 65(4), 582-590.
[http://dx.doi.org/10.1111/jphp.12006] [PMID: 23488788]
[22]
Gurumurthy, B.R. Diversity in tannin and fiber content in areca nut (Areca catechu) samples of Karnataka, India. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(1), 2899-2906.
[http://dx.doi.org/10.20546/ijcmas.2018.701.346]
[23]
Adamczyk, B.; Simon, J.; Kitunen, V.; Adamczyk, S.; Smolander, A. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: Old paradigms versus recent advances. ChemistryOpen, 2017, 6(5), 610-614.
[http://dx.doi.org/10.1002/open.201700113] [PMID: 29046854]
[24]
Krajka-Kuźniak, V.; Baer-Dubowska, W. The effects of tannic acid on cytochrome P450 and phase II enzymes in mouse liver and kidney. Toxicol. Lett., 2003, 143(2), 209-216.
[http://dx.doi.org/10.1016/S0378-4274(03)00177-2] [PMID: 12749824]
[25]
Karakurt, S.; Adali, O. Effect of tannic acid on glutathione S-transferase and NAD(P)H: Quinone oxidoreductase 1 enzymes in rabbit liver and kidney. Fresenius Environ. Bull., 2011, 20(7a), 1804-1811.
[26]
Yao, H.T.; Chang, Y.W.; Lan, S.J.; Yeh, T.K. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes. Food Chem. Toxicol., 2008, 46(2), 645-653.
[http://dx.doi.org/10.1016/j.fct.2007.09.073] [PMID: 17950511]
[27]
Mikstacka, R.; Gnojkowski, J.; Baer-Dubowska, W. Effect of natural phenols on the catalytic activity of cytochrome P450 2E1. Acta Biochim. Pol., 2002, 49(4), 917-925.
[http://dx.doi.org/10.18388/abp.2002_3751] [PMID: 12545198]
[28]
Pillai, V.C.; Mehvar, R. Inhibition of NADPH-cytochrome P450 reductase by tannic acid in rat liver microsomes and primary hepatocytes: Methodological artifacts and application to ischemia–reperfusion injury. J. Pharm. Sci., 2011, 100(8), 3495-3505.
[http://dx.doi.org/10.1002/jps.22531] [PMID: 21387315]
[29]
Grancharov, K.; Engelberg, H.; Naydenova, Z.; Müller, G.; Rettenmeier, A.; Golovinsky, E. Inhibition of UDP-glucuronosyltransferases in rat liver microsomes by natural mutagens and carcinogens. Arch. Toxicol., 2001, 75(10), 609-612.
[http://dx.doi.org/10.1007/s00204-001-0282-x] [PMID: 11808922]
[30]
Naus, P.J.; Henson, R.; Bleeker, G.; Wehbe, H.; Meng, F.; Patel, T. Tannic acid synergizes the cytotoxicity of chemotherapeutic drugs in human cholangiocarcinoma by modulating drug efflux pathways. J. Hepatol., 2007, 46(2), 222-229.
[http://dx.doi.org/10.1016/j.jhep.2006.08.012] [PMID: 17069924]
[31]
Sari, L.M.; Hakim, R.F.; Mubarak, Z.; Andriyanto, A. Analysis of phenolic compounds and immunomodulatory activity of areca nut extract from Aceh, Indonesia, against Staphylococcus aureus infection in Sprague-Dawley rats. Vet. World, 2020, 13(1), 134-140.
[http://dx.doi.org/10.14202/vetworld.2020.134-140] [PMID: 32158163]
[32]
Yong, Feng W. Metabolism of green tea catechins: An overview. Curr. Drug Metab., 2006, 7(7), 755-809.
[http://dx.doi.org/10.2174/138920006778520552] [PMID: 17073579]
[33]
Donovan, J.L.; Crespy, V.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A.; Rémésy, C. Catechin is metabolized by both the small intestine and liver of rats. J. Nutr., 2001, 131(6), 1753-1757.
[http://dx.doi.org/10.1093/jn/131.6.1753] [PMID: 11385063]
[34]
Abd El Mohsen, M.M.; Kuhnle, G.; Rechner, A.R.; Schroeter, H.; Rose, S.; Jenner, P.; Rice-Evans, C.A. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic. Biol. Med., 2002, 33(12), 1693-1702.
[http://dx.doi.org/10.1016/S0891-5849(02)01137-1] [PMID: 12488137]
[35]
Baba, S.; Osakabe, N.; Natsume, M.; Muto, Y.; Takizawa, T.; Terao, J. In vivo comparison of the bioavailability of (+)-catechin, (-)-epicatechin and their mixture in orally administered rats. J. Nutr., 2001, 131(11), 2885-2891.
[http://dx.doi.org/10.1093/jn/131.11.2885] [PMID: 11694613]
[36]
Fong, Y.K.; Li, C.R.; Wo, S.K.; Wang, S.; Zhou, L.; Zhang, L.; Lin, G.; Zuo, Z. In vitro and in situ evaluation of herb–drug interactions during intestinal metabolism and absorption of Baicalein. J. Ethnopharmacol., 2012, 141(2), 742-753.
[http://dx.doi.org/10.1016/j.jep.2011.08.042] [PMID: 21906668]
[37]
Mizuma, T.; Awazu, S. Dietary polyphenols (−)-epicatechin and chrysin inhibit intestinal glucuronidation metabolism to increase drug absorption. J. Pharm. Sci., 2004, 93(9), 2407-2410.
[http://dx.doi.org/10.1002/jps.20146] [PMID: 15295800]
[38]
Muto, S.; Fujita, K.; Yamazaki, Y.; Kamataki, T. Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat. Res., 2001, 479(1-2), 197-206.
[http://dx.doi.org/10.1016/S0027-5107(01)00204-4] [PMID: 11470492]
[39]
Boersma, M.G.; van der Woude, H.; Bogaards, J.; Boeren, S.; Vervoort, J.; Cnubben, N.H.P.; van Iersel, M.L.P.S.; van Bladeren, P.J.; Rietjens, I.M.C.M. Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases. Chem. Res. Toxicol., 2002, 15(5), 662-670.
[http://dx.doi.org/10.1021/tx0101705] [PMID: 12018987]
[40]
Galijatovic, A.; Walle, U.K.; Walle, T. Induction of UDP-glucuronosyltransferase by the flavonoids chrysin and quercetin in Caco-2 cells. Pharm. Res., 2000, 17(1), 21-26.
[http://dx.doi.org/10.1023/A:1007506222436] [PMID: 10714603]
[41]
De Santi, C.; Pietrabissa, A.; Mosca, F.; Rane, A.; Pacifici, G.M. Inhibition of phenol sulfotransferase (SULT1A1) by quercetin in human adult and foetal livers. Xenobiotica, 2002, 32(5), 363-368.
[http://dx.doi.org/10.1080/00498250110119108] [PMID: 12065059]
[42]
Mohos, V.; Fliszár-Nyúl, E.; Ungvári, O.; Kuffa, K.; Needs, P.W.; Kroon, P.A.; Telbisz, Á.; Özvegy-Laczka, C.; Poór, M. Inhibitory effects of quercetin and its main methyl, sulfate, and glucuronic acid conjugates on cytochrome P450 enzymes, and on OATP, BCRP and MRP2 transporters. Nutrients, 2020, 12(8), 2306.
[http://dx.doi.org/10.3390/nu12082306] [PMID: 32751996]
[43]
Liu, Y.; Luo, X.; Yang, C.; Yang, T.; Zhou, J.; Shi, S. Impact of quercetin-induced changes in drug-metabolizing enzyme and transporter expression on the pharmacokinetics of cyclosporine in rats. Mol. Med. Rep., 2016, 14(4), 3073-3085.
[http://dx.doi.org/10.3892/mmr.2016.5616] [PMID: 27510982]
[44]
Elbarbry, F.; Ung, A.; Abdelkawy, K. Studying the inhibitory effect of quercetin and thymoquinone on human cytochrome p450 enzyme activities. Pharmacogn. Mag., 2018, 13(Suppl. 4), S895-S899.
[http://dx.doi.org/10.4103/0973-1296.224342] [PMID: 29491651]
[45]
Mohos, V.; Pánovics, A.; Fliszár-Nyúl, E.; Schilli, G.; Hetényi, C.; Mladěnka, P.; Needs, P.W.; Kroon, P.A.; Pethő, G.; Poór, M. Inhibitory effects of quercetin and its human and microbial metabolites on xanthine oxidase enzyme. Int. J. Mol. Sci., 2019, 20(11), 2681.
[http://dx.doi.org/10.3390/ijms20112681] [PMID: 31159151]
[46]
Nagao, A.; Seki, M.; Kobayashi, H. Inhibition of xanthine oxidase by flavonoids. Biosci. Biotechnol. Biochem., 1999, 63(10), 1787-1790.
[http://dx.doi.org/10.1271/bbb.63.1787] [PMID: 10671036]
[47]
Van Hoorn, D.E.C.; Nijveldt, R.J.; Van Leeuwen, P.A.M.; Hofman, Z.; M’Rabet, L.; De Bont, D.B.A.; Van Norren, K. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharmacol., 2002, 451(2), 111-118.
[http://dx.doi.org/10.1016/S0014-2999(02)02192-1] [PMID: 12231379]
[48]
Wink, M.; Ashour, M.L.; Youssef, F.S.; Gad, H.A. Inhibition of cytochrome P450 (CYP3A4) activity by extracts from 57 plants used in traditional chinese medicine (TCM). Pharmacogn. Mag., 2017, 13(50), 300-308.
[http://dx.doi.org/10.4103/0973-1296.204561] [PMID: 28539725]
[49]
Mathew, P.; Austin, R.D.; Varghese, S.S. Manojkumar, Estimation and comparison of copper content in raw areca nuts and commercial areca nut products: Implications in increasing prevalence of oral submucous fibrosis. J. Clin. Diagn. Res., 2014, 8(1), 247-249.
[http://dx.doi.org/10.7860/JCDR/2014/8042.3932] [PMID: 24596787]
[50]
Spyrou, N.M.; Akanle, O.; Spyrou, N.M. Elemental composition of betel nut and associated chewing materials. J. Radioanal. Nucl. Chem., 2001, 249(1), 67-70.
[http://dx.doi.org/10.1023/A:1013273421535]
[51]
Bidlack, W.R.; Brown, R.C.; Meskin, M.S.; Lee, T.C.; Klein, G.L. Effect of aluminum on the hepatic mixed function oxidase and drug metabolism. Drug Nutr. Interact., 1987, 5(1), 33-42.
[PMID: 3105994]
[52]
Kim, J.S.; Ahn, T.; Yim, S.K.; Yun, C.H. Differential effect of copper (II) on the cytochrome P450 enzymes and NADPH-cytochrome P450 reductase: Inhibition of cytochrome P450-catalyzed reactions by copper (II) ion. Biochemistry, 2002, 41(30), 9438-9447.
[http://dx.doi.org/10.1021/bi025908b] [PMID: 12135366]
[53]
Darwish, W.S.; Ikenaka, Y.; Nakayama, S.; Ishizuka, M. The effect of copper on the mRNA expression profile of xenobiotic-metabolizing enzymes in cultured rat H4-II-E cells. Biol. Trace] Elem. Res., 2014, 158(2), 243-248.
[http://dx.doi.org/10.1007/s12011-014-9915-9] [PMID: 24599699]
[54]
Ueng, Y.F.; Hsieh, C.H.; Don, M.J.; Chi, C.W.; Ho, L.K. Identification of the main human cytochrome P450 enzymes involved in safrole 1′-hydroxylation. Chem. Res. Toxicol., 2004, 17(8), 1151-1156.
[http://dx.doi.org/10.1021/tx030055p] [PMID: 15310247]
[55]
Ueng, Y.F.; Hsieh, C.H.; Don, M.J. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole. Food Chem. Toxicol., 2005, 43(5), 707-712.
[http://dx.doi.org/10.1016/j.fct.2005.01.008] [PMID: 15778010]
[56]
Nakagawa, Y.; Suzuki, T.; Nakajima, K.; Ishii, H.; Ogata, A. Biotransformation and cytotoxic effects of hydroxychavicol, an intermediate of safrole metabolism, in isolated rat hepatocytes. Chem. Biol. Interact., 2009, 180(1), 89-97.
[http://dx.doi.org/10.1016/j.cbi.2009.02.003] [PMID: 19428348]
[57]
Murata, K.; Nakao, K.; Hirata, N.; Namba, K.; Nomi, T.; Kitamura, Y.; Moriyama, K.; Shintani, T.; Iinuma, M.; Matsuda, H. Hydroxychavicol: A potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle. J. Nat. Med., 2009, 63(3), 355-359.
[http://dx.doi.org/10.1007/s11418-009-0331-y] [PMID: 19387769]
[58]
Nishiwaki, K.; Ohigashi, K.; Deguchi, T.; Murata, K.; Nakamura, S.; Matsuda, H.; Nakanishi, I. Structure–activity relationships and docking studies of hydroxychavicol and its analogs as xanthine oxidase inhibitors. Chem. Pharm. Bull., 2018, 66(7), 741-747.
[http://dx.doi.org/10.1248/cpb.c18-00197] [PMID: 29695658]
[59]
Sakano, K.; Inagaki, Y.; Oikawa, S.; Hiraku, Y.; Kawanishi, S. Copper-mediated oxidative DNA damage induced by eugenol: Possible involvement of O-demethylation. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2004, 565(1), 35-44.
[http://dx.doi.org/10.1016/j.mrgentox.2004.08.009] [PMID: 15576237]
[60]
Han, E.H.; Hwang, Y.P.; Jeong, T.C.; Lee, S.S.; Shin, J.G.; Jeong, H.G. Eugenol inhibit 7,12-dimethylbenz[a]anthracene-induced genotoxicity in MCF-7 cells: Bifunctional effects on CYP1 and NAD(P)H:quinone oxidoreductase. FEBS Lett., 2007, 581(4), 749-756.
[http://dx.doi.org/10.1016/j.febslet.2007.01.044] [PMID: 17275817]
[61]
Iwano, H.; Ujita, W.; Nishikawa, M.; Ishii, S.; Inoue, H.; Yokota, H. Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver. Int. J. Food Sci. Nutr., 2014, 65(2), 241-244.
[http://dx.doi.org/10.3109/09637486.2013.845650] [PMID: 24144396]
[62]
Rompelberg, C.J.M.; Verhagen, H.; van Bladeren, P.J. Effects of the naturally occurring alkenylbenzenes eugenol and trans-anethole on drug-metabolizing enzymes in the rat liver. Food Chem. Toxicol., 1993, 31(9), 637-645.
[http://dx.doi.org/10.1016/0278-6915(93)90046-2] [PMID: 8406240]
[63]
Yokota, H.; Hashimoto, H.; Motoya, M.; Yuasa, A. Enhancement of UDP-glucuronyltransferase, UDP-glucose dehydrogenase, and glutathione S-transferase activities in rat liver by dietary administration of eugenol. Biochem. Pharmacol., 1988, 37(5), 799-802.
[http://dx.doi.org/10.1016/0006-2952(88)90164-5] [PMID: 3125837]
[64]
Kannan, A.; Das, M.; Khanna, S.K. Estimation of menthol in pan masala samples by a spectrophotometric method. Food Addit. Contam., 1997, 14(4), 367-371.
[http://dx.doi.org/10.1080/02652039709374539] [PMID: 9205565]
[65]
Rao, M.V.; Krishnamurthy, M.N.; Nagaraja, K.V.; Kapur, O.P. Gas chromatographic determination of menthol in mentholated sweets and Pan Masala. J. Food Sci. Technol., 1983, 20, 130-131.
[66]
Coffman, B.L.; King, C.D.; Rios, G.R.; Tephly, T.R. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab. Dispos., 1998, 26(1), 73-77.
[PMID: 9443856]
[67]
Turgeon, D.; Carrier, J.S.; Chouinard, S.; Bélanger, A. Glucuronidation activity of the UGT2B17 enzyme toward xenobiotics. Drug Metab. Dispos., 2003, 31(5), 670-676.
[http://dx.doi.org/10.1124/dmd.31.5.670] [PMID: 12695357]
[68]
Mazhar, H.; Robaey, P.; Harris, C. An in vitro evaluation of the inhibition of recombinant human carboxylesterase-1 by herbal extracts. J. Nat. Health Prod. Res., 2021, 3(1), 1-14.
[http://dx.doi.org/10.33211/jnhpr.11]
[69]
Shimizu, M.; Fukami, T.; Nakajima, M.; Yokoi, T. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab. Dispos., 2014, 42(7), 1103-1109.
[http://dx.doi.org/10.1124/dmd.114.056994] [PMID: 24751575]
[70]
Kozlovich, S.; Chen, G.; Watson, C.J.W.; Blot, W.J.; Lazarus, P. Role of l- and d-menthol in the glucuronidation and detoxification of the major lung carcinogen, NNAL. Drug Metab. Dispos., 2019, 47(12), 1388-1396.
[http://dx.doi.org/10.1124/dmd.119.088351] [PMID: 31578206]
[71]
Feng, X.; Liu, Y.; Sun, X.; Li, A.; Jiang, X.; Zhu, X.; Zhao, Z. Pharmacokinetics behaviors of l -menthol after inhalation and intravenous injection in rats and its inhibition effects on CYP450 enzymes in rat liver microsomes. Xenobiotica, 2019, 49(10), 1183-1191.
[http://dx.doi.org/10.1080/00498254.2018.1537531] [PMID: 30654691]
[72]
Gelal, A.; Guven, H.; Balkan, D.; Artok, L.; Benowitz, N.L. Influence of menthol on caffeine disposition and pharmacodynamics in healthy female volunteers. Eur. J. Clin. Pharmacol., 2003, 59(5-6), 417-422.
[http://dx.doi.org/10.1007/s00228-003-0631-1] [PMID: 12915954]
[73]
Hoshino, M.; Ikarashi, N.; Hirobe, R.; Hayashi, M.; Hiraoka, H.; Yokobori, K.; Ochiai, T.; Kusunoki, Y.; Kon, R.; Tajima, M.; Ochiai, W.; Sugiyama, K. Effects of menthol on the pharmacokinetics of triazolam and phenytoin. Biol. Pharm. Bull., 2015, 38(3), 454-460.
[http://dx.doi.org/10.1248/bpb.b14-00764] [PMID: 25757928]
[74]
Hoshino, M.; Ikarashi, N.; Tsukui, M.; Kurokawa, A.; Naito, R.; Suzuki, M.; Yokobori, K.; Ochiai, T.; Ishii, M.; Kusunoki, Y.; Kon, R.; Ochiai, W.; Wakui, N.; Machida, Y.; Sugiyama, K. Menthol reduces the anticoagulant effect of warfarin by inducing cytochrome P450 2C expression. Eur. J. Pharm. Sci., 2014, 56, 92-101.
[http://dx.doi.org/10.1016/j.ejps.2014.02.011] [PMID: 24594507]
[75]
Dresser, G.K.; Wacher, V.; Wong, S.; Wong, H.T.; Bailey, D.G. Evaluation of peppermint oil and ascorbyl palmitate as inhibitors of cytochrome P4503A4 activity in vitro and in vivo. Clin. Pharmacol. Ther., 2002, 72(3), 247-255.
[http://dx.doi.org/10.1067/mcp.2002.126409] [PMID: 12235445]
[76]
Kramlinger, V.M.; von Weymarn, L.B.; Murphy, S.E. Inhibition and inactivation of cytochrome P450 2A6 and cytochrome P450 2A13 by menthofuran, β-nicotyrine and menthol. Chem. Biol. Interact., 2012, 197(2-3), 87-92.
[http://dx.doi.org/10.1016/j.cbi.2012.03.009] [PMID: 22486895]
[77]
Miyazawa, M.; Marumoto, S.; Takahashi, T.; Nakahashi, H.; Haigou, R.; Nakanishi, K. Metabolism of (+)- and (-)-menthols by CYP2A6 in human liver microsomes. J. Oleo Sci., 2011, 60(3), 127-132.
[http://dx.doi.org/10.5650/jos.60.127] [PMID: 21343660]
[78]
Al-Mohizea, A.M.; Raish, M.; Ahad, A.; Al-Jenoobi, F.I.; Alam, M.A. Pharmacokinetic interaction of Acacia catechu with CYP1A substrate theophylline in rabbits. J. Tradit. Chin. Med., 2015, 35(5), 588-593.
[http://dx.doi.org/10.1016/S0254-6272(15)30144-8] [PMID: 26591691]
[79]
Bogaards, J.J.P.; Bertrand, M.; Jackson, P.; Oudshoorn, M.J.; Weaver, R.J.; Van Bladeren, P.J.; Walther, B. Determining the best animal model for human cytochrome P450 activities: A comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica, 2000, 30(12), 1131-1152.
[http://dx.doi.org/10.1080/00498250010021684] [PMID: 11307970]
[80]
Noumi, E.; Snoussi, M.; Alreshidi, M.; Rekha, P.D.; Saptami, K.; Caputo, L.; De Martino, L.; Souza, L.; Msaada, K.; Mancini, E.; Flamini, G.; Al-sieni, A.; De Feo, V. Chemical and biological evaluation of essential oils from cardamom species. Molecules, 2018, 23(11), 2818.
[http://dx.doi.org/10.3390/molecules23112818] [PMID: 30380739]
[81]
Duisken, M.; Sandner, F.; Blömeke, B.; Hollender, J. Metabolism of 1,8-cineole by human cytochrome P450 enzymes: Identification of a new hydroxylated metabolite. Biochim. Biophys. Acta, Gen. Subj., 2005, 1722(3), 304-311.
[http://dx.doi.org/10.1016/j.bbagen.2004.12.019] [PMID: 15715982]
[82]
Miyazawa, M.; Shindo, M.; Shimada, T. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metab. Dispos., 2001, 29(2), 200-205.
[PMID: 11159812]
[83]
Samojlik, I.; Petković, S.; Stilinović, N.; Vukmirović, S.; Mijatović, V.; Božin, B. Pharmacokinetic herb-drug interaction between essential oil of aniseed (Pimpinella anisum L., Apiaceae) and acetaminophen and caffeine: A potential risk for clinical practice. Phytother. Res., 2016, 30(2), 253-259.
[http://dx.doi.org/10.1002/ptr.5523] [PMID: 26619825]
[84]
Newberne, P.; Smith, R.L.; Doull, J.; Goodman, J.I.; Munro, I.C.; Portoghese, P.S.; Wagner, B.M.; Weil, C.S.; Woods, L.A.; Adams, T.B.; Lucas, C.D.; Ford, R.A. The FEMA GRAS assessment of trans-anethole used as a flavouring substance. Food Chem. Toxicol., 1999, 37(7), 789-811.
[http://dx.doi.org/10.1016/S0278-6915(99)00037-X] [PMID: 10496381]
[85]
Benowitz, N.L.; Hukkanen, J.; Jacob, P. III Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol., 2009, 192(192), 29-60.
[http://dx.doi.org/10.1007/978-3-540-69248-5_2] [PMID: 19184645]
[86]
Iba, M.M.; Fung, J. Induction of pulmonary cytochrome P4501A1: Interactive effects of nicotine and mecamylamine. Eur. J. Pharmacol., 1999, 383(3), 399-403.
[http://dx.doi.org/10.1016/S0014-2999(99)00639-1] [PMID: 10594335]
[87]
Iba, M.M.; Fung, J.; Pak, Y.W.; Thomas, P.E.; Fisher, H.; Sekowski, A.; Halladay, A.K.; Wagner, G.C. Dose-dependent up-regulation of rat pulmonary, renal, and hepatic cytochrome P-450 (CYP) 1A expression by nicotine feeding. Drug Metab. Dispos., 1999, 27(9), 977-982.
[PMID: 10460794]
[88]
Iba, M.M.; Scholl, H.; Fung, J.; Thomas, P.E.; Alam, J. Induction of pulmonary CYP1A1 by nicotine. Xenobiotica, 1998, 28(9), 827-843.
[http://dx.doi.org/10.1080/004982598239083] [PMID: 9764926]
[89]
Price, R.J.; Renwick, A.B.; Walters, D.G.; Young, P.J.; Lake, B.G. Metabolism of nicotine and induction of CYP1A forms in precision-cut rat liver and lung slices. Toxicol. in vitro, 2004, 18(2), 179-185.
[http://dx.doi.org/10.1016/j.tiv.2003.08.012] [PMID: 14757108]
[90]
Hukkanen, J.; Jacob, P., III; Peng, M.; Dempsey, D.; Benowitz, N.L. Effect of nicotine on cytochrome P450 1A2 activity. Br. J. Clin. Pharmacol., 2011, 72(5), 836-838.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04023.x] [PMID: 21599724]
[91]
Yue, J.; Khokhar, J.; Miksys, S.; Tyndale, R.F. Differential induction of ethanol-metabolizing CYP2E1 and nicotine-metabolizing CYP2B1/2 in rat liver by chronic nicotine treatment and voluntary ethanol intake. Eur. J. Pharmacol., 2009, 609(1-3), 88-95.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.015] [PMID: 19285975]
[92]
Hukkanen, J.; Jacob, P., III; Peng, M.; Dempsey, D.; Benowitz, N.L. Effects of nicotine on cytochrome P450 2A6 and 2E1 activities. Br. J. Clin. Pharmacol., 2010, 69(2), 152-159.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03568.x] [PMID: 20233178]
[93]
Khokhar, J.Y.; Miksys, S.L.; Tyndale, R.F. Rat brain CYP2B induction by nicotine is persistent and does not involve nicotinic acetylcholine receptors. Brain Res., 2010, 1348, 1-9.
[http://dx.doi.org/10.1016/j.brainres.2010.06.035] [PMID: 20599831]
[94]
Jalas, J.R.; Hecht, S.S.; Murphy, S.E. Cytochrome P450 enzymes as catalysts of metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco specific carcinogen. Chem. Res. Toxicol., 2005, 18(2), 95-110.
[http://dx.doi.org/10.1021/tx049847p] [PMID: 15720112]
[95]
Maser, E.; Stinner, B.; Atalla, A. Carbonyl reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by cytosolic enzymes in human liver and lung. Cancer Lett., 2000, 148(2), 135-144.
[http://dx.doi.org/10.1016/S0304-3835(99)00323-7] [PMID: 10695989]
[96]
Al-Rmalli, S.W.; Jenkins, R.O.; Haris, P.I. Betel quid chewing] elevates human exposure to arsenic, cadmium and lead. J. Hazard. Mater., 2011, 190(1-3), 69-74.
[http://dx.doi.org/10.1016/j.jhazmat.2011.02.068] [PMID: 21440366]
[97]
Aposhian, H.V.; Aposhian, M.M. Arsenic toxicology: Five questions. Chem. Res. Toxicol., 2006, 19(1), 1-15.
[http://dx.doi.org/10.1021/tx050106d] [PMID: 16411650]
[98]
Xie, Y.; Liu, J.; Liu, Y.; Klaassen, C.D.; Waalkes, M.P. Toxicokinetic and genomic analysis of chronic arsenic exposure in multidrug-resistance MDR1a/1b(-/-) double knockout mice. Mol. Cell. Biochem., 2004, 255(1/2), 11-18.
[http://dx.doi.org/10.1023/B:MCBI.0000007256.44450.8c] [PMID: 14971641]
[99]
Vakharia, D.D.; Liu, N.; Pause, R.; Fasco, M.; Bessette, E.; Zhang, Q.Y.; Kaminsky, L.S. Effect of metals on polycyclic aromatic hydrocarbon induction of CYP1A1 and CYP1A2 in human hepatocyte cultures. Toxicol. Appl. Pharmacol., 2001, 170(2), 93-103.
[http://dx.doi.org/10.1006/taap.2000.9087] [PMID: 11162773]
[100]
Alexidis, A.N.; Rekka, E.A.; Kourounakis, P.N. Influence of mercury and cadmium intoxication on hepatic microsomal CYP2E and CYP3A subfamilies. Res. Commun. Mol. Pathol. Pharmacol., 1994, 85(1), 67-72.
[PMID: 7953196]
[101]
Satarug, S.; Nishijo, M.; Ujjin, P.; Vanavanitkun, Y.; Baker, J.R.; Moore, M.R. Effects of chronic exposure to low-level cadmium on renal tubular function and CYP2A6-mediated coumarin metabolism in healthy human subjects. Toxicol. Lett., 2004, 148(3), 187-197.
[http://dx.doi.org/10.1016/j.toxlet.2003.10.028] [PMID: 15041069]
[102]
Wang, H.; Zhang, L.; Xia, Z.; Cui, J.Y. Effect of chronic cadmium exposure on brain and liver transporters and drug-metabolizing enzymes in male and female mice genetically predisposed to Alzheimer’s disease. Drug Metab. Dispos., 2022, 50(10), 1414-1428.
[http://dx.doi.org/10.1124/dmd.121.000453] [PMID: 35878927]
[103]
Yang, H.; Zhou, S.; Guo, D.; Obianom, O.N.; Li, Q.; Shu, Y. Divergent regulation of OCT and MATE drug transporters by cadmium exposure. Pharmaceutics, 2021, 13(4), 537.
[http://dx.doi.org/10.3390/pharmaceutics13040537] [PMID: 33924306]
[104]
Nehru, B.; Kaushal, S. Effect of lead on hepatic microsomal enzyme activity. J. Appl. Toxicol., 1992, 12(6), 401-405.
[http://dx.doi.org/10.1002/jat.2550120607] [PMID: 1452973]
[105]
Wright, L.; Kornguth, S.E.; Oberley, T.D.; Siegel, F.L. Effects of lead on glutathione S-transferase expression in rat kidney: A dose-response study. Toxicol. Sci., 1998, 46(2), 254-259.
[http://dx.doi.org/10.1006/toxs.1998.2543] [PMID: 10048128]
[106]
Lowry, J.A.; Pearce, R.E.; Gaedigk, A.; Venneman, M.; Talib, N.; Leeder, J.S.; Kearns, G.L. Lead and its effects on cytochromes P450. J. Drug Metab. Toxicol., 2012, S5(004)
[http://dx.doi.org/10.4172/2157-7609.S5-004]
[107]
de Jong, M.; Maina, T. Of mice and humans: Are they the same?--Implications in cancer translational research. J. Nucl. Med., 2010, 51(4), 501-504.
[http://dx.doi.org/10.2967/jnumed.109.065706] [PMID: 20237033]
[108]
Zhao, M.; Lepak, A.J.; Andes, D.R. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg. Med. Chem., 2016, 24(24), 6390-6400.
[http://dx.doi.org/10.1016/j.bmc.2016.11.008] [PMID: 27887963]
[109]
Magro, L.; Arzenton, E.; Leone, R.; Stano, M.G.; Vezzaro, M.; Rudolph, A.; Castagna, I.; Moretti, U. Identifying and characterizing serious adverse drug reactions associated with drug-drug interactions in a spontaneous reporting database. Front. Pharmacol., 2021, 11, 622862.
[http://dx.doi.org/10.3389/fphar.2020.622862] [PMID: 33536925]
[110]
Krueger, S.K.; Williams, D.E. Mammalian flavin-containing monooxygenases: Structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther., 2005, 106(3), 357-387.
[http://dx.doi.org/10.1016/j.pharmthera.2005.01.001] [PMID: 15922018]
[111]
Liu, Y.J.; Peng, W.; Hu, M.B.; Xu, M.; Wu, C.J. The pharmacology, toxicology and potential applications of arecoline: A review. Pharm. Biol., 2016, 54(11), 2753-2760.
[http://dx.doi.org/10.3109/13880209.2016.1160251] [PMID: 27046150]
[112]
Myers, A.L. Metabolism of the areca alkaloids -toxic and psychoactive constituents of the areca (betel) nut. Drug Metab. Rev., 2022, 54(4), 343-360.
[http://dx.doi.org/10.1080/03602532.2022.2075010] [PMID: 35543097]
[113]
Casey Laizure, S.; Herring, V.; Hu, Z.; Witbrodt, K.; Parker, R.B. The role of human carboxylesterases in drug metabolism: Have we overlooked their importance? Pharmacotherapy, 2013, 33(2), 210-222.
[http://dx.doi.org/10.1002/phar.1194] [PMID: 23386599]
[114]
Parker, R.B.; Hu, Z.Y.; Meibohm, B.; Laizure, S.C. Effects of alcohol on human carboxylesterase drug metabolism. Clin. Pharmacokinet., 2015, 54(6), 627-638.
[http://dx.doi.org/10.1007/s40262-014-0226-2] [PMID: 25511794]
[115]
Qian, Y.; Wang, X.; Markowitz, J.S. In vitro inhibition of carboxylesterase 1 by major cannabinoids and selected metabolites. Drug Metab. Dispos., 2019, 47(5), 465-472.
[http://dx.doi.org/10.1124/dmd.118.086074] [PMID: 30833288]
[116]
Wang, D.; Zou, L.; Jin, Q.; Hou, J.; Ge, G.; Yang, L. Human carboxylesterases: A comprehensive review. Acta Pharm. Sin. B, 2018, 8(5), 699-712.
[http://dx.doi.org/10.1016/j.apsb.2018.05.005] [PMID: 30245959]
[117]
Sattler, M.; Guengerich, F.P.; Yun, C.H.; Christians, U.; Sewing, K.F. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab. Dispos., 1992, 20(5), 753-761.
[PMID: 1385058]
[118]
Chen, W.Y.; Lee, C.Y.; Lin, P.Y.; Hsieh, C.E.; Ko, C.J.; Lin, K.H.; Lin, C.C.; Ming, Y.Z.; Chen, Y.L. Betel nut chewing is associated with reduced tacrolimus concentration in taiwanese liver transplant recipients. Transplant. Proc., 2017, 49(2), 326-329.
[http://dx.doi.org/10.1016/j.transproceed.2016.11.037] [PMID: 28219593]
[119]
Zhou, S.F.; Xue, C.C.; Yu, X.Q.; Li, C.; Wang, G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther. Drug Monit., 2007, 29(6), 687-710.
[http://dx.doi.org/10.1097/FTD.0b013e31815c16f5] [PMID: 18043468]
[120]
Klomp, F.; Wenzel, C.; Drozdzik, M.; Oswald, S. Drug–drug interactions involving intestinal and hepatic CYP1A enzymes. Pharmaceutics, 2020, 12(12), 1201.
[http://dx.doi.org/10.3390/pharmaceutics12121201] [PMID: 33322313]
[121]
Caro, A.A.; Cederbaum, A.I. Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu. Rev. Pharmacol. Toxicol., 2004, 44(1), 27-42.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121704] [PMID: 14744237]
[122]
Tanner, J.A.; Tyndale, R. Variation in CYP2A6 activity and personalized medicine. J. Pers. Med., 2017, 7(4), 18.
[http://dx.doi.org/10.3390/jpm7040018] [PMID: 29194389]
[123]
Miksys, S.; Lerman, C.; Shields, P.G.; Mash, D.C.; Tyndale, R.F. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology, 2003, 45(1), 122-132.
[http://dx.doi.org/10.1016/S0028-3908(03)00136-9] [PMID: 12814665]
[124]
Desta, Z.; Gammal, R.S.; Gong, L.; Whirl-Carrillo, M.; Gaur, A.H.; Sukasem, C.; Hockings, J.; Myers, A.; Swart, M.; Tyndale, R.F.; Masimirembwa, C.; Iwuchukwu, O.F.; Chirwa, S.; Lennox, J.; Gaedigk, A.; Klein, T.E.; Haas, D.W. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2B6 and efavirenz‐containing antiretroviral therapy. Clin. Pharmacol. Ther., 2019, 106(4), 726-733.
[http://dx.doi.org/10.1002/cpt.1477] [PMID: 31006110]
[125]
Hedrich, W.D.; Hassan, H.E.; Wang, H. Insights into CYP2B6-mediated drug–drug interactions. Acta Pharm. Sin. B, 2016, 6(5), 413-425.
[http://dx.doi.org/10.1016/j.apsb.2016.07.016] [PMID: 27709010]
[126]
Kharasch, E.D. Current concepts in methadone metabolism and transport. Clin. Pharmacol. Drug Dev., 2017, 6(2), 125-134.
[http://dx.doi.org/10.1002/cpdd.326] [PMID: 28263461]
[127]
Molnari, J.C.; Hassan, H.E.; Moeller, B.M.; Myers, A.L. Drug interaction study between bupropion and ticlopidine in male CF-1 mice. Biol. Pharm. Bull., 2011, 34(3), 447-451.
[http://dx.doi.org/10.1248/bpb.34.447] [PMID: 21372402]
[128]
Lake, B.G. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol. Res., 2018, 7(4), 697-717.
[http://dx.doi.org/10.1039/c8tx00008e] [PMID: 30090615]
[129]
Lewis, D.F.V. 57 varieties: The human cytochromes P450. Pharmacogenomics, 2004, 5(3), 305-318.
[http://dx.doi.org/10.1517/phgs.5.3.305.29827] [PMID: 15102545]
[130]
Ruano, G.; Kost, J.A. Fundamental considerations for geneticallyguided pain management with opioids based on CYP2D6 and OPRM1 polymorphisms. Pain Physician, 2018, 1(21; 1), E611-E621.
[http://dx.doi.org/10.36076/ppj.2018.6.E611] [PMID: 30508992]
[131]
Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agúndez, J.A.G.; Grosser, T. Clinical pharmacogenetics implementation consortium guideline (CPIC) for cyp2c9 and nonsteroidal anti‐inflammatory drugs. Clin. Pharmacol. Ther., 2020, 108(2), 191-200.
[http://dx.doi.org/10.1002/cpt.1830] [PMID: 32189324]
[132]
den Braver-Sewradj, S.P.; den Braver, M.W.; Toorneman, R.M.; van Leeuwen, S.; Zhang, Y.; Dekker, S.J.; Vermeulen, N.P.E.; Commandeur, J.N.M.; Vos, J.C. Reduction and scavenging of chemically reactive drug metabolites by NAD(P)H:Quinone oxidoreductase 1 and NRH:Quinone oxidoreductase 2 and variability in hepatic concentrations. Chem. Res. Toxicol., 2018, 31(2), 116-126.
[http://dx.doi.org/10.1021/acs.chemrestox.7b00289] [PMID: 29281794]
[133]
Aziz, N.; Jamil, R.T. Biochemistry, Xanthine Oxidase; StatPearls: Treasure Island, FL, 2022.
[134]
Tai, T.S.; Hsu, C.C.; Pai, H.C.; Liu, W.H.; Hsu, Y.H. The association between hyperuricemia and betel nut chewing in Taiwanese men: A cross-sectional study. BMC Public Health, 2013, 13(1), 1136.
[http://dx.doi.org/10.1186/1471-2458-13-1136] [PMID: 24308550]
[135]
Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol., 1995, 30(6), 445-520.
[http://dx.doi.org/10.3109/10409239509083491] [PMID: 8770536]
[136]
Dirven, H.A.A.M.; van Ommen, B.; van Bladeren, P.J. Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases. Chem. Res. Toxicol., 1996, 9(2), 351-360.
[http://dx.doi.org/10.1021/tx950143c] [PMID: 8839035]
[137]
Hoang, S.; Dao, N.; Myers, A.L. Electrophilic reactivity of the Busulfan metabolite, EdAG, towards cellular thiols and inhibition of human thioredoxin-1. Biochem. Biophys. Res. Commun., 2020, 533(3), 325-331.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.038] [PMID: 32958252]
[138]
Myers, A.L.; Kawedia, J.D.; Champlin, R.E.; Kramer, M.A.; Nieto, Y.; Ghose, R.; Andersson, B.S. Clarifying busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: A comprehensive review. Expert Opin. Drug Metab. Toxicol., 2017, 13(9), 901-923.
[http://dx.doi.org/10.1080/17425255.2017.1360277] [PMID: 28766962]
[139]
Nowell, S.; Falany, C.N. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene, 2006, 25(11), 1673-1678.
[http://dx.doi.org/10.1038/sj.onc.1209376] [PMID: 16550167]
[140]
Sari, E.F.; Prayogo, G.P.; Loo, Y.T.; Zhang, P.; McCullough, M.J.; Cirillo, N. Distinct phenolic, alkaloid and antioxidant profile in betel quids from four regions of Indonesia. Sci. Rep., 2020, 10(1), 16254.
[http://dx.doi.org/10.1038/s41598-020-73337-0] [PMID: 33004929]
[141]
Bairam, A.F.; Rasool, M.I.; Alherz, F.A.; Abunnaja, M.S.; El Daibani, A.A.; Kurogi, K.; Liu, M.C. Effects of human SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of acetaminophen and opioid drugs by the cytosolic sulfotransferase SULT1A3. Arch. Biochem. Biophys., 2018, 648, 44-52.
[http://dx.doi.org/10.1016/j.abb.2018.04.019] [PMID: 29705271]
[142]
Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary. Pharmacogenet. Genomics, 2015, 25(8), 416-426.
[http://dx.doi.org/10.1097/FPC.0000000000000150] [PMID: 26049587]
[143]
Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol., 2013, 45(6), 1121-1132.
[http://dx.doi.org/10.1016/j.biocel.2013.02.019] [PMID: 23500526]
[144]
DeGorter, M.K.; Xia, C.Q.; Yang, J.J.; Kim, R.B. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 249-273.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134529] [PMID: 21942630]
[145]
Frølund, S.; Holm, R.; Brodin, B.; Nielsen, C.U. The proton-coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly-Gly, Gly-Sar and other Gly-Gly mimetics. Br. J. Pharmacol., 2010, 161(3), 589-600.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00888.x] [PMID: 20880398]
[146]
Neuvonen, P.J. Interactions with the absorption of tetracyclines. Drugs, 1976, 11(1), 45-54.
[http://dx.doi.org/10.2165/00003495-197611010-00004] [PMID: 946598]
[147]
Sahai, J.; Healy, D.P.; Stotka, J.; Polk, R.E. The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin. Br. J. Clin. Pharmacol., 1993, 35(3), 302-304.
[PMID: 8471407]
[148]
Zamfirescu, I.; Carlson, H.E. Absorption of levothyroxine when coadministered with various calcium formulations. Thyroid, 2011, 21(5), 483-486.
[http://dx.doi.org/10.1089/thy.2010.0296] [PMID: 21595516]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy