Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Editorial

Differential Drug Permeability across Biofilms

Author(s): Sanket Kaushik*

Volume 24, Issue 4, 2023

Published on: 22 February, 2023

Page: [298 - 299] Pages: 2

DOI: 10.2174/1389450124666230220120439

Price: $65

[1]
Kaushik S, Yadav J, Das S, et al. Deciphering the role of S-adenosyl homocysteine nucleosidase in quorum sensing mediated biofilm formation. Curr Protein Pept Sci 2022; 23(4): 211-25.
[http://dx.doi.org/10.2174/1389203723666220519152507] [PMID: 35598240]
[2]
Kaushik S, Yadav J, Das S, et al. Identification of protein drug targets of biofilm formation and quorum sensing in multidrug resistant Enterococcus faecalis. Curr Protein Pept Sci 2022; 23(4): 248-63.
[http://dx.doi.org/10.2174/1389203723666220526155644] [PMID: 35619261]
[3]
Pandey R, Mishra SK, Shrestha A. Characterisation of eskape pathogens with special reference to multidrug resistance and biofilm production in a nepalese hospital. Infect Drug Resist 2021; 14: 2201-12.
[http://dx.doi.org/10.2147/IDR.S306688] [PMID: 34163185]
[4]
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9(1): 522-54.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[5]
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In search of novel protein drug targets for treatment of Enterococcus faecalis infections. Chem Biol Drug Des 2019; 94(4): 1721-39.
[http://dx.doi.org/10.1111/cbdd.13582] [PMID: 31260188]
[6]
Singh R, Sahore S, Kaur P, Rani A, Ray P. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences. Pathog Dis 2016; 74(6): ftw056.
[http://dx.doi.org/10.1093/femspd/ftw056] [PMID: 27402781]
[7]
Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003; 2(2): 114-22.
[http://dx.doi.org/10.1038/nrd1008] [PMID: 12563302]
[8]
Şen Karaman D, Ercan UK, Bakay E, Topaloğlu N, Rosenholm JM. Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era. Adv Funct Mater 2020; 30(15): 1908783.
[http://dx.doi.org/10.1002/adfm.201908783]
[9]
Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: Its role in infectious diseases. Expert Rev Anti Infect Ther 2019; 17(11): 877-93.
[http://dx.doi.org/10.1080/14787210.2019.1685875] [PMID: 31658838]
[10]
Davenport EK, Call DR, Beyenal H. Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2014; 58(8): 4755-61.
[http://dx.doi.org/10.1128/AAC.03071-14] [PMID: 24913166]
[11]
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol 2020; 28(8): 668-81.
[http://dx.doi.org/10.1016/j.tim.2020.03.016] [PMID: 32663461]
[12]
Limoli DH, Jones CJ, Wozniak DJ. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 2015; 3(3): 3.3.29.
[http://dx.doi.org/10.1128/microbiolspec.MB-0011-2014] [PMID: 26185074]
[13]
Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health 2021; 18(14): 7602.
[http://dx.doi.org/10.3390/ijerph18147602] [PMID: 34300053]
[14]
Xu Q, Hu X, Wang Y. Alternatives to conventional antibiotic therapy: Potential therapeutic strategies of combating antimicrobial-resistance and biofilm-related infections. Mol Biotechnol 2021; 63(12): 1103-24.
[http://dx.doi.org/10.1007/s12033-021-00371-2] [PMID: 34309796]
[15]
Elias S, Banin E. Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol Rev 2012; 36(5): 990-1004.
[http://dx.doi.org/10.1111/j.1574-6976.2012.00325.x] [PMID: 22229800]
[16]
Katva S, Das S, Moti HS, Jyoti A, Kaushik S. Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Pharmacogn Mag 2018; 13 (Suppl. 4): S828-33.
[PMID: 29491640]
[17]
Das S, Kumar HSV, Pal SK, et al. Prospecting potential inhibitors of Sortase a from Enterococcus faecalis: A multidrug resistant bacteria, through in-silico and in-vitro approaches. Protein Pept Lett 2020; 27(7): 582-92.
[http://dx.doi.org/10.2174/0929866527666191227143048] [PMID: 31880239]
[18]
Das S, Srivastava VK, Parray ZA, Jyoti A, Islam A, Kaushik S. Identification of potential inhibitors of sortase A: Binding studies, in-silico docking and protein-protein interaction studies of sortase A from Enterococcus faecalis. Int J Biol Macromol 2018; 120(Pt B): 1906-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.174] [PMID: 30268755]
[19]
Ejim L, Farha MA, Falconer SB, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nature chemical biology 2011; 7(6): 348-50.
[20]
Kalia VC. Quorum sensing inhibitors: An overview. Biotechnol Adv 2013; 31(2): 224-45.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.004] [PMID: 23142623]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy