Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking, Molecular Dynamics Simulation, and Analysis of EGFR-derived Peptides against the EGF

Author(s): Samaneh Ghasemali, Safar Farajnia*, Atefeh Nazari, Nasrin Bargahi and Mina Mohammadinasr

Volume 21, Issue 7, 2024

Published on: 15 March, 2023

Page: [1240 - 1251] Pages: 12

DOI: 10.2174/1570180820666230224100942

Price: $65

Abstract

Background: The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family known as ErbB. The EGFR signaling pathway is an important regulator of cell proliferation, differentiation, division, and survival, as well as cancer development in humans. Epidermal growth factor, betacellulin, amphiregulin, transforming growth factor and heparin-binding EGF-like growth factor are high-affinity ligands of EGFR.

Objective: Tumor progression can be effectively prevented by inhibiting EGF/EGFR interactions. In this study, many anti-EGF peptides targeting EGFR binding regions were designed, modeled, and evaluated. After selecting the peptides with the highest binding energy to the EGF, the interactions between the candidate peptides and all of the key EGFR ligands were investigated.

Methods: To identify an EGF-binding peptide capable of blocking EGFR-EGF interactions, large-scale peptide mutation screening was performed. Using the AntiCP server, several possible peptides with anticancer properties were identified. The ClusPro analysis was performed in order to analyze the interactions between EGF and all of the library peptides. A total of five peptides with favorable docking scores were identified. The stability of three peptides with the best docking scores in complex with EGF was verified, applying molecular dynamics simulation with the help of the GROMACS software package. Finally, the interaction of candidate peptides with transforming growth factor-alpha, heparin-binding EGF-like growth factor, and betacellulin was investigated using the ClusPro server.

Results: After the screening of modeled peptides by the ClusPro server and GROMACS software, two anti-EGF peptides of Pep4 and Pep5 with 31 residues were developed. Then, we demonstrate that both of these peptides can bind to the other high-affinity ligands of EGFR and block TGFA/EGFR, HBEGF/EGFR, and BTC/EGFR interactions.

Conclusion: The findings suggest novel insights for developing therapies based on peptides for inhibiting the EGF, TGFA, HBEGF, and BTC signaling cascade in cancer cells. Pep4 and Pep5 designed in this work, are recommended as potentially promising anticancer peptides for further experimental evaluation.

Graphical Abstract

[1]
Kuramochi, H.; Hayashi, K.; Nakajima, G.; Kamikozuru, H.; Yamamoto, M.; Danenberg, K.D.; Danenberg, P.V. Epidermal growth factor receptor (EGFR) mRNA levels and protein expression levels in primary colorectal cancer and corresponding liver metastases. Cancer Chemother. Pharmacol., 2010, 65(5), 825-831.
[http://dx.doi.org/10.1007/s00280-009-1087-5] [PMID: 19701635]
[2]
Singh, B.; Carpenter, G.; Coffey, R.J. EGF receptor ligands: Recent advances. F1000 Res., 2016, 5, 2270.
[http://dx.doi.org/10.12688/f1000research.9025.1] [PMID: 27635238]
[3]
Jones, J.T.; Akita, R.W.; Sliwkowski, M.X. Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Lett., 1999, 447(2-3), 227-231.
[http://dx.doi.org/10.1016/S0014-5793(99)00283-5] [PMID: 10214951]
[4]
Cohen, S.; Carpenter, G. Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl. Acad. Sci. USA, 1975, 72(4), 1317-1321.
[http://dx.doi.org/10.1073/pnas.72.4.1317] [PMID: 1055407]
[5]
Yarden, Y.; Schlessinger, J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry, 1987, 26(5), 1443-1451.
[http://dx.doi.org/10.1021/bi00379a035] [PMID: 3494473]
[6]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol., 2005, 1(1), 2005-0010.
[http://dx.doi.org/10.1038/msb4100014]
[7]
Walker, F.; Abramowitz, L.; Benabderrahmane, D.; Duval, X.; Descatoire, V.; Hénin, D.; Lehy, T.; Aparicio, T. Growth factor receptor expression in anal squamous lesions: modifications associated with oncogenic human papillomavirus and human immunodeficiency virus. Hum. Pathol., 2009, 40(11), 1517-1527.
[http://dx.doi.org/10.1016/j.humpath.2009.05.010] [PMID: 19716155]
[8]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[9]
Zhang, H.; Yun, S.; Batuwangala, T.D.; Steward, M.; Holmes, S.D.; Pan, L.; Tighiouart, M.; Shin, H.J.C.; Koenig, L.; Park, W.; Rycroft, D.; Nannapaneni, S.; Wang, Y.; Chen, Z.G.; Shin, D.M. A dual-targeting antibody against EGFR-VEGF for lung and head and neck cancer treatment. Int. J. Cancer, 2012, 131(4), 956-969.
[http://dx.doi.org/10.1002/ijc.26427] [PMID: 21918971]
[10]
Hirsch, F.R.; Varella-Garcia, M.; Bunn, P.A., Jr; Di Maria, M.V.; Veve, R.; Bremnes, R.M.; Barón, A.E.; Zeng, C.; Franklin, W.A. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol., 2003, 21(20), 3798-3807.
[http://dx.doi.org/10.1200/JCO.2003.11.069] [PMID: 12953099]
[11]
Troiani, T.; Napolitano, S.; Della Corte, C.M.; Martini, G.; Martinelli, E.; Morgillo, F.; Ciardiello, F. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence. ESMO Open, 2016, 1(5), e000088.
[http://dx.doi.org/10.1136/esmoopen-2016-000088] [PMID: 27843640]
[12]
Fasano, M.; Della Corte, C.M.; Califano, R.; Capuano, A.; Troiani, T.; Martinelli, E.; Ciardiello, F.; Morgillo, F. Type III or allosteric kinase inhibitors for the treatment of non-small cell lung cancer. Expert Opin. Investig. Drugs, 2014, 23(6), 809-821.
[http://dx.doi.org/10.1517/13543784.2014.902934] [PMID: 24673358]
[13]
Parseghian, C.M.; Napolitano, S.; Loree, J.M.; Kopetz, S. Mechanisms of innate and acquired resistance to Anti-EGFR therapy: A review of current knowledge with a focus on rechallenge therapies. Clin. Cancer Res., 2019, 25(23), 6899-6908.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0823] [PMID: 31263029]
[14]
Nazari, A.; Farajnia, S.; Zahri, S.; Bagherlou, N.; Tanoumand, A.; Rahbarnia, L. Cytoplasmic chaperones enhance soluble expression of Anti-EGFR huscFv in escherichia coli. Iran. J. Biotechnol., 2020, 18(2), e2314-e2314.
[PMID: 33542937]
[15]
Guardiola, S.; Díaz-Lobo, M.; Seco, J.; García, J.; Nevola, L.; Giralt, E. Peptides targeting EGF Block the EGF-EGFR interaction. ChemBioChem, 2016, 17(8), 702-711.
[http://dx.doi.org/10.1002/cbic.201500525] [PMID: 26677067]
[16]
Nevola, L.; Giralt, E. Modulating protein–protein interactions: the potential of peptides. Chem. Commun. (Camb.), 2015, 51(16), 3302-3315.
[http://dx.doi.org/10.1039/C4CC08565E] [PMID: 25578807]
[17]
De Kaspar, H. M.; Kreutzer, T. C.; Aguirre-Romo, I.; Ta, C. N.; Dudichum, J.; Bayrhof, M.; Klauss, V.; Kampik, A. A prospective randomized study to determine the efficacy of preoperative topical levofloxacin in reducing conjunctival bacterial flora. Am. J. Ophthalmol., 2008, 145(1), 136-142.
[http://dx.doi.org/10.1016/j.ajo.2007.08.031]
[18]
Otvos, L., Jr; Wade, J.D. Current challenges in peptide-based drug discovery. Front Chem., 2014, 2, 62.
[http://dx.doi.org/10.3389/fchem.2014.00062] [PMID: 25152873]
[19]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[20]
Sulochana, K.N.; Ge, R. Developing antiangiogenic peptide drugs for angiogenesis-related diseases. Curr. Pharm. Des., 2007, 13(20), 2074-2086.
[http://dx.doi.org/10.2174/138161207781039715] [PMID: 17627540]
[21]
Angell, Y.; Holford, M.; Moos, W.H. Building on success: A bright future for peptide therapeutics. Protein Pept. Lett., 2019, 25(12), 1044-1050.
[http://dx.doi.org/10.2174/0929866525666181114155542] [PMID: 30430932]
[22]
Sun, Q.; Xu, X. A promising future for peptides in ophthalmology: work effectively and smartly. Curr. Med. Chem., 2015, 22(8), 1030-1040.
[http://dx.doi.org/10.2174/0929867322666150114163308] [PMID: 25620097]
[23]
Rosca, E.V.; Koskimaki, J.E.; Rivera, C.G.; Pandey, N.B.; Tamiz, A.P.; Popel, A.S. Anti-angiogenic peptides for cancer therapeutics. Curr. Pharm. Biotechnol., 2011, 12(8), 1101-1116.
[http://dx.doi.org/10.2174/138920111796117300] [PMID: 21470139]
[24]
Wang, S.H.; Lee, A.C.L.; Chen, I.J.; Chang, N.C.; Wu, H.C.; Yu, H.M.; Chang, Y.J.; Lee, T.W.; Yu, J.C.; Yu, A.L.; Yu, J. Structure-based optimization of GRP78-binding peptides that enhances efficacy in cancer imaging and therapy. Biomaterials, 2016, 94, 31-44.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.050] [PMID: 27088408]
[25]
Rismani, E.; Rahimi, H.; Arab, S.S.; Azadmanesh, K.; Karimipoor, M.; Teimoori-Toolabi, L. Computationally design of inhibitory peptides against Wnt signaling pathway: in silico insight on complex of DKK1 and LRP6. Int. J. Pept. Res. Ther., 2018, 24(1), 49-60.
[http://dx.doi.org/10.1007/s10989-017-9589-1]
[26]
Blundell, T.L.; Sibanda, B.L.; Montalvão, R.W.; Brewerton, S.; Chelliah, V.; Worth, C.L.; Harmer, N.J.; Davies, O.; Burke, D. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1467), 413-423.
[http://dx.doi.org/10.1098/rstb.2005.1800] [PMID: 16524830]
[27]
Naqvi, A.A.T.; Mohammad, T.; Hasan, G.M.; Hassan, M.I. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem., 2018, 18(20), 1755-1768.
[http://dx.doi.org/10.2174/1568026618666181025114157] [PMID: 30360721]
[28]
Ballante, F. Protein-Ligand Docking in Drug Design: Performance Assessment and Binding-Pose Selection. In: Rational Drug Design Methods and Protocols; Human Press: New York, 2018; Vol. 1824, pp. 67-88.
[29]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[PMID: 26604800]
[30]
Rasafar, N.; Barzegar, A.; Mehdizadeh Aghdam, E. Design and development of high affinity dual anticancer peptide-inhibitors against p53-MDM2/X interaction. Life Sci., 2020, 245, 117358.
[http://dx.doi.org/10.1016/j.lfs.2020.117358] [PMID: 32001262]
[31]
Guex, N.; Peitsch, M. C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[32]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 2002, 40(1), 82-92.
[33]
E-kobon. T.; Thongararm, P.; Roytrakul, S.; Meesuk, L.; Chumnanpuen, P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput. Struct. Biotechnol. J., 2016, 14, 49-57.
[http://dx.doi.org/10.1016/j.csbj.2015.11.005] [PMID: 26862373]
[34]
Ghasemali, S.; Farajnia, S.; Barzegar, A.; Rahmati, M.; Negahdari, B.; Rahbarnia, L.; Yousefi-Nodeh, H. Rational design of anti-angiogenic peptides to inhibit VEGF/VEGFR2 interactions for cancer therapeutics. Anticancer. Agents Med. Chem., 2022, 22(10), 2026-2035.
[http://dx.doi.org/10.2174/1871520621666211118104051] [PMID: 34792006]
[35]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[36]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-W181.
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[37]
Baghban, R.; Farajnia, S.; Ghasemi, Y.; Mortazavi, M.; Ghasemali, S.; Zakariazadeh, M.; Zarghami, N.; Samadi, N. Engineering of ocriplasmin variants by bioinformatics methods for the reduction of proteolytic and autolytic activities. Iran. J. Med. Sci., 2021, 46(6), 454-467.
[PMID: 34840386]
[38]
Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res., 2016, 44(W1), W449-W454.
[http://dx.doi.org/10.1093/nar/gkw329] [PMID: 27131374]
[39]
Maupetit, J.; Derreumaux, P.; Tuffery, P. PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res., 2009, 37(Web Server)(Suppl. 2), W498-W503.
[http://dx.doi.org/10.1093/nar/gkp323] [PMID: 19433514]
[40]
Benkert, P.; Tosatto, S.C.E.; Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 2008, 71(1), 261-277.
[http://dx.doi.org/10.1002/prot.21715] [PMID: 17932912]
[41]
Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys., 2020, 22(6), 3149-3159.
[http://dx.doi.org/10.1039/C9CP06303J] [PMID: 31995074]
[42]
Sharifi, M.; Ezzati Nazhad Dolatabadi, J.; Fathi, F.; Zakariazadeh, M.; Barzegar, A.; Rashidi, M.; Tajalli, H.; Rashidi, M.R. Surface plasmon resonance and molecular docking studies of bovine serum albumin interaction with neomycin: kinetic and thermodynamic analysis. Bioimpacts, 2017, 7(2), 91-97.
[http://dx.doi.org/10.15171/bi.2017.12] [PMID: 28752073]
[43]
Baghban, R.; Ghasemali, S.; Farajnia, S.; Hoseinpoor, R.; Andarzi, S.; Zakariazadeh, M.; Zarredar, H. Design and in silico evaluation of a novel cyclic disulfide-Rich anti-VEGF Peptide as a potential antiangiogenic drug. Int. J. Pept. Res. Ther., 2021, 27(4), 2245-2256.
[http://dx.doi.org/10.1007/s10989-021-10250-8]
[44]
Gargari, S.A.; Barzegar, A. Simulations on the dual effects of flavonoids as suppressors of Aβ42 fibrillogenesis and destabilizers of mature fibrils. Sci. Rep., 2020, 10(1), 16636.
[http://dx.doi.org/10.1038/s41598-020-72734-9] [PMID: 31913322]
[45]
Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676.
[http://dx.doi.org/10.1002/jcc.20090] [PMID: 15264259]
[46]
Berendsen, H.J.; Postma, J.P.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration.Intermolecular forces; Springer, 1981, pp. 331-342.
[http://dx.doi.org/10.1007/978-94-015-7658-1_21]
[47]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[48]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38-27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[49]
Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc., 2017, 12(2), 255-278.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[50]
London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199.
[http://dx.doi.org/10.1016/j.str.2009.11.012] [PMID: 20159464]
[51]
Normanno, N.; Luca, A.D.; Maiello, M.R.; Campiglio, M.; Napolitano, M.; Mancino, M.; Carotenuto, A.; Viglietto, G.; Menard, S. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J. Cell. Physiol., 2006, 207(2), 420-427.
[http://dx.doi.org/10.1002/jcp.20588] [PMID: 16419029]
[52]
Zhang, Z.; Stiegler, A.L.; Boggon, T.J.; Kobayashi, S.; Halmos, B. EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget, 2010, 1(7), 497-514.
[http://dx.doi.org/10.18632/oncotarget.186] [PMID: 21165163]
[53]
Ghasemali, S.; Farajnia, S.; Barzegar, A.; Rahmati-Yamchi, M.; Baghban, R.; Rahbarnia, L.; Nodeh, H.R.Y. New developments in anti-angiogenic therapy of cancer, review and update. Anticancer. Agents Med. Chem., 2020, 21(1), 3-19.
[http://dx.doi.org/10.2174/1871520620666200817103219] [PMID: 32807068]
[54]
Li, Z.; Zhao, R.; Wu, X.; Sun, Y.; Yao, M.; Li, J.; Xu, Y.; Gu, J. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J., 2005, 19(14), 1978-1985.
[http://dx.doi.org/10.1096/fj.05-4058com] [PMID: 16319141]
[55]
Hossein-Nejad-Ariani, H.; Althagafi, E.; Kaur, K. Small peptide ligands for targeting EGFR in triple negative breast cancer cells. Sci. Rep., 2019, 9(1), 2723.
[http://dx.doi.org/10.1038/s41598-019-38574-y] [PMID: 30804365]
[56]
Williams, T.M.; Sable, R.; Singh, S.; Vicente, M.G.H.; Jois, S.D. Peptide ligands for targeting the extracellular domain of EGFR: Comparison between linear and cyclic peptides. Chem. Biol. Drug Des., 2018, 91(2), 605-619.
[http://dx.doi.org/10.1111/cbdd.13125] [PMID: 29052959]
[57]
Kumar, A.; Purohit, R. Use of long term molecular dynamics simulation in predicting cancer associated SNPs. PLOS Comput. Biol., 2014, 10(4), e1003318.
[http://dx.doi.org/10.1371/journal.pcbi.1003318] [PMID: 24722014]
[58]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[59]
Kumar, A.; Purohit, R. Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutat. Res., 2012, 738-739, 28-37.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.08.005] [PMID: 22974711]
[60]
Kumar, A.; Rajendran, V.; Sethumadhavan, R.; Purohit, R. Evidence of colorectal cancer-associated mutation in MCAK: a computational report. Cell Biochem. Biophys., 2013, 67(3), 837-851.
[http://dx.doi.org/10.1007/s12013-013-9572-1] [PMID: 23564489]

© 2024 Bentham Science Publishers | Privacy Policy