Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Natural Products-based Drugs: Potential Drug Targets Against Neurological Degeneration

Author(s): Pooja Mittal, Rajat Goyal, Ramit Kapoor, Chunpeng Wan* and Rupesh K. Gautam*

Volume 21, Issue 4, 2023

Published on: 24 February, 2023

Page: [777 - 786] Pages: 10

DOI: 10.2174/1570159X21666230220102605

Price: $65

Abstract

Phytochemicals or natural products have been studied extensively for their potential in the treatment of neurodegenerative diseases (NDs) like Parkinson’s disease, Alzheimer’s disease, etc. The neuronal structure loss and progressive dysfunction are the main characteristics of these diseases. In spite of impressive and thorough knowledge of neurodegenerative molecular pathways, little advancement has been found in the treatment of the same. Moreover, it was proved that natural products can be used efficiently in the treatment of NDs while certain issues regarding the patient's safety and clinical data are still existing. As ND is a bunch of diseases and it will start the myriad of pathological processes, active targeting of the molecular pathway behind ND will be the most efficient strategy to treat all ND-related diseases. The targeting pathway must prevent cell death and should restore the damaged neurons. In the treatment of ND and related diseases, natural products are playing the role of neuroprotective agents. This review will target the therapeutic potential of various phytochemicals which shows neuroprotective action.

Graphical Abstract

[1]
Abdel-Salam, O.M.; Sleem, A.A.; Youness, E.R.; Yassen, N.N.; Shaffie, N.; El-Toumy, S.A. Capsicum protects against rotenone-induced toxicity in mice brain via reduced oxidative stress and 5-lipoxygenase activation. J. Pharm. Pharmacogn. Res., 2018, 2(3), 60-77.
[2]
Butterfield, D.A. Perspectives on oxidative stress in Alzheimer’s disease and predictions of future research emphases. J. Alzheimers Dis., 2018, 64(s1), S469-S479.
[http://dx.doi.org/10.3233/JAD-179912] [PMID: 29504538]
[3]
a) Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005];
b) Paül. Valerià. “Hopes for the countryside’s future. An analysis of two endogenous development experiences in south-eastern galicia. J. Urban Region. Analysis, 2023, 5(2), 169-192.
[4]
da Costa, I.M.; de Moura Freire, M.A.; de Paiva Cavalcanti, J.R.L.; de Araújo, D.P.; Norrara, B.; Moreira Rosa, I.M.M.; de Azevedo, E.P.; do Rego, A.C.M.; Filho, I.A.; Guzen, F.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: a systematic review. Curr. Neuropharmacol., 2019, 17(5), 406-421.
[http://dx.doi.org/10.2174/0929867325666180117112610] [PMID: 29338678]
[5]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234.
[http://dx.doi.org/10.1136/jim-2016-000240] [PMID: 27521081]
[6]
Mohd Sairazi, N.S.; Sirajudeen, K. Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med., 2020, 2020, 6565396.
[http://dx.doi.org/10.1155/2020/6565396]
[7]
Rahman, M.H.; Bajgai, J.; Fadriquela, A.; Sharma, S.; Trinh, T.T.; Akter, R.; Jeong, Y.J.; Goh, S.H.; Kim, C.S.; Lee, K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules, 2021, 26(17), 5327.
[http://dx.doi.org/10.3390/molecules26175327] [PMID: 34500759]
[8]
Ludovici, V.; Barthelmes, J.; Nägele, M.P.; Enseleit, F.; Ferri, C.; Flammer, A.J.; Ruschitzka, F.; Sudano, I. Cocoa, blood pressure, and vascular function. Front. Nutr., 2017, 4, 36.
[http://dx.doi.org/10.3389/fnut.2017.00036] [PMID: 28824916]
[9]
Maher, P. Protective effects of fisetin and other berry flavonoids in Parkinson’s disease. Food Funct., 2017, 8(9), 3033-3042.
[http://dx.doi.org/10.1039/C7FO00809K] [PMID: 28714503]
[10]
Nakajima, A.; Ohizumi, Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(14), 3380.
[http://dx.doi.org/10.3390/ijms20143380] [PMID: 31295812]
[11]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[12]
Li, F.; Gong, Q.; Dong, H.; Shi, J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr. Pharm. Des., 2012, 18(1), 27-33.
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[13]
Albani, D.; Polito, L.; Signorini, A.; Forloni, G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors, 2010, 36(5), 370-376.
[http://dx.doi.org/10.1002/biof.118] [PMID: 20848560]
[14]
LĂłpez-Miranda, V.; Soto-Montenegro, M.L.; Vera, G.; HerradĂłn, E.; Desco, M.; Abalo, R. Resveratrol: a neuroprotective polyphenol in the Mediterranean diet. Rev. Neurol., 2012, 54(6), 349-356.
[PMID: 22403148]
[15]
Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396.
[http://dx.doi.org/10.1016/j.jep.2012.07.005] [PMID: 22820241]
[16]
Boyina, H.K.; Geethakhrishnan, S.L.; Panuganti, S.; Gangarapu, K.; Devarakonda, K.P.; Bakshi, V.; Guggilla, S.R. In silico and in vivo studies on quercetin as potential anti-Parkinson agent. GeNeDis 2018: Genetics and Neurodegeneration, 2020, 1-11.
[http://dx.doi.org/10.1007/978-3-030-32633-3_1] [PMID: 32468451]
[17]
Acıkara, O.B.; Karatoprak, G.Ş. Yücel, Ç.; Akkol, E.K.; Sobarzo-Sánchez, E.; Khayatkashani, M.; Kamal, M.A.; Kashani, H.R.K. A critical analysis of quercetin as the attractive target for the treatment of parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 795-817.
[18]
Tavares, L.M.; Delello Di Filippo, L.; Carolina, A.R.; Sousa, A.V.H.; Lobato Duarte, J.; Maldonado, M.J.; Chorilli, M. The use of TPGS in drug delivery systems to overcome biological barriers. Eur. Polym. J., 2021, 142, 110129.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110129]
[19]
Trieu, V.N.; Uckun, F.M. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem. Biophys. Res. Commun., 1999, 258(3), 685-688.
[http://dx.doi.org/10.1006/bbrc.1999.0577] [PMID: 10329446]
[20]
a) Aras, A.B.; Guven, M.; Akman, T.; Alacam, H.; Kalkan, Y.; Silan, C.; Cosar, M. Genistein exerts neuroprotective effect on focal cerebral ischemia injury in rats. Inflammation, 2015, 38(3), 1311-1321.;
b) Duan, X.; Li, Y.; Xu, F.; Ding, H. Study on the neuroprotective effects of Genistein on Alzheimer’s disease. Brain Behav., 2021, 11(5), e02100.
[PMID: 33704934]
[21]
Sun, X.Y.; Wei, Y.P.; Xiong, Y.; Wang, X.C.; Xie, A.J.; Wang, X.L.; Yang, Y.; Wang, Q.; Lu, Y.M.; Liu, R.; Wang, J.Z. Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). J. Biol. Chem., 2012, 287(14), 11174-11182.
[http://dx.doi.org/10.1074/jbc.M111.309070] [PMID: 22334661]
[22]
Hajialyani, M.; Hosein, F.M.; Echeverría, J.; Nabavi, S.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules, 2019, 24(3), 648.
[http://dx.doi.org/10.3390/molecules24030648] [PMID: 30759833]
[23]
Kim, J.; Wie, M.B.; Ahn, M.; Tanaka, A.; Matsuda, H.; Shin, T. Benefits of hesperidin in central nervous system disorders: a review. Anat. Cell Biol., 2019, 52(4), 369-377.
[http://dx.doi.org/10.5115/acb.19.119] [PMID: 31949974]
[24]
Kuzu, M.; Kandemir, F.M. Yıldırım, S.; Çağlayan, C.; Küçükler, S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ. Sci. Pollut. Res. Int., 2021, 28(9), 10818-10831.
[http://dx.doi.org/10.1007/s11356-020-11327-5] [PMID: 33099738]
[25]
Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; Zaheer, A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors, 2021, 47(2), 190-197.
[http://dx.doi.org/10.1002/biof.1687] [PMID: 33098588]
[26]
a) Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res., 2018, 128, 359-365.;
b) Zhao, L.; Wang, J-L.; Liu, R.; Li, X-X.; Li, J-F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules, 2013, 18(8), 9949-9965.
[PMID: 23966081]
[27]
Wang, D.; Liu, L.; Zhu, X.; Wu, W.; Wang, Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell. Mol. Neurobiol., 2014, 34(8), 1209-1221.
[http://dx.doi.org/10.1007/s10571-014-0098-x] [PMID: 25135708]
[28]
Liu, Q.; Huang, Y.; Zhang, R.; Cai, T.; Cai, Y. Medical application of Spirulina platensis derived C-phycocyanin. Evid. Based Complement. Alternat. Med., 2016, 2016, 7803546.
[29]
Chen, J-C.; Liu, K.S.; Yang, T-J.; Hwang, J-H.; Chan, Y-C.; Lee, I-T. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutr. Neurosci., 2012, 15(6), 252-256.
[PMID: 22687570]
[30]
Kim, S-K.; Pangestuti, R. Prospects and potential applications of seaweeds as neuroprotective agents. Marine Nutraceuticals: Prospects and Perspectives; CRC Press: Florida, US, 2013, p. 17.
[31]
Barbalace, M.C.; Malaguti, M.; Giusti, L.; Lucacchini, A.; Hrelia, S.; Angeloni, C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 3061.
[http://dx.doi.org/10.3390/ijms20123061] [PMID: 31234555]
[32]
Hannan, M.; Dash, R.; Haque, M.; Mohibbullah, M.; Sohag, A.A.M.; Rahman, M.; Uddin, M.J.; Alam, M.; Moon, I.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs, 2020, 18(7), 347.
[33]
Pereir, L.L.; Valado, A. The seaweed diet in prevention and treatment of the neurodegenerative diseases. Mar. Drugs, 2021, 19(3), 128.
[PMID: 33652930]
[34]
Chen, C-C.; Lee, H-C.; Chang, J-H.; Chen, S-S.; Li, T-C.; Tsai, C-H.; Cho, D-Y.; Hsieh, C-L. Chinese herb astragalus membranaceus enhances recovery of hemorrhagic stroke: double-blind, placebo-controlled, randomized study. Evid. Based Complement. Alternat. Med., 2012, 2012, 708452.
[35]
Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665.
[http://dx.doi.org/10.2174/1570159X16666180911123341] [PMID: 30207235]
[36]
Yang, J.; Li, J.; Lu, J.; Zhang, Y.; Zhu, Z.; Wan, H. Synergistic protective effect of astragaloside IV–tetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia. J. Ethnopharmacol., 2012, 140(1), 64-72.
[http://dx.doi.org/10.1016/j.jep.2011.12.023] [PMID: 22207211]
[37]
Martinez-Oliveira, P.; de Oliveira, M.F.; Alves, N.; Coelho, R.P.; Pilar, B.C.; Güllich, A.A.; Ströher, D.J.; Boligon, A.; da Costa Escobar Piccoli, J.; Mello-Carpes, P.B.; Manfredini, V. Yacon leaf extract supplementation demonstrates neuroprotective effect against memory deficit related to β-amyloid-induced neurotoxicity. J. Funct. Foods, 2018, 48, 665-675.
[http://dx.doi.org/10.1016/j.jff.2018.08.004]
[38]
Zhang, L.; Zhou, Z.; Zhai, W.; Pang, J.; Mo, Y.; Yang, G.; Qu, Z.; Hu, Y. Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways. Metab. Brain Dis., 2019, 34(3), 927-939.
[http://dx.doi.org/10.1007/s11011-019-00398-0] [PMID: 30830599]
[39]
Sharma, S.; Sharma, S.; Chourasia, R.; Pandey, A.; Rai, A.K.; Sahoo, D. Alzheimer’s disease: ethanobotanical studies. In: Naturally Occurring Chemicals Against Alzheimer’s Disease; Elsevier: Amsterdam, 2021; pp. 11-28.
[http://dx.doi.org/10.1016/B978-0-12-819212-2.00044-X]
[40]
Rahim, N.S.; Lim, S.M.; Mani, V.; Abdul Majeed, A.B.; Ramasamy, K. Enhanced memory in Wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress. Pharm. Biol., 2017, 55(1), 825-832.
[http://dx.doi.org/10.1080/13880209.2017.1280688] [PMID: 28118770]
[41]
Ali, T.; Yoon, G.H.; Shah, S.A.; Lee, H.Y.; Kim, M.O. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci. Rep., 2015, 5(1), 11708.
[http://dx.doi.org/10.1038/srep11708] [PMID: 26118757]
[42]
Mamiya, T.; Asanuma, T.; Kise, M.; Ito, Y.; Mizukuchi, A.; Aoto, H.; Ukai, M. Effects of pre-germinated brown rice on β-amyloid protein-induced learning and memory deficits in mice. Biol. Pharm. Bull., 2004, 27(7), 1041-1045.
[http://dx.doi.org/10.1248/bpb.27.1041] [PMID: 15256737]
[43]
Postu, P.A.; Noumedem, J.A.K.; Cioanca, O.; Hancianu, M.; Mihasan, M.; Ciorpac, M.; Gorgan, D.L.; Petre, B.A.; Hritcu, L. Lactuca capensis reverses memory deficits in Aβ1-42-induced an animal model of Alzheimer’s disease. J. Cell. Mol. Med., 2018, 22(1), 111-122.
[http://dx.doi.org/10.1111/jcmm.13299] [PMID: 28816008]
[44]
Zhang, R.; Lu, H.; Tian, S.; Yin, J.; Chen, Q.; Ma, L.; Cui, S.; Niu, Y. Protective effects of pre-germinated brown rice diet on low levels of Pb-induced learning and memory deficits in developing rat. Chem. Biol. Interact., 2010, 184(3), 484-491.
[http://dx.doi.org/10.1016/j.cbi.2010.01.043] [PMID: 20138853]
[45]
Neta, F.; Da Costa, I.; Lima, F.; Fernandes, L.; Cavalcanti, J.; Freire, M.; Lucena, E.D.S.; Do Rêgo, A.M.; De Azevedo, E.; Guzen, F. Effects of Mucuna pruriens (L.) supplementation on experimental models of Parkinson’s disease: A systematic review. Pharmacogn. Rev., 2018, 12(23)
[46]
Nayak, V.S.; Kumar, N.; D’Souza, A.S.; Nayak, S.S.; Cheruku, S.P.; Pai, K.S.R. The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia. Neuroreport, 2017, 28(18), 1195-1201.
[http://dx.doi.org/10.1097/WNR.0000000000000888] [PMID: 28953092]
[47]
Singh, J.; Mittal, P.; Vasant, B.G.; Ajmal, G.; Mishra, B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells, Nanomed. Biotechnol, 2018, 46(sup3), S546-S555.
[48]
Vardhan, H.; Mittal, P.; Adena, S.K.R.; Mishra, B. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: Formulation, optimization and in vitro characterization. Eur. J. Pharm. Sci., 2017, 99, 85-94.
[http://dx.doi.org/10.1016/j.ejps.2016.12.007] [PMID: 28002762]
[49]
Vardhan, H.; Mittal, P.; Adena, S.K.R.; Upadhyay, M.; Mishra, B. Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: Optimization, pharmacokinetic, cytotoxicity and in vivo assessments. Int. J. Biol. Macromol., 2017, 103, 791-801.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.125] [PMID: 28536023]
[50]
Vardhan, H.; Mittal, P.; Adena, S.K.R.; Upadhyay, M.; Yadav, S.K.; Mishra, B. Process optimization and in vivo performance of docetaxel loaded PHBV-TPGS therapeutic vesicles: A synergistic approach. Int. J. Biol. Macromol., 2018, 108, 729-743.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.172] [PMID: 29111267]
[51]
a) Vardhan, H.; Pooja, M.; Sandeep, K.R.A.; Brahmeshwar, M. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: Formulation, optimization and in vitro characterization. Eur. J. Pharm. Sci., 2017, 99, 85-94.;
b) Wilson, K.; Saharan, A.; Mittal, P.; Gautam, R.K.; Saini, V. Formulation, development and evaluation of topical intradermal drug delivery system for anti-acne product; Indian Drugs, 2021.
[52]
Ajmal, G.; Bonde, G.V.; Mittal, P.; Khan, G.; Pandey, V.K.; Bakade, B.V.; Mishra, B. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int. J. Pharm., 2019, 567, 118480.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118480] [PMID: 31255776]
[53]
Ajmal, G.; Bonde, G.V.; Thokala, S.; Mittal, P.; Khan, G.; Singh, J.; Pandey, V.K.; Mishra, B. Ciprofloxacin HCl and quercetin functionalized electrospun nanofiber membrane: fabrication and its evaluation in full thickness wound healing. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 228-240.
[http://dx.doi.org/10.1080/21691401.2018.1548475] [PMID: 30688107]
[54]
Bairagi, U.; Mittal, P.; Singh, J.; Mishra, B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev. Ind. Pharm., 2018, 44(11), 1783-1796.
[http://dx.doi.org/10.1080/03639045.2018.1496448] [PMID: 29973105]
[55]
Bharti, K.; Mittal, P.; Mishra, B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J. Drug Deliv. Sci. Technol., 2019, 49, 420-432.
[http://dx.doi.org/10.1016/j.jddst.2018.12.013]
[56]
Bonde, G. V.; Ajmal, G.; Yadav, S. K.; Mittal, P.; Mishra, B. Lapatinib-loaded nanocolloidal polymeric micelles for the efficient treatment of breast cancer. 2020, 10(9), 023-029.
[57]
Bonde, G.V.; Ajmal, G.; Yadav, S.K.; Mittal, P.; Singh, J.; Bakde, B.V.; Mishra, B. Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): Optimisation and in-vitro characterisation. Colloids Surf. B Biointerfaces, 2020, 185, 110611.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110611] [PMID: 31704609]
[58]
Bonde, G.V.; Upadhyay, M.; Ajmal, G.; Mittal, P.; Hardikar, S.R.; Mishra, B. Polyethylene glycol block polymeric micelle: A promising delivery vehicle for lymphatic targeting. 2018.
[59]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.F.; Freire, M.A.M. Nutritional status, oxidative stress and dementia: The role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206.
[http://dx.doi.org/10.3389/fnagi.2014.00206] [PMID: 25221506]
[60]
Bonde, G.V.; Yadav, S.K.; Chauhan, S.; Mittal, P.; Ajmal, G.; Thokala, S.; Mishra, B. Lapatinib nano-delivery systems: a promising future for breast cancer treatment. Expert Opin. Drug Deliv., 2018, 15(5), 495-507.
[http://dx.doi.org/10.1080/17425247.2018.1449832] [PMID: 29521126]
[61]
Mittal, P. Microneedles based drug delivery systems. Rx Pharmatutor- Pharmacy Infopedia. Development and Evaluation of Paclitaxel and Genistein loaded Nanoformulations for Improved and Safe Treatment of Ovarian Cancer. IIT (BHU) varanasi, 2018.
[62]
Mittal, P.; Kapoor, R.; Mishra, B. Dendrimers: Role in novel drug delivery. In: Nanopharmaceutical Advanced Delivery Systems; Wiley: New Jersey, 2021; pp. 79-97.
[63]
Mittal, P.; Kapoor, R.; Saharan, A.; Gautam, R.K. Targeting Molecular and Cellular Mechanisms in Respiratory Syncytial Virus (RSV) Infection. In: Targeting Cellular Signalling Pathways in Lung Diseases; Springer: Singapore, 2021; pp. 501-516.
[http://dx.doi.org/10.1007/978-981-33-6827-9_23]
[64]
Mittal, P.; Seth, N.; Rana, A. Self-microemulsifying drug delivery system (SMEDDS): An alternative approach for hydrophobic drugs. Int. J Nat Prod Sci., 2012, 1, 80.
[65]
Mittal, P.; Vardhan, H.; Ajmal, G.; Bonde, G.V.; Kapoor, R.; Mittal, A.; Mishra, B. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel. Drug Dev. Ind. Pharm., 2019, 45(3), 365-378.
[http://dx.doi.org/10.1080/03639045.2018.1542706] [PMID: 30394795]
[66]
Mittal, P.; Vrdhan, H.; Ajmal, G.; Bonde, G.; Kapoor, R.; Mishra, B. Formulation and characterization of genistein-loaded nanostructured lipid carriers: pharmacokinetic, biodistribution and in vitro cytotoxicity studies. Curr. Drug Deliv., 2019, 16(3), 215-225.
[67]
Mittal, P.C.A.; Aggarwal, J. Potential assessment of Transcutol P and Lauroglycol FCC as Co-Surfactants for formulation of self microemulsifying drug delivery systems (Smedds). Int. J. Pharma Sci., 2012, 4(1), 1742-1745.
[68]
Mittal Pooja, R.A. bala, Rajni; Nimrata, Seth. Lipid based Self microemulsifying drug delivery systems (SMEDDS) for lipophilic drugs-an acquainted review. IRJP, 2011, 2(12), 75-80.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy