Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Novel 5-bromoindole-2-carboxylic Acid Derivatives as EGFR Inhibitors: Synthesis, Docking Study, and Structure Activity Relationship

Author(s): Omeed M. Hassan, Ammar Kubba and Lubna H. Tahtamouni*

Volume 23, Issue 11, 2023

Published on: 22 March, 2023

Page: [1336 - 1348] Pages: 13

DOI: 10.2174/1871520623666230227153449

Price: $65

Abstract

Background: The indole backbone is encountered in a class of N-heterocyclic compounds with physiological and pharmacological effects such as anti-cancer, anti-diabetic, and anti-HIV. These compounds are becoming increasingly popular in organic, medicinal, and pharmaceutical research. Nitrogen compounds' hydrogen bonding, dipole- dipole interactions, hydrophobic effects, Van der Waals forces, and stacking interactions have increased their relevance in pharmaceutical chemistry due to their improved solubility. Indole derivatives, such as carbothioamide, oxadiazole, and triazole, have been reported to act as anti-cancer drugs due to their ability to disrupt the mitotic spindle and prevent human cancer cell proliferation, expansion, and invasion.

Objectives: To synthesize new 5-bromoindole-2-carboxylic acid derivatives that function as EGFR tyrosine kinase inhibitors as deduced through molecular docking studies.

Methods: Different derivatives of indole (carbothioamide, oxadiazole, tetrahydro pyridazine-3,6-dione, and triazole) were synthesized and evaluated through different chemical, spectroscopic methods (IR, 1HNMR, 13CNMR, and MS) and assessed in silico and in vitro for their antiproliferative activities against A549, HepG2, and MCF-7 cancer cell lines.

Results: According to molecular docking analyses, compounds 3a, 3b, 3f, and 7 exhibited the strongest EGFR tyrosine kinase domain binding energies. In comparison to erlotinib, which displayed some hepatotoxicity, all of the evaluated ligands displayed good in silico absorption levels, did not appear to be cytochrome P450 inhibitors, and were not hepatotoxic. The new indole derivatives were found to decrease cell growth of three different types of human cancer cell lines (HepG2, A549, and MCF-7), with compound 3a being the most powerful while still being cancer-specific. Cell cycle arrest and the activation of apoptosis were the results of compound 3a's inhibition of EGFR tyrosine kinase activity.

Conclusion: The novel indole derivatives, compound 3a in particular, are promising anti-cancer agents which inhibit cell proliferation by inhibiting EGFR tyrosine kinase activity.

Graphical Abstract

[1]
Moiseenko, F.V.; Volkov, N.M.; Zhabina, A.S.; Stepanova, M.L.; Rysev, N.A.; Klimenko, V.V.; Myslik, A.V.; Artemieva, E.V.; Egoren-kov, V.V.; Abduloeva, N.H.; Ivantsov, A.O. Monitoring of the presence of EGFR-mutated DNA during EGFR-targeted therapy may assist in the prediction of treatment outcome. Cancer Treat. Res. Comm., 2022, 31, 100524.
[http://dx.doi.org/10.1016/j.ctarc.2022.100524]
[2]
Amelia, T.; Kartasasmita, R.E.; Ohwada, T.; Tjahjono, D.H. Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules, 2022, 27(3), 819.
[http://dx.doi.org/10.3390/molecules27030819] [PMID: 35164092]
[3]
Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges. Mol. Cancer, 2018, 17(1), 34.
[http://dx.doi.org/10.1186/s12943-018-0797-x] [PMID: 29455658]
[4]
Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11), 2748.
[http://dx.doi.org/10.3390/cancers13112748] [PMID: 34206026]
[5]
Dziadziuszko, R.; Jassem, J. Epidermal growth factor receptor (EGFR) inhibitors and derived treatments. Ann. Oncol., 2012, 23(10), x193-x196.
[http://dx.doi.org/10.1093/annonc/mds351] [PMID: 22987961]
[6]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res., 2022, 175, 106037.
[http://dx.doi.org/10.1016/j.phrs.2021.106037] [PMID: 34921994]
[7]
Zanetti-Domingues, L.C.; Bonner, S.E.; Martin-Fernandez, M.L.; Huber, V. Mechanisms of action of EGFR tyrosine kinase receptor in-corporated in extracellular vesicles. Cells, 2020, 9(11), 2505.
[http://dx.doi.org/10.3390/cells9112505] [PMID: 33228060]
[8]
Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861.
[http://dx.doi.org/10.1038/s41573-021-00252-y] [PMID: 34354255]
[9]
Wijnen, R.; Pecoraro, C.; Carbone, D.; Fiuji, H.; Avan, A.; Peters, G.J.; Giovannetti, E.; Diana, P. Cyclin dependent kinase-1 (CDK-1) inhi-bition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers, 2021, 13(17), 4389.
[http://dx.doi.org/10.3390/cancers13174389] [PMID: 34503199]
[10]
El-Naggar, A.M.; Hassan, A.M.A.; Elkaeed, E.B.; Alesawy, M.S.; Al-Karmalawy, A.A. Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2. Bioorg. Chem., 2022, 123, 105770.
[http://dx.doi.org/10.1016/j.bioorg.2022.105770] [PMID: 35395446]
[11]
Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615.
[http://dx.doi.org/10.3390/molecules25071615] [PMID: 32244744]
[12]
Nasser, A.A.; Eissa, I.H.; Oun, M.R.; El-Zahabi, M.A.; Taghour, M.S.; Belal, A.; Saleh, A.M.; Mehany, A.B.M.; Luesch, H.; Mostafa, A.E.; Afifi, W.M.; Rocca, J.R.; Mahdy, H.A. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFRWT and EGFRT790M. Org. Biomol. Chem., 2020, 18(38), 7608-7634.
[http://dx.doi.org/10.1039/D0OB01557A] [PMID: 32959865]
[13]
Hassan, O.M.; Sarsam, S.W. Synthesis, characterization and preliminary anti-inflammatory evaluation of new etodolac derivatives. Iraqi J. Pharm Sci., 2019, 28(1), 106-112.
[http://dx.doi.org/10.31351/vol28iss1pp106-112]
[14]
Abbas, A.H.; Mahmood, A.A.R.; Tahtamouni, L.H.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: Synthesis, docking study, and anticancer activity. Pharmacia, 2021, 68(3), 679-692.
[http://dx.doi.org/10.3897/pharmacia.68.e70654]
[15]
Al-Bayati, A.I.; Razzak Mahmood, A.A.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Al-bayati, R.I.; Alsoubani, F.; Tahtamouni, L.H. Synthesis, docking study, and in vitro anticancer evaluation of new flufenamic acid derivatives. Pharmacia, 2021, 68(2), 449-461.
[http://dx.doi.org/10.3897/pharmacia.68.e66788]
[16]
Shireen, S.; Kumar, B.R. Synthesis, characterization, and antimicrobial evaluation of 3,5-disubstituted ttriazoles bearing 5-chloro-2-methylindole. Asian J. Pharm. Clin. Res., 2019, 12(10), 184-187.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i10.35004]
[17]
Cacic, M.; Trkovnik, M.; Cacic, F.; Has-Schon, E. Synthesis and antimicrobial activity of some derivatives of (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid hydrazide. Molecules, 2006, 11(2), 134-147.
[http://dx.doi.org/10.3390/11010134] [PMID: 17962784]
[18]
Hojo, K.; Maeda, M.; Smith, T.J.; Kawasaki, K. Acylation of hydrazides with acetic acid and formic acid. Chem. Pharm. Bull., 2002, 50(1), 140-142.
[http://dx.doi.org/10.1248/cpb.50.140] [PMID: 11824577]
[19]
Kasim, A.W.; Al, M.A. Synthesis of three-five and membered ring heterocyclic compounds derived from 2-[(2, 6-dichloroanilino) phe-nyl]-acetic acid. Inter. J. Rec. Res. Rev, 2017, 10(3), 56-64.
[20]
Basheer, H.A.; Mohammed, S.A.; Abdulla, W.R. Synthesis of some ibuprofen amino acid heterocyclic compounds. World J. Pharm. Pharm. Sci., 2019, 8(11), 1333-1340.
[http://dx.doi.org/10.20959/wjpps201911-15050]
[21]
Luczynski, M.; Kudelko, A. Synthesis and biological activity of 1, 3, 4-oxadiazoles used in medicine and agriculture. Appl. Sci., 2022, 12(8), 3756.
[http://dx.doi.org/10.3390/app12083756]
[22]
Hassan, O.M.; Razzak Mahmood, A.A.; Hamzah, A.H.; Tahtamouni, L.H. Design, Synthesis, and Molecular Docking Studies of 5‐Bromoindole‐2‐Carboxylic Acid Hydrazone Derivatives: In vitro Anticancer and VEGFR‐2 Inhibitory Effects. Chemistry Select., 2022, 7(46), p.e202203726.
[http://dx.doi.org/10.1002/slct.202203726]
[23]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[24]
Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), pp.595-614.
[http://dx.doi.org/10.3897/pharmacia.69.e86504]
[25]
Minnelli, C.; Laudadio, E.; Mobbili, G.; Galeazzi, R. Conformational insight on WT-and mutated-EGFR receptor activation and inhibition by epigallocatechin-3-gallate: Over a rational basis for the design of selective non-small-cell lung anticancer agents. Int. J. Mol. Sci., 2020, 21(5), 1721.
[http://dx.doi.org/10.3390/ijms21051721] [PMID: 32138321]
[26]
Galdadas, I.; Carlino, L.; Ward, R.A.; Hughes, S.J.; Haider, S.; Gervasio, F.L. Structural basis of the effect of activating mutations on the EGF receptor. eLife, 2021, 10, e65824.
[http://dx.doi.org/10.7554/eLife.65824] [PMID: 34319231]
[27]
Sangande, F.; Julianti, E.; Tjahjono, D.H. Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of dual tyrosine kinase inhibitor of EGFR and VEGFR2. Int. J. Mol. Sci., 2020, 21(20), 7779.
[http://dx.doi.org/10.3390/ijms21207779] [PMID: 33096664]
[28]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[29]
Al-Sheddi, E.S.; Al-Zaid, N.A.; Al-Oqail, M.M.; Al-Massarani, S.M.; El-Gamal, A.A.; Farshori, N.N. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm. J., 2019, 27(7), 1053-1060.
[http://dx.doi.org/10.1016/j.jsps.2019.09.001] [PMID: 31997913]
[30]
Boersma, A.W.M.; Nooter, K.; Oostrum, R.G.; Stoter, G. Quantification of apoptotic cells with fluorescein isothiocyanate-labeled annexin V in chinese hamster ovary cell cultures treated with cisplatin. Cytometry, 1996, 24(2), 123-130.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19960601)24:2<123:AID-CYTO4>3.0.CO;2-K] [PMID: 8725661]
[31]
Khalid, I.; Jafar, T.H.; Unar, A.; Rasool, R.; Sahar, A.; Rashid, H. In-silico identification of anticancer compounds; Ligand-based pharma-cophore approach against EGFR involved in breast cancer. Adv. Breast Cancer Res., 2021, 10(3), 120-132.
[http://dx.doi.org/10.4236/abcr.2021.103010]
[32]
Unadkat, V.; Rohit, S.; Parikh, P.; Patel, K.; Sanna, V.; Singh, S. Identification of 1,2,4-oxadiazoles-based novel EGFR inhibitors: Molecu-lar dynamics simulation-guided identification and in vitro ADME studies. OncoTargets Ther., 2022, 15, 479-495.
[http://dx.doi.org/10.2147/OTT.S357765] [PMID: 35535170]
[33]
Elrayess, R.; Abdel Aziz, Y.M.; Elgawish, M.S.; Elewa, M.; Elshihawy, H.A.; Said, M.M. Pharmacophore modeling, 3D‐QSAR, synthesis, and anti‐lung cancer evaluation of novel thieno[2,3‐d][1,2,3]triazines targeting EGFR. Arch. Pharm., 2020, 353(2), 1900108.
[http://dx.doi.org/10.1002/ardp.201900108] [PMID: 31894866]
[34]
Zhao, M.; Wang, L.; Zheng, L.; Zhang, M.; Qiu, C.; Zhang, Y.; Du, D.; Niu, B. 2D-QSAR and 3D-QSAR analyses for EGFR inhibitors. BioMed Res. Int., 2017, 2017, 4649191.
[http://dx.doi.org/10.1155/2017/4649191] [PMID: 28630865]
[35]
Schettino, C.; Bareschino, M.A.; Ricci, V.; Ciardiello, F. Erlotinib: An EGF receptor tyrosine kinase inhibitor in non-small-cell lung cancer treatment. Expert Rev. Respir. Med., 2008, 2(2), 167-178.
[http://dx.doi.org/10.1586/17476348.2.2.167] [PMID: 20477246]
[36]
Weerapreeyakul, N.; Nonpunya, A.; Barusrux, S.; Thitimetharoch, T.; Sripanidkulchai, B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin. Med., 2012, 7(1), 15.
[http://dx.doi.org/10.1186/1749-8546-7-15] [PMID: 22682026]
[37]
Alsaad, H.; Kubba, A.; Tahtamouni, L.H.; Hamzah, A.H. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety. Pharmacia, 2022, 69(2), 415-428.
[http://dx.doi.org/10.3897/pharmacia.69.e83158]
[38]
Jayat, C.; Ratinaud, M.H. Cell cycle analysis by flow cytometry: Principles and applications. Biol. Cell, 1993, 78(1-2), 15-25.
[http://dx.doi.org/10.1016/0248-4900(93)90110-Z] [PMID: 8220224]
[39]
Tamboli, A.M.; Wadkar, K.A. Comparative cytotoxic activity of Convolvulus pluricaulis against human hepatoma cell line (HepG2) and normal cell line (L929) via apoptosis pathways by flow cytometry analysis. Bull. Natl. Res. Cent., 2022, 46(1), 145.
[http://dx.doi.org/10.1186/s42269-022-00835-8]
[40]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy