Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Progress in the Preparation and Application of Arylsilane

Author(s): Jun Liu, Jiajian Peng*, Ying Bai*, Jiayun Li, Zijie Song, Peng Liu, Ting Ouyang, Huilin Lan and Yichen Huang

Volume 27, Issue 1, 2023

Published on: 08 March, 2023

Page: [28 - 37] Pages: 10

DOI: 10.2174/1385272827666230217093032

Price: $65

Abstract

Arylsilanes are the basic raw material for the synthesis of advanced silicone new materials such as phenylsilicone resin, phenylsilicone oil and phenyl silicone rubber, etc. The silicone polymers containing aryl groups were applied widely in the fields including electronics, and aerospace. In the past decades, arylsilanes have been widely used in organic synthesis, such as Hiyama coupling, C-N bond formation, synthesis of biaryl, polyketone polymer, and so on. Therefore, synthetic research on arylsilanes has also received wide attention. In this paper, the research progress of the synthesis and applications of arylsilanes in the past decades has been reviewed.

[1]
Li, B.; He, C.; Lu, W.; Wang, J.; Zeng, Y.; Gao, B. Synthesis of highly branched polymethylphenylsiloxane grafted epoxy resin copolymer for high efficiency ablation thermal protection coating. Prog. Org. Coat., 2019, 126, 178-186.
[http://dx.doi.org/10.1016/j.porgcoat.2018.10.020]
[2]
Sun, J.T.; Huang, Y.D.; Cao, H.L.; Gong, G.F. Effects of ambient-temperature curing agents on the thermal stability of poly(methylphenylsiloxane). Polym. Degrad. Stabil., 2004, 85(1), 725-731.
[http://dx.doi.org/10.1016/j.polymdegradstab.2004.03.018]
[3]
Černý, M.; Halasová, M.; Schwaigstillová, J.; Chlup, Z.; Sucharda, Z.; Glogar, P.; Svítilová, J.; Strachota, A.; Rýglová, Š. Mechanical properties of partially pyrolysed composites with plain weave basalt fibre reinforcement. Ceram. Int., 2014, 40(5), 7507-7521.
[http://dx.doi.org/10.1016/j.ceramint.2013.12.102]
[4]
Lu, M.Z.; Ding, X.; Shao, C.; Hu, Z.; Luo, H.; Zhi, S.; Hu, H.; Kan, Y.; Loh, T.P. Direct Hiyama Cross-Coupling of (Hetero)arylsilanes with C(sp2)–H Bonds Enabled by Cobalt Catalysis. Org. Lett., 2020, 22(7), 2663-2668.
[http://dx.doi.org/10.1021/acs.orglett.0c00631] [PMID: 32182081]
[5]
Foubelo, F.; Nájera, C.; Yus, M. The Hiyama Cross-Coupling Reaction: New Discoveries. Chem. Rec., 2016, 16(6), 2521-2533.
[http://dx.doi.org/10.1002/tcr.201600063] [PMID: 27415605]
[6]
Wu, Y.; Zhang, H.R.; Cao, Y.X.; Lan, Q.; Wang, X.S. Nickel-Catalyzed Monofluoroalkylation of Arylsilanes via Hiyama Cross-Coupling. Org. Lett., 2016, 18(21), 5564-5567.
[http://dx.doi.org/10.1021/acs.orglett.6b02803] [PMID: 27748607]
[7]
Zhang, W.; Liu, F.; Li, K.; Zhao, B. Pd-catalyzed desulfitative Hiyama coupling with sulfonyl chlorides. Appl. Organomet. Chem., 2014, 28(5), 379-381.
[http://dx.doi.org/10.1002/aoc.3139]
[8]
Zhang, L.; Wu, J. Palladium-catalyzed Hiyama cross-couplings of aryl arenesulfonates with arylsilanes. J. Am. Chem. Soc., 2008, 130(37), 12250-12251.
[http://dx.doi.org/10.1021/ja804672m] [PMID: 18715001]
[9]
Liu, Z.; Luan, N.; Shen, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Palladium-Catalyzed Hiyama Cross-Couplings of Arylsilanes with 3-Iodoazetidine: Synthesis of 3-Arylazetidines. J. Org. Chem., 2019, 84(19), 12358-12365.
[http://dx.doi.org/10.1021/acs.joc.9b01715] [PMID: 31532668]
[10]
Idris, M.A.; Lee, S. Palladium-catalyzed amide N–C hiyama cross-coupling: Synthesis of ketones. Org. Lett., 2020, 22(23), 9190-9195.
[http://dx.doi.org/10.1021/acs.orglett.0c03260] [PMID: 33052695]
[11]
Morstein, J.; Kalkman, E.D.; Cheng, C.; Hartwig, J.F.; Hartwig, J.F. Copper-medicated C–N coupling of Arylsilanes with Nitrogen Nucleophiles. Org. Lett., 2016, 18(20), 5244-5247.
[http://dx.doi.org/10.1021/acs.orglett.6b02543] [PMID: 27689746]
[12]
Sahoo, A.K.; Oda, T.; Nakao, Y.; Hiyama, T. Cross-Coupling of Triallyl(aryl)silanes with Aryl Bromides and Chlorides: An Alternative Convenient Biaryl Synthesis. Adv. Synth. Catal., 2004, 346(13-15), 1715-1727.
[http://dx.doi.org/10.1002/adsc.200404188]
[13]
Shi, W.J.; Zhao, H.W.; Wang, Y.; Cao, Z.C.; Zhang, L.S.; Yu, D.G.; Shi, Z.J. Nickel- or iron-catalyzed cross-coupling of aryl carbamates with arylsilanes. Adv. Synth. Catal., 2016, 358(15), 2410-2416.
[http://dx.doi.org/10.1002/adsc.201600590]
[14]
Ball, L.T.; Lloyd-Jones, G.C.; Russell, C.A. Gold-catalyzed oxidative coupling of arylsilanes and arenes: Origin of selectivity and improved precatalyst. J. Am. Chem. Soc., 2014, 136(1), 254-264.
[http://dx.doi.org/10.1021/ja408712e] [PMID: 24367895]
[15]
Denmark, S.E.; Smith, R.C.; Chang, W.T.T.; Muhuhi, J.M. Cross-coupling reactions of aromatic and heteroaromatic silanolates with aromatic and heteroaromatic halides. J. Am. Chem. Soc., 2009, 131(8), 3104-3118.
[http://dx.doi.org/10.1021/ja8091449] [PMID: 19199785]
[16]
von Wolff, N.; Char, J.; Frogneux, X.; Cantat, T. Synthesis of Aromatic Sulfones from SO 2 and Organosilanes Under Metal-free Conditions. Angew. Chem. Int. Ed., 2017, 56(20), 5616-5619.
[http://dx.doi.org/10.1002/anie.201702311] [PMID: 28402020]
[17]
Yang, X.; Cao, Y.; Li, E.; Zhang, P.; Hou, Z. Cu-catalyzed coupling of arylsulfinic salts with arylsilanes under mild conditions. Appl. Organomet. Chem., 2014, 28(10), 785-788.
[http://dx.doi.org/10.1002/aoc.3199]
[18]
Dorel, R.; Boehm, P.; Schwinger, D.P.; Hartwig, J.F. Copper‐Mediated Fluorination of Aryl Trisiloxanes with Nucleophilic Fluoride. Chemistry, 2020, 26(8), 1759-1762.
[http://dx.doi.org/10.1002/chem.201905040] [PMID: 31872488]
[19]
Takeuchi, H.; Kakimoto, M.; Imai, Y. New synthetic method for aromatic polyketones from bis(arylsilane)s and aromatic dicarboxylic acid chlorides. J. Polym. Sci. A Polym. Chem., 2002, 40(16), 2729-2735.
[http://dx.doi.org/10.1002/pola.10361]
[20]
Richter, S.C.; Oestreich, M. Emerging Strategies for C–H Silylation. Trends Chem., 2020, 2(1), 13-27.
[http://dx.doi.org/10.1016/j.trechm.2019.07.003]
[21]
Yang, Y.; Wang, C. Direct silylation reactions of inert C-H bonds via transition metal catalysis. Sci. China Chem., 2015, 58(8), 1266-1279.
[http://dx.doi.org/10.1007/s11426-015-5375-0]
[22]
Cheng, C.; Hartwig, J.F. Catalytic Silylation of Unactivated C–H Bonds. Chem. Rev., 2015, 115(17), 8946-8975.
[http://dx.doi.org/10.1021/cr5006414] [PMID: 25714857]
[23]
Xiao, P.; Gao, L.; Song, Z. Recent progress in the transition‐metal‐catalyzed activation of Si−Si bonds to form C−Si bonds. Chemistry, 2019, 25(10), 2407-2422.
[http://dx.doi.org/10.1002/chem.201803803] [PMID: 30160810]
[24]
Komiyama, T.; Minami, Y.; Hiyama, T. Recent advances in transition-metal-catalyzed synthetic transformations of organosilicon reagents. ACS Catal., 2017, 7(1), 631-651.
[http://dx.doi.org/10.1021/acscatal.6b02374]
[25]
Xin, S.M.; Wang, Y.L. Organosilicon Synthetic Technology and Products Application; Chemical Industry Press, 2000, pp. 26-37.
[26]
Murata, M.; Suzuki, K.; Watanabe, S.; Masuda, Y. Synthesis of arylsilanes via palladium(0)-catalyzed silylation of aryl halides with hydrosilane. J. Org. Chem., 1997, 62(24), 8569-8571.
[http://dx.doi.org/10.1021/jo971143f] [PMID: 11672006]
[27]
Yamanoi, Y. Palladium-catalyzed silylations of hydrosilanes with aryl halides using bulky alkyl phosphine. J. Org. Chem., 2005, 70(23), 9607-9609.
[http://dx.doi.org/10.1021/jo051131r] [PMID: 16268642]
[28]
Iranpoor, N.; Firouzabadi, H.; Azadi, R. Diphenylphosphinite ionic liquid (IL-OPPh2): A solvent and ligand for palladium-catalyzed silylation and dehalogenation reaction of aryl halides with triethylsilane. J. Organomet. Chem., 2010, 695(6), 887-890.
[http://dx.doi.org/10.1016/j.jorganchem.2010.01.001]
[29]
Miura, H.; Masaki, Y.; Fukuta, Y.; Shishido, T. Silylation of aryl chlorides by bimetallic catalysis of palladium and gold on alloy nanoparticles. Adv. Synth. Catal., 2020, 362(13), 2642-2650.
[http://dx.doi.org/10.1002/adsc.202000045]
[30]
McNeill, E.; Barder, T.E.; Buchwald, S.L. Palladium-catalyzed silylation of aryl chlorides with hexamethyldisilane. Org. Lett., 2007, 9(19), 3785-3788.
[http://dx.doi.org/10.1021/ol701518f] [PMID: 17705501]
[31]
Yamamoto, Y.; Matsubara, H.; Murakami, K.; Yorimitsu, H.; Osuka, A. Activator-free palladium-catalyzed silylation of aryl chlorides with silylsilatranes. Chem. Asian J., 2015, 10(1), 219-224.
[http://dx.doi.org/10.1002/asia.201402595] [PMID: 25123398]
[32]
Rich, J.D. Silylative decarbonylation: A new route to arylsilanes. J. Am. Chem. Soc., 1989, 111(15), 5886-5893.
[http://dx.doi.org/10.1021/ja00197a058]
[33]
Kashiwabara, T.; Tanaka, M. Decarbonylative coupling of fluorobenzoyl chlorides with hexamethyldisilane in the presence of a palladium complex catalyst: Extremely facile decarbonylation of pentafluorobenzoyl−Pd Complex Relevant to C6F5 SiMe3 formation. Organometallics, 2006, 25(19), 4648-4652.
[http://dx.doi.org/10.1021/om060479p]
[34]
Denmark, S.E.; Kallemeyn, J.M. Free base meso-tetraaryl-morpholinochlorins and porpholactone from meso-Tetraaryl-2,3-dihydroxy-chlorin. Org. Lett., 2003, 5, 3483-3486.
[http://dx.doi.org/10.1021/ol035288m] [PMID: 12967305]
[35]
Kanyiva, K.S.; Kuninobu, Y.; Kanai, M. Palladium-catalyzed direct C-H silylation and germanylation of benzamides and carboxamides. Org. Lett., 2014, 16(7), 1968-1971.
[http://dx.doi.org/10.1021/ol500519y] [PMID: 24646190]
[36]
Yang, J.J.; Xu, Z.; Nie, Y.X.; Lu, S.Q.; Zhang, J.; Xu, L.W. Long-distance chirality transfer from P-ligand to prochiral dihydrosilanes via Pd(II) aryl iodide complex in Pd-catalyzed silylation of Aryl Iodide: A DFT study. J. Org. Chem., 2020, 85(22), 14360-14368.
[http://dx.doi.org/10.1021/acs.joc.0c00202] [PMID: 32450695]
[37]
Hamze, A.; Provot, O.; Alami, M.; Brion, J.D. Platinum oxide catalyzed silylation of aryl halides with triethylsilane: An efficient synthetic route to functionalized aryltriethylsilanes. Org. Lett., 2006, 8(5), 931-934.
[http://dx.doi.org/10.1021/ol052996u] [PMID: 16494477]
[38]
Tsukada, N.; Hartwig, J.F. Intermolecular and intramolecular, platinum-catalyzed, acceptorless dehydrogenative coupling of hydrosilanes with aryl and aliphatic methyl C-H bonds. J. Am. Chem. Soc., 2005, 127(14), 5022-5023.
[http://dx.doi.org/10.1021/ja050612p] [PMID: 15810828]
[39]
Murata, M.; Yamasaki, H.; Ueta, T.; Nagata, M.; Ishikura, M.; Watanabe, S.; Masuda, Y. Synthesis of aryltriethoxysilanes via rhodium(I)-catalyzed cross-coupling of aryl electrophiles with triethoxysilane. Tetrahedron, 2007, 63(19), 4087-4094.
[http://dx.doi.org/10.1016/j.tet.2007.02.103]
[40]
Yamanoi, Y.; Nishihara, H. Direct and selective arylation of tertiary silanes with rhodium catalyst. J. Org. Chem., 2008, 73(17), 6671-6678.
[http://dx.doi.org/10.1021/jo8008148] [PMID: 18681401]
[41]
Cheng, C.; Hartwig, J.F. Rhodium-catalyzed intermolecular C-H silylation of arenes with high steric regiocontrol. Science, 2014, 343(6173), 853-857.
[http://dx.doi.org/10.1126/science.1248042] [PMID: 24558154]
[42]
Cheng, C.; Hartwig, J.F. Mechanism of the rhodium-catalyzed silylation of arene C-H bonds. J. Am. Chem. Soc., 2014, 136(34), 12064-12072.
[http://dx.doi.org/10.1021/ja505844k] [PMID: 25082802]
[43]
Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Rhodium-Catalyzed Synthesis of Benzosilolometallocenes via the Dehydrogenative Silylation of C(sp2)–H Bonds. Org. Lett., 2015, 17(12), 3102-3105.
[http://dx.doi.org/10.1021/acs.orglett.5b01373] [PMID: 26061112]
[44]
Murai, M.; Okada, R.; Nishiyama, A.; Takai, K. Synthesis and Properties of Sila[ n]helicenes via Dehydrogenative Silylation of C–H Bonds under Rhodium Catalysis. Org. Lett., 2016, 18(17), 4380-4383.
[http://dx.doi.org/10.1021/acs.orglett.6b02134] [PMID: 27513028]
[45]
Lee, K.; Katsoulis, D.; Choi, J. Intermolecular C–H silylation of arenes and heteroarenes with HSiEt 3 under operationally diverse conditions: Neat/stoichiometric and acceptor/acceptorless. ACS Catal., 2016, 6(3), 1493-1496.
[http://dx.doi.org/10.1021/acscatal.5b02806]
[46]
Keske, E.C.; West, T.H.; Lloyd-Jones, G.C. Analysis of autoinduction, inhibition, and autoinhibition in a Rh-catalyzed C–C cleavage: Mechanism of decyanative aryl silylation. ACS Catal., 2018, 8(9), 8932-8940.
[http://dx.doi.org/10.1021/acscatal.8b02809]
[47]
Tobisu, M.; Kita, Y.; Chatani, N. Rh(I)-catalyzed silylation of aryl and alkenyl cyanides involving the cleavage of C-C and Si-Si bonds. J. Am. Chem. Soc., 2006, 128(25), 8152-8153.
[http://dx.doi.org/10.1021/ja062745w] [PMID: 16787076]
[48]
Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. Rhodium-catalyzed silylation and intramolecular arylation of nitriles via the silicon-assisted cleavage of carbon-cyano bonds. J. Am. Chem. Soc., 2008, 130(47), 15982-15989.
[http://dx.doi.org/10.1021/ja804992n] [PMID: 18975946]
[49]
Tobisu, M.; Ano, Y.; Chatani, N. Rhodium-catalyzed silylation of aromatic carbon-hydrogen bonds in 2-arylpyridines with disilane. Chem. Asian J., 2008, 3(8-9), 1585-1591.
[http://dx.doi.org/10.1002/asia.200800090] [PMID: 18494014]
[50]
Murai, M.; Takami, K.; Takeshima, H.; Takai, K. Iridium-catalyzed dehydrogenative silylation of azulenes based on regioselective C-H bond activation. Org. Lett., 2015, 17(7), 1798-1801.
[http://dx.doi.org/10.1021/acs.orglett.5b00575] [PMID: 25803619]
[51]
Murai, M.; Takami, K.; Takai, K. Iridium-catalyzed intermolecular dehydrogenative silylation of polycyclic aromatic compounds without directing groups. Chemistry, 2015, 21(12), 4566-4570.
[http://dx.doi.org/10.1002/chem.201406508] [PMID: 25677898]
[52]
Ishiyama, T.; Sato, K.; Nishio, Y.; Miyaura, N. Direct synthesis of aryl halosilanes through iridium(I)-catalyzed aromatic C-H silylation by disilanes. Angew. Chem. Int. Ed., 2003, 42(43), 5346-5348.
[http://dx.doi.org/10.1002/anie.200352399] [PMID: 14613172]
[53]
Saiki, T.; Nishio, Y.; Ishiyama, T.; Miyaura, N. Improvements of efficiency and regioselectivity in the Iridium(I)-catalyzed aromatic CH silylation of arenes with fluoro-disilanes. Organometallics, 2006, 25(26), 6068-6073.
[http://dx.doi.org/10.1021/om050968+]
[54]
Choi, G.; Tsurugi, H.; Mashima, K. Hemilabile N-xylyl-N'-methylperimidine carbene iridium complexes as catalysts for C-H activation and dehydrogenative silylation: Dual role of N-xylyl moiety for ortho-C-H bond activation and reductive bond cleavage. J. Am. Chem. Soc., 2013, 135(35), 13149-13161.
[http://dx.doi.org/10.1021/ja406519u] [PMID: 23914836]
[55]
Cheng, C.; Hartwig, J.F. Iridium-catalyzed silylation of aryl C-H bonds. J. Am. Chem. Soc., 2015, 137(2), 592-595.
[http://dx.doi.org/10.1021/ja511352u] [PMID: 25514197]
[56]
Karmel, C.; Hartwig, J.F. Mechanism of the Iridium-Catalyzed Silylation of Aromatic C–H Bonds. J. Am. Chem. Soc., 2020, 142(23), 10494-10505.
[http://dx.doi.org/10.1021/jacs.0c03301] [PMID: 32375477]
[57]
Kakiuchi, F.; Tsuchiya, K.; Matsumoto, M.; Mizushima, E.; Chatani, N. Ru3(CO)12-catalyzed silylation of benzylic C-H bonds in arylpyridines and arylpyrazoles with hydrosilanes via C-H bond cleavage. J. Am. Chem. Soc., 2004, 126(40), 12792-12793.
[http://dx.doi.org/10.1021/ja047040d] [PMID: 15469271]
[58]
Klare, H.F.T.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. Cooperative catalytic activation of Si-H bonds by a polar Ru-S bond: Regioselective low-temperature C-H silylation of indoles under neutral conditions by a Friedel-Crafts mechanism. J. Am. Chem. Soc., 2011, 133(10), 3312-3315.
[http://dx.doi.org/10.1021/ja111483r] [PMID: 21341748]
[59]
Omann, L.; Oestreich, M. Catalytic Access to Indole-Fused Benzosiloles by 2-Fold Electrophilic C–H Silylation with Dihydrosilanes. Organometallics, 2017, 36(4), 767-776.
[http://dx.doi.org/10.1021/acs.organomet.6b00801]
[60]
Liu, S.; Zhang, S.; Lin, Q.; Huang, Y.; Li, B. Ruthenium(II) acetate catalyzed synthesis of silylated oxazoles via C–H silylation and dehalogenation. Org. Lett., 2019, 21(4), 1134-1138.
[http://dx.doi.org/10.1021/acs.orglett.9b00085] [PMID: 30707034]
[61]
Komuro, T.; Kitano, T.; Yamahira, N.; Ohta, K.; Okawara, S.; Mager, N.; Okazaki, M.; Tobita, H. Directed ortho -C–H silylation coupled with trans -selective hydrogena-tion of arylalkynes catalyzed by ruthenium complexes of a xanthene-based Si,O,Si -chelate ligand, “Xantsil”. Organometallics, 2016, 35(9), 1209-1217.
[http://dx.doi.org/10.1021/acs.organomet.5b01013]
[62]
Fang, H.; Guo, L.; Zhang, Y.; Yao, W.; Huang, Z. A Pincer Ruthenium Complex for Regioselective C–H Silylation of Heteroarenes. Org. Lett., 2016, 18(21), 5624-5627.
[http://dx.doi.org/10.1021/acs.orglett.6b02857] [PMID: 27754687]
[63]
Srimontree, W.; Lakornwong, W.; Rueping, M. Nickel-catalyzed synthesis of silanes from silyl ketones. Org. Lett., 2019, 21(23), 9330-9333.
[http://dx.doi.org/10.1021/acs.orglett.9b03487] [PMID: 31702934]
[64]
Nakatani, S.; Ito, Y.; Sakurai, S.; Kodama, T.; Tobisu, M. Nickel-Catalyzed Decarbonylation of Acylsilanes. J. Org. Chem., 2020, 85(11), 7588-7594.
[http://dx.doi.org/10.1021/acs.joc.0c00772] [PMID: 32342690]
[65]
Kong, Y.Y.; Wang, Z.X. Nickel‐Catalyzed Reaction of Aryl 2‐Pyridyl Ethers with Silylzinc Chlorides: Silylation of Aryl 2‐Pyridyl Ethers via Cleavage of the Car-bon−Oxygen Bond. Adv. Synth. Catal., 2019, 361(23), 5440-5448.
[http://dx.doi.org/10.1002/adsc.201900949]
[66]
Jia, J.; Zeng, X.; Liu, Z.; Zhao, L.; He, C.Y.; Li, X.F.; Feng, Z. Iron-Catalyzed Silylation of (Hetero)aryl Chlorides with Et 3 SiBpin. Org. Lett., 2020, 22(7), 2816-2821.
[http://dx.doi.org/10.1021/acs.orglett.0c00809] [PMID: 32186883]
[67]
Sarkar, W.; Mishra, A.; Bhowmik, A.; Deb, I. Copper-Catalyzed Direct sp2 C–H Silylation of Arylamides Using Disilanes. Org. Lett., 2021, 23(12), 4521-4526.
[http://dx.doi.org/10.1021/acs.orglett.1c01129] [PMID: 33984233]
[68]
Toutov, A.A.; Liu, W.B.; Betz, K.N.; Fedorov, A.; Stoltz, B.M.; Grubbs, R.H. Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst. Nature, 2015, 518(7537), 80-84.
[http://dx.doi.org/10.1038/nature14126] [PMID: 25652999]
[69]
Yoshida, T.; Ilies, L.; Nakamura, E. Silylation of Aryl Halides with Monoorganosilanes Activated by Lithium Alkoxide. Org. Lett., 2018, 20(10), 2844-2847.
[http://dx.doi.org/10.1021/acs.orglett.8b00818] [PMID: 29714484]
[70]
Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsili-cate. J. Org. Chem., 1988, 53(4), 918-920.
[http://dx.doi.org/10.1021/jo00239a056]
[71]
Littke, A.F.; Fu, G.C. Palladium-catalyzed coupling reactions of aryl chlorides. Angew. Chem. Int. Ed., 2002, 41(22), 4176-4211.
[http://dx.doi.org/10.1002/1521-3773(20021115)41:22<4176::AIDANIE4176>3.0.CO;2-U] [PMID: 12434342]
[72]
Han, C.; Zhang, Z.; Xu, S.; Wang, K.; Chen, K.; Zhao, J. Palladium-Catalyzed Hiyama Coupling of Benzylic Ammonium Salts via C–N Bond Cleavage. J. Org. Chem., 2019, 84(24), 16308-16313.
[http://dx.doi.org/10.1021/acs.joc.9b02554] [PMID: 31746602]
[73]
Wu, X.X.; Ye, H.; Jiang, G.; Hu, L. Domino Heck/Hiyama cross-coupling: Trapping of the σ-alkylpalladium intermediate with arylsilanes. Org. Biomol. Chem., 2021, 19(19), 4254-4257.
[http://dx.doi.org/10.1039/D1OB00595B] [PMID: 33890598]
[74]
Komiyama, T.; Minami, Y.; Hiyama, T. Aryl(triethyl)silanes for biaryl and teraryl synthesis by copper(ii)-catalyzed cross-coupling reaction. Angew. Chem. Int. Ed., 2016, 55(51), 15787-15791.
[http://dx.doi.org/10.1002/anie.201608667] [PMID: 27860116]
[75]
Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Nickel-catalyzed direct C-H arylation and alkenylation of heteroarenes with organosilicon reagents. Angew. Chem. Int. Ed., 2010, 49(12), 2202-2205.
[http://dx.doi.org/10.1002/anie.200906996] [PMID: 20187054]
[76]
Zhang, J.; Hou, Y.; Ma, Y.; Szostak, M. Synthesis of amides by mild palladium-catalyzed aminocarbonylation of arylsilanes with amines enabled by copper(II) fluoride. J. Org. Chem., 2019, 84(1), 338-345.
[http://dx.doi.org/10.1021/acs.joc.8b02874] [PMID: 30520306]
[77]
Ball, L.T.; Green, M.; Lloyd-Jones, G.C.; Russell, C.A. Arylsilanes: Application to gold-catalyzed oxyarylation of alkenes. Org. Lett., 2010, 12(21), 4724-4727.
[http://dx.doi.org/10.1021/ol1019162] [PMID: 20879724]
[78]
Li, J.; Yin, H.; Zhai, C.; Wang, A.; Shen, L. Synthesis of polyphenylmethylsiloxanes and their enhancement on tribological properties of titanium complex grease. J. Appl. Polym. Sci., 2019, 136(10), 47168.
[http://dx.doi.org/10.1002/app.47168]
[79]
Razak, A.H.A.; Skov, A.L. Silicone elastomers with covalently incorporated aromatic voltage stabilisers. RSC Advances, 2017, 7(1), 468-477.
[http://dx.doi.org/10.1039/C6RA25878F]
[80]
Yu, Y.; Zhao, Y.; Huang, B.; Ji, Y.; Zhao, Y.; Zhang, Z.; Fei, H.F. Dielectric properties and dielectric relaxation process of polymethylphenylsiloxane/silicon dioxide nanocomposites. J. Appl. Polym. Sci., 2022, 139(31), e52716.
[http://dx.doi.org/10.1002/app.52716]
[81]
Li, Z.F.; Huang, J.B.; Lai, G.Q.; Jiang, J.X.; Zhang, Y.M. Synthesis of Si-H functional Poly(phenylsilane) and organosilane copolymers: Low-valent titanium induced polymerization of organodichlorosilanes. Chin. J. Chem., 2008, 26(9), 1693-1696.
[http://dx.doi.org/10.1002/cjoc.200890306]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy