Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Current Strategies for Promoting the Large-scale Production of Exosomes

Author(s): Qing Qu, Bin Fu, Yong Long, Zi-Yu Liu and Xiao-Hong Tian*

Volume 21, Issue 9, 2023

Published on: 09 March, 2023

Page: [1964 - 1979] Pages: 16

DOI: 10.2174/1570159X21666230216095938

Price: $65

Abstract

Exosomes, as nanoscale biological vesicles, have been shown to have great potential for biomedical applications. However, the low yield of exosomes limits their application. In this review, we focus on methods to increase exosome yield. Two main strategies are used to increase exosome production, one is based on genetic manipulation of the exosome biogenesis and release pathway, and the other is by pretreating parent cells, changing the culture method or adding different components to the medium. By applying these strategies, exosomes can be produced on a large scale to facilitate their practical application in the clinic.

Graphical Abstract

[1]
Zaborowski, M.P.; Balaj, L.; Breakefield, X.O.; Lai, C.P. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience, 2015, 65(8), 783-797.
[http://dx.doi.org/10.1093/biosci/biv084] [PMID: 26955082]
[2]
Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; Fissell, W.H.; Patton, J.G.; Rome, L.H.; Burnette, D.T.; Coffey, R.J. Reassessment of Exosome Composition. Cell, 2019, 177(2), 428-445.e18.
[http://dx.doi.org/10.1016/j.cell.2019.02.029] [PMID: 30951670]
[3]
Doyle, L.; Wang, M. Overview of Extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[4]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; Del Portillo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; El Andaloussi, S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.I.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M. Kosanović M.M.; Kovács, Á. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[PMID: 30637094]
[5]
Wang, J.; Yue, B.L.; Huang, Y.Z.; Lan, X.Y.; Liu, W.J.; Chen, H. Exosomal RNAs: Novel potential biomarkers for diseases—A review. Int. J. Mol. Sci., 2022, 23(5), 2461.
[http://dx.doi.org/10.3390/ijms23052461] [PMID: 35269604]
[6]
Wiklander, O.P.B.; Brennan, M.Á.; Lötvall, J.; Breakefield, X.O.E.L; Andaloussi, S. S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med., 2019, 11(492), eaav8521.
[http://dx.doi.org/10.1126/scitranslmed.aav8521] [PMID: 31092696]
[7]
Nassar, W.; El-Ansary, M.; Sabry, D.; Mostafa, M.A.; Fayad, T.; Kotb, E.; Temraz, M.; Saad, A.N.; Essa, W.; Adel, H. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater. Res., 2016, 20(1), 21.
[http://dx.doi.org/10.1186/s40824-016-0068-0] [PMID: 27499886]
[8]
Sun, X.; Meng, H.; Wan, W.; Xie, M.; Wen, C. Application potential of stem/progenitor cell-derived extracellular vesicles in renal diseases. Stem Cell Res. Ther., 2019, 10(1), 8.
[http://dx.doi.org/10.1186/s13287-018-1097-5] [PMID: 30616603]
[9]
He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics, 2018, 8(1), 237-255.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[10]
Qin, B.; Zhang, Q.; Chen, D.; Yu, H.Y.; Luo, A.X.; Suo, L.P.; Cai, Y.; Cai, D.Y.; Luo, J.; Huang, J.F.; Xiong, K. Extracellular vesicles derived from mesenchymal stem cells: A platform that can be engineered. Histol. Histopathol., 2021, 36(6), 615-632.
[PMID: 33398872]
[11]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[12]
Henne, W.M.; Buchkovich, N.J.; Emr, S.D. The ESCRT Pathway. Dev. Cell, 2011, 21(1), 77-91.
[http://dx.doi.org/10.1016/j.devcel.2011.05.015] [PMID: 21763610]
[13]
Raiborg, C.; Wesche, J.; Malerød, L.; Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci., 2006, 119(12), 2414-2424.
[http://dx.doi.org/10.1242/jcs.02978] [PMID: 16720641]
[14]
Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci., 2019, 9(1), 19.
[http://dx.doi.org/10.1186/s13578-019-0282-2] [PMID: 30815248]
[15]
Wollert, T.; Hurley, J.H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature, 2010, 464(7290), 864-869.
[http://dx.doi.org/10.1038/nature08849] [PMID: 20305637]
[16]
Isaac, R.; Reis, F.C.G.; Ying, W.; Olefsky, J.M. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab., 2021, 33(9), 1744-1762.
[http://dx.doi.org/10.1016/j.cmet.2021.08.006] [PMID: 34496230]
[17]
Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther., 2018, 188, 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.013] [PMID: 29476772]
[18]
Hao, Y.; Song, H.; Zhou, Z.; Chen, X.; Li, H.; Zhang, Y.; Wang, J.; Ren, X.; Wang, X. Promotion or inhibition of extracellular vesicle release: Emerging therapeutic opportunities. J. Control. Release, 2021, 340, 136-148.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.019] [PMID: 34695524]
[19]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[20]
Luo, L.; Wu, Z.; Wang, Y.; Li, H. Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. J. Nanobiotechnology, 2021, 19(1), 422.
[http://dx.doi.org/10.1186/s12951-021-01171-1] [PMID: 34906146]
[21]
Jafari, D.; Malih, S.; Eini, M.; Jafari, R.; Gholipourmalekabadi, M.; Sadeghizadeh, M.; Samadikuchaksaraei, A. Improvement, scaling-up, and downstream analysis of exosome production. Crit. Rev. Biotechnol., 2020, 40(8), 1098-1112.
[http://dx.doi.org/10.1080/07388551.2020.1805406] [PMID: 32772758]
[22]
Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.E.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun., 2018, 9(1), 1305.
[http://dx.doi.org/10.1038/s41467-018-03733-8] [PMID: 29610454]
[23]
Xiong, Y.; Tang, R.; Xu, J.; Jiang, W.; Gong, Z.; Zhang, L.; Li, X.; Ning, Y.; Huang, P.; Xu, J.; Chen, G.; Jin, C.; Li, X.; Qian, H.; Yang, Y. Sequential transplantation of exosomes and mesenchymal stem cells pretreated with a combination of hypoxia and Tongxinluo efficiently facilitates cardiac repair. Stem Cell Res. Ther., 2022, 13(1), 63.
[http://dx.doi.org/10.1186/s13287-022-02736-z] [PMID: 35130979]
[24]
Gao, W.; He, R.; Ren, J.; Zhang, W.; Wang, K.; Zhu, L.; Liang, T. Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1α pathway. FEBS Open Bio, 2021, 11(5), 1364-1373.
[http://dx.doi.org/10.1002/2211-5463.13142] [PMID: 33711197]
[25]
He, G.; Peng, X.; Wei, S.; Yang, S.; Li, X.; Huang, M.; Tang, S.; Jin, H.; Liu, J.; Zhang, S.; Zheng, H.; Fan, Q.; Liu, J.; Yang, L.; Li, H. Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Mol. Cancer, 2022, 21(1), 19.
[http://dx.doi.org/10.1186/s12943-021-01440-5] [PMID: 35039054]
[26]
Kumar, A.; Deep, G. Hypoxia in tumor microenvironment regulates exosome biogenesis: Molecular mechanisms and translational opportunities. Cancer Lett., 2020, 479, 23-30.
[http://dx.doi.org/10.1016/j.canlet.2020.03.017] [PMID: 32201202]
[27]
Rosová, I.; Dao, M.; Capoccia, B.; Link, D.; Nolta, J.A. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 2008, 26(8), 2173-2182.
[http://dx.doi.org/10.1634/stemcells.2007-1104] [PMID: 18511601]
[28]
Liu, W.; Li, L.; Rong, Y.; Qian, D.; Chen, J.; Zhou, Z.; Luo, Y.; Jiang, D.; Cheng, L.; Zhao, S.; Kong, F.; Wang, J.; Zhou, Z.; Xu, T.; Gong, F.; Huang, Y.; Gu, C.; Zhao, X.; Bai, J.; Wang, F.; Zhao, W.; Zhang, L.; Li, X.; Yin, G.; Fan, J.; Cai, W. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater., 2020, 103, 196-212.
[http://dx.doi.org/10.1016/j.actbio.2019.12.020] [PMID: 31857259]
[29]
Panigrahi, G.K.; Praharaj, P.P.; Peak, T.C.; Long, J.; Singh, R.; Rhim, J.S.; Abd Elmageed, Z.Y.; Deep, G. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci. Rep., 2018, 8(1), 3853.
[http://dx.doi.org/10.1038/s41598-018-22068-4] [PMID: 29497081]
[30]
Gupta, S.; Rawat, S.; Krishnakumar, V.; Rao, E.P.; Mohanty, S. Hypoxia preconditioning elicit differential response in tissue-specific MSCs via immunomodulation and exosomal secretion. Cell Tissue Res., 2022, 388(3), 535-548.
[http://dx.doi.org/10.1007/s00441-022-03615-y] [PMID: 35316374]
[31]
Dorayappan, K.D.P.; Wanner, R.; Wallbillich, J.J.; Saini, U.; Zingarelli, R.; Suarez, A.A.; Cohn, D.E.; Selvendiran, K. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene, 2018, 37(28), 3806-3821.
[http://dx.doi.org/10.1038/s41388-018-0189-0] [PMID: 29636548]
[32]
Song, Y.; Dou, H.; Li, X.; Zhao, X.; Li, Y.; Liu, D.; Ji, J.; Liu, F.; Ding, L.; Ni, Y.; Hou, Y. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells, 2017, 35(5), 1208-1221.
[http://dx.doi.org/10.1002/stem.2564] [PMID: 28090688]
[33]
Kim, M.; Shin, D.I.; Choi, B.H.; Min, B.H. Exosomes from IL-1β-primed mesenchymal stem cells inhibited IL-1β- and TNF-α-mediated inflammatory responses in osteoarthritic SW982 cells. Tissue Eng. Regen. Med., 2021, 18(4), 525-536.
[http://dx.doi.org/10.1007/s13770-020-00324-x] [PMID: 33495946]
[34]
Nakao, Y.; Fukuda, T.; Zhang, Q.; Sanui, T.; Shinjo, T.; Kou, X.; Chen, C.; Liu, D.; Watanabe, Y.; Hayashi, C.; Yamato, H.; Yotsumoto, K.; Tanaka, U.; Taketomi, T.; Uchiumi, T.; Le, A.D.; Shi, S.; Nishimura, F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater., 2021, 122, 306-324.
[http://dx.doi.org/10.1016/j.actbio.2020.12.046] [PMID: 33359765]
[35]
Sung, D.K.; Sung, S.I.; Ahn, S.Y.; Chang, Y.S.; Park, W.S. Thrombin preconditioning boosts biogenesis of extracellular vesicles from mesenchymal stem cells and enriches their cargo contents via protease-activated receptor-mediated signaling pathways. Int. J. Mol. Sci., 2019, 20(12), 2899.
[http://dx.doi.org/10.3390/ijms20122899] [PMID: 31197089]
[36]
Nakamura, Y.; Kita, S.; Tanaka, Y.; Fukuda, S.; Obata, Y.; Okita, T.; Nishida, H.; Takahashi, Y.; Kawachi, Y.; Tsugawa-Shimizu, Y.; Fujishima, Y.; Nishizawa, H.; Takakura, Y.; Miyagawa, S.; Sawa, Y.; Maeda, N.; Shimomura, I. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol. Ther., 2020, 28(10), 2203-2219.
[http://dx.doi.org/10.1016/j.ymthe.2020.06.026] [PMID: 32652045]
[37]
Wang, J.; Bonacquisti, E.E.; Brown, A.D.; Nguyen, J. Boosting the biogenesis and secretion of mesenchymal stem cell-derived exosomes. Cells, 2020, 9(3), 660.
[http://dx.doi.org/10.3390/cells9030660] [PMID: 32182815]
[38]
Li, J.; Lee, Y.; Johansson, H.J.; Mäger, I.; Vader, P.; Nordin, J.Z.; Wiklander, O.P.B.; Lehtiö, J.; Wood, M.J.A.; Andaloussi, S.E.L. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J. Extracell. Vesicles, 2015, 4(1), 26883.
[http://dx.doi.org/10.3402/jev.v4.26883] [PMID: 26022510]
[39]
Bost, J.P.; Saher, O.; Hagey, D.; Mamand, D.R.; Liang, X.; Zheng, W.; Corso, G.; Gustafsson, O.; Görgens, A.; Smith, C.I.E.; Zain, R.; El Andaloussi, S.; Gupta, D. Growth media conditions influence the secretion route and release levels of engineered extracellular vesicles. Adv. Healthc. Mater., 2022, 11(5), 2101658.
[http://dx.doi.org/10.1002/adhm.202101658] [PMID: 34773385]
[40]
Marzano, M.; Bou-Dargham, M.J.; Cone, A.S.; York, S.; Helsper, S.; Grant, S.C.; Meckes, D.G., Jr; Sang, Q.X.A.; Li, Y. Biogenesis of extracellular vesicles produced from human-stem-cell-derived cortical spheroids exposed to iron oxides. ACS Biomater. Sci. Eng., 2021, 7(3), 1111-1122.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01286] [PMID: 33525864]
[41]
Ji, Y.; Han, W.; Fu, X.; Li, J.; Wu, Q.; Wang, Y. Improved small extracellular vesicle secretion of rat adipose-derived stem cells by microgrooved substrates through Upregulation of the ESCRT-III-associated protein alix. Adv. Healthc. Mater., 2021, 10(16), 2100492.
[http://dx.doi.org/10.1002/adhm.202100492] [PMID: 34176241]
[42]
Yang, Q.; Nanayakkara, G.K.; Drummer, C.; Sun, Y.; Johnson, C.; Cueto, R.; Fu, H.; Shao, Y.; Wang, L.; Yang, W.Y.; Tang, P.; Liu, L.W.; Ge, S.; Zhou, X.D.; Khan, M.; Wang, H.; Yang, X. Low-intensity ultrasound-induced anti-inflammatory effects are mediated by several new mechanisms including gene induction, immunosuppressor cell promotion, and enhancement of exosome biogenesis and docking. Front. Physiol., 2017, 8, 818.
[http://dx.doi.org/10.3389/fphys.2017.00818] [PMID: 29109687]
[43]
Ambattu, L.A.; Ramesan, S.; Dekiwadia, C.; Hanssen, E.; Li, H.; Yeo, L.Y. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun. Biol., 2020, 3(1), 553.
[http://dx.doi.org/10.1038/s42003-020-01277-6] [PMID: 33020585]
[44]
Mayo, J.S.; Kurata, W.E.; O’Connor, K.M.; Pierce, L.M. Oxidative stress alters angiogenic and antimicrobial content of extracellular vesicles and improves flap survival. Plast. Reconstr. Surg. Glob. Open, 2019, 7(12), e2588.
[http://dx.doi.org/10.1097/GOX.0000000000002588] [PMID: 32537316]
[45]
Bala, S.; Babuta, M.; Catalano, D.; Saiju, A.; Szabo, G. Alcohol promotes exosome biogenesis and release via modulating rabs and miR-192 expression in human hepatocytes. Front. Cell Dev. Biol., 2022, 9, 787356.
[http://dx.doi.org/10.3389/fcell.2021.787356] [PMID: 35096820]
[46]
Mukherjee, S.; Cabrera, M.A.; Boyadjieva, N.I.; Berger, G.; Rousseau, B.; Sarkar, D.K. Alcohol increases exosome release from microglia to promote complement c1q-induced cellular death of proopiomelanocortin neurons in the hypothalamus in a rat model of fetal alcohol spectrum disorders. J. Neurosci., 2020, 40(41), 7965-7979.
[http://dx.doi.org/10.1523/JNEUROSCI.0284-20.2020] [PMID: 32887744]
[47]
Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.; Molaei, F.; Alahari, S.K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer, 2019, 18(1), 75.
[http://dx.doi.org/10.1186/s12943-019-0991-5] [PMID: 30940145]
[48]
Wei, Y.; Wang, D.; Jin, F.; Bian, Z.; Li, L.; Liang, H.; Li, M.; Shi, L.; Pan, C.; Zhu, D.; Chen, X.; Hu, G.; Liu, Y.; Zhang, C.Y.; Zen, K. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat. Commun., 2017, 8(1), 14041.
[http://dx.doi.org/10.1038/ncomms14041] [PMID: 28067230]
[49]
McAndrews, K.M.; Kalluri, R. Mechanisms associated with biogenesis of exosomes in cancer. Mol. Cancer, 2019, 18(1), 52.
[http://dx.doi.org/10.1186/s12943-019-0963-9] [PMID: 30925917]
[50]
Riazifar, M.; Mohammadi, M.R.; Pone, E.J.; Yeri, A.; Lässer, C.; Segaliny, A.I.; McIntyre, L.L.; Shelke, G.V.; Hutchins, E.; Hamamoto, A.; Calle, E.N.; Crescitelli, R.; Liao, W.; Pham, V.; Yin, Y.; Jayaraman, J.; Lakey, J.R.T.; Walsh, C.M.; Van Keuren-Jensen, K.; Lotvall, J.; Zhao, W. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano, 2019, 13(6), 6670-6688.
[http://dx.doi.org/10.1021/acsnano.9b01004] [PMID: 31117376]
[51]
Beyer Nardi, N.; da Silva Meirelles, L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb. Exp. Pharmacol., 2006, 174(174), 249-282.
[http://dx.doi.org/10.1007/3-540-31265-X_11] [PMID: 16370331]
[52]
Kalsi, K.; Lawson, C.; Dominguez, M.; Taylor, P.; Yacoub, M.H.; Smolenski, R.T. Regulation of ecto-5'-nucleotidase by TNF-alpha in human endothelial cells. Mol. Cell. Biochem., 2002, 232(1/2), 113-119.
[http://dx.doi.org/10.1023/A:1014806916844] [PMID: 12030367]
[53]
Brisevac, D.; Bjelobaba, I.; Bajic, A.; Clarner, T.; Stojiljkovic, M.; Beyer, C.; Andjus, P.; Kipp, M.; Nedeljkovic, N. Regulation of ecto-5'-nucleotidase (CD73) in cultured cortical astrocytes by different inflammatory factors. Neurochem. Int., 2012, 61(5), 681-688.
[http://dx.doi.org/10.1016/j.neuint.2012.06.017] [PMID: 22750273]
[54]
Giacomelli, C.; Natali, L.; Nisi, M.; De Leo, M.; Daniele, S.; Costa, B.; Graziani, F.; Gabriele, M.; Braca, A.; Trincavelli, M.L.; Martini, C. Negative effects of a high tumour necrosis factor-α concentration on human gingival mesenchymal stem cell trophism: the use of natural compounds as modulatory agents. Stem Cell Res. Ther., 2018, 9(1), 135.
[http://dx.doi.org/10.1186/s13287-018-0880-7] [PMID: 29751776]
[55]
Huang, C.; Luo, W.F.; Ye, Y.F.; Lin, L.; Wang, Z.; Luo, M.H.; Song, Q.D.; He, X.P.; Chen, H.W.; Kong, Y.; Tang, Y.K. Characterization of inflammatory factor-induced changes in mesenchymal stem cell exosomes and sequencing analysis of exosomal microRNAs. World J. Stem Cells, 2019, 11(10), 859-890.
[http://dx.doi.org/10.4252/wjsc.v11.i10.859] [PMID: 31692888]
[56]
Sung, D.K.; Chang, Y.S.; Sung, S.I.; Ahn, S.Y.; Park, W.S. Thrombin preconditioning of extracellular vesicles derived from mesenchymal stem cells accelerates cutaneous wound healing by boosting their biogenesis and enriching cargo content. J. Clin. Med., 2019, 8(4), 533.
[http://dx.doi.org/10.3390/jcm8040533] [PMID: 31003433]
[57]
Kita, S.; Maeda, N.; Shimomura, I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Invest., 2019, 129(10), 4041-4049.
[http://dx.doi.org/10.1172/JCI129193] [PMID: 31483293]
[58]
Obata, Y.; Kita, S.; Koyama, Y.; Fukuda, S.; Takeda, H.; Takahashi, M.; Fujishima, Y.; Nagao, H.; Masuda, S.; Tanaka, Y.; Nakamura, Y.; Nishizawa, H.; Funahashi, T.; Ranscht, B.; Izumi, Y.; Bamba, T.; Fukusaki, E.; Hanayama, R.; Shimada, S.; Maeda, N.; Shimomura, I. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight, 2018, 3(8), e99680.
[http://dx.doi.org/10.1172/jci.insight.99680] [PMID: 29669945]
[59]
Kita, S.; Shimomura, I. Stimulation of exosome biogenesis by adiponectin, a circulating factor secreted from adipocytes. J. Biochem., 2021, 169(2), 173-179.
[http://dx.doi.org/10.1093/jb/mvaa105] [PMID: 32979268]
[60]
Holley, R.J.; Tai, G.; Williamson, A.J.K.; Taylor, S.; Cain, S.A.; Richardson, S.M.; Merry, C.L.R.; Whetton, A.D.; Kielty, C.M.; Canfield, A.E. Comparative quantification of the surfaceome of human multipotent mesenchymal progenitor cells. Stem Cell Reports, 2015, 4(3), 473-488.
[http://dx.doi.org/10.1016/j.stemcr.2015.01.007] [PMID: 25684225]
[61]
Zheng, H.; Liang, X.; Han, Q.; Shao, Z.; Zhang, Y.; Shi, L.; Hong, Y.; Li, W.; Mai, C.; Mo, Q.; Fu, Q.; Ma, X.; Lin, F.; Li, M.; Hu, B.; Li, X.; Zhang, Y. Hemin enhances the cardioprotective effects of mesenchymal stem cell-derived exosomes against infarction via amelioration of cardiomyocyte senescence. J. Nanobiotechnology, 2021, 19(1), 332.
[http://dx.doi.org/10.1186/s12951-021-01077-y] [PMID: 34674708]
[62]
Liang, B.; Liang, J.M.; Ding, J.N.; Xu, J.; Xu, J.G.; Chai, Y.M. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res. Ther., 2019, 10(1), 335.
[http://dx.doi.org/10.1186/s13287-019-1410-y] [PMID: 31747933]
[63]
Li, X.; Su, Z.; Shen, K.; Wang, Q.; Xu, C.; Wang, F.; Zhang, Y.; Jiang, D. Eugenol-preconditioned mesenchymal stem cell-derived extracellular vesicles promote antioxidant capacity of tendon stem cells in vitro and in vivo. Oxid. Med. Cell. Longev., 2022, 2022, 1-20.
[http://dx.doi.org/10.1155/2022/3945195] [PMID: 35178155]
[64]
Yu, M.; Liu, W.; Li, J.; Lu, J.; Lu, H.; Jia, W.; Liu, F. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res. Ther., 2020, 11(1), 350.
[http://dx.doi.org/10.1186/s13287-020-01824-2] [PMID: 32787917]
[65]
Huang, P.; Wang, L.; Li, Q.; Tian, X.; Xu, J.; Xu, J.; Xiong, Y.; Chen, G.; Qian, H.; Jin, C.; Yu, Y.; Cheng, K.; Qian, L.; Yang, Y. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res., 2020, 116(2), 353-367.
[http://dx.doi.org/10.1093/cvr/cvz139] [PMID: 31119268]
[66]
Fu, M.; Xie, D.; Sun, Y.; Pan, Y.; Zhang, Y.; Chen, X.; Shi, Y.; Deng, S.; Cheng, B. Exosomes derived from MSC pre-treated with oridonin alleviates myocardial IR injury by suppressing apoptosis via regulating autophagy activation. J. Cell. Mol. Med., 2021, 25(12), 5486-5496.
[http://dx.doi.org/10.1111/jcmm.16558] [PMID: 33955654]
[67]
Hu, Y.; Tao, R.; Chen, L.; Xiong, Y.; Xue, H.; Hu, L.; Yan, C.; Xie, X.; Lin, Z.; Panayi, A.C.; Mi, B.; Liu, G. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J. Nanobiotechnology, 2021, 19(1), 150.
[http://dx.doi.org/10.1186/s12951-021-00894-5] [PMID: 34020670]
[68]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[69]
Yao, X.; Liu, Y.; Gao, J.; Yang, L.; Mao, D.; Stefanitsch, C.; Li, Y.; Zhang, J.; Ou, L.; Kong, D.; Zhao, Q.; Li, Z. Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials, 2015, 60, 130-140.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.046] [PMID: 25988728]
[70]
Du, W.; Zhang, K.; Zhang, S.; Wang, R.; Nie, Y.; Tao, H.; Han, Z.; Liang, L.; Wang, D.; Liu, J.; Liu, N.; Han, Z.; Kong, D.; Zhao, Q.; Li, Z. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials, 2017, 133, 70-81.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.030] [PMID: 28433939]
[71]
Shelke, G.V.; Lässer, C.; Gho, Y.S.; Lötvall, J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J. Extracell. Vesicles, 2014, 3(1), 24783.
[http://dx.doi.org/10.3402/jev.v3.24783] [PMID: 25317276]
[72]
Eitan, E.; Zhang, S.; Witwer, K.W.; Mattson, M.P. Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth. J. Extracell. Vesicles, 2015, 4(1), 26373.
[http://dx.doi.org/10.3402/jev.v4.26373] [PMID: 25819213]
[73]
Lehrich, B.; Liang, Y.; Khosravi, P.; Federoff, H.; Fiandaca, M. Fetal bovine serum-derived extracellular vesicles persist within vesicle-depleted culture media. Int. J. Mol. Sci., 2018, 19(11), 3538.
[http://dx.doi.org/10.3390/ijms19113538] [PMID: 30423996]
[74]
Kornilov, R.; Puhka, M.; Mannerström, B.; Hiidenmaa, H.; Peltoniemi, H.; Siljander, P.; Seppänen-Kaijansinkko, R.; Kaur, S. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J. Extracell. Vesicles, 2018, 7(1), 1422674.
[http://dx.doi.org/10.1080/20013078.2017.1422674] [PMID: 29410778]
[75]
Gerby, S.; Attebi, E.; Vlaski, M.; Ivanovic, Z. A new clinical-scale serum-free xeno-free medium efficient in ex vivo amplification of mesenchymal stromal cells does not support mesenchymal stem cells. Transfusion, 2017, 57(2), 433-439.
[http://dx.doi.org/10.1111/trf.13902] [PMID: 27861973]
[76]
Yoshida, K.; Nakashima, A.; Doi, S.; Ueno, T.; Okubo, T.; Kawano, K.; Kanawa, M.; Kato, Y.; Higashi, Y.; Masaki, T. Serum-free medium enhances the immunosuppressive and antifibrotic abilities of mesenchymal stem cells utilized in experimental renal fibrosis. Stem Cells Transl. Med., 2018, 7(12), 893-905.
[http://dx.doi.org/10.1002/sctm.17-0284] [PMID: 30269426]
[77]
Kim, J.Y.; Rhim, W.K.; Seo, H.J.; Lee, J.Y.; Park, C.G.; Han, D.K. Comparative analysis of MSC-derived exosomes depending on cell culture media for regenerative bioactivity. Tissue Eng. Regen. Med., 2021, 18(3), 355-367.
[http://dx.doi.org/10.1007/s13770-021-00352-1] [PMID: 34047999]
[78]
Figueroa-Valdés, A.I.; de la Fuente, C.; Hidalgo, Y.; Vega-Letter, A.M.; Tapia-Limonchi, R.; Khoury, M.; Alcayaga-Miranda, F. A chemically defined, xeno- and blood-free culture medium sustains increased production of small extracellular vesicles from mesenchymal stem cells. Front. Bioeng. Biotechnol., 2021, 9, 619930.
[http://dx.doi.org/10.3389/fbioe.2021.619930] [PMID: 34124014]
[79]
Haraszti, R.A.; Miller, R.; Dubuke, M.L.; Rockwell, H.E.; Coles, A.H.; Sapp, E.; Didiot, M.C.; Echeverria, D.; Stoppato, M.; Sere, Y.Y.; Leszyk, J.; Alterman, J.F.; Godinho, B.M.D.C.; Hassler, M.R.; McDaniel, J.; Narain, N.R.; Wollacott, R.; Wang, Y.; Shaffer, S.A.; Kiebish, M.A.; DiFiglia, M.; Aronin, N.; Khvorova, A. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience, 2019, 16, 230-241.
[http://dx.doi.org/10.1016/j.isci.2019.05.029] [PMID: 31195240]
[80]
Lehrich, B.M.; Liang, Y.; Fiandaca, M.S. Foetal bovine serum influence on in vitro extracellular vesicle analyses. J. Extracell. Vesicles, 2021, 10(3), e12061.
[http://dx.doi.org/10.1002/jev2.12061] [PMID: 33532042]
[81]
Xu, C.; Hou, L.; Zhao, J.; Wang, Y.; Jiang, F.; Jiang, Q.; Zhu, Z.; Tian, L. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1. Ecotoxicol. Environ. Saf., 2022, 233, 113302.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113302] [PMID: 35189518]
[82]
Su, N.; Gao, P.L.; Wang, K.; Wang, J.Y.; Zhong, Y.; Luo, Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials, 2017, 141, 74-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.028] [PMID: 28667901]
[83]
Huang, R.; Wang, J.; Chen, H.; Shi, X.; Wang, X.; Zhu, Y.; Tan, Z. The topography of fibrous scaffolds modulates the paracrine function of Ad-MSCs in the regeneration of skin tissues. Biomater. Sci., 2019, 7(10), 4248-4259.
[http://dx.doi.org/10.1039/C9BM00939F] [PMID: 31393466]
[84]
Yan, L.; Wu, X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Biol. Toxicol., 2020, 36(2), 165-178.
[http://dx.doi.org/10.1007/s10565-019-09504-5] [PMID: 31820164]
[85]
Yang, L.; Zhai, Y.; Hao, Y.; Zhu, Z.; Cheng, G. The regulatory functionality of exosomes derived from humscs in 3d culture for alzheimer’s disease therapy. Small, 2020, 16(3), 1906273.
[http://dx.doi.org/10.1002/smll.201906273] [PMID: 31840420]
[86]
Cao, J.; Wang, B.; Tang, T.; Lv, L.; Ding, Z.; Li, Z.; Hu, R.; Wei, Q.; Shen, A.; Fu, Y.; Liu, B. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res. Ther., 2020, 11(1), 206.
[http://dx.doi.org/10.1186/s13287-020-01719-2] [PMID: 32460853]
[87]
Yu, W.; Li, S.; Guan, X.; Zhang, N.; Xie, X.; Zhang, K.; Bai, Y. Higher yield and enhanced therapeutic effects of exosomes derived from MSCs in hydrogel-assisted 3D culture system for bone regeneration. Biomaterials Advances, 2022, 133, 112646.
[http://dx.doi.org/10.1016/j.msec.2022.112646] [PMID: 35067433]
[88]
Kim, M.; Yun, H.W.; Park, D.Y.; Choi, B.H.; Min, B.H. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells. Tissue Eng. Regen. Med., 2018, 15(4), 427-436.
[http://dx.doi.org/10.1007/s13770-018-0139-5] [PMID: 30603566]
[89]
Zhang, Y.; Chen, J.; Fu, H.; Kuang, S.; He, F.; Zhang, M.; Shen, Z.; Qin, W.; Lin, Z.; Huang, S. Exosomes derived from 3D-cultured MSCs improve therapeutic effects in periodontitis and experimental colitis and restore the Th17 cell/Treg balance in inflamed periodontium. Int. J. Oral Sci., 2021, 13(1), 43.
[http://dx.doi.org/10.1038/s41368-021-00150-4] [PMID: 34907166]
[90]
Haraszti, R.A.; Miller, R.; Stoppato, M.; Sere, Y.Y.; Coles, A.; Didiot, M.C.; Wollacott, R.; Sapp, E.; Dubuke, M.L.; Li, X.; Shaffer, S.A.; DiFiglia, M.; Wang, Y.; Aronin, N.; Khvorova, A. Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity. Mol. Ther., 2018, 26(12), 2838-2847.
[http://dx.doi.org/10.1016/j.ymthe.2018.09.015] [PMID: 30341012]
[91]
Wang, N.; Li, X.; Zhong, Z.; Qiu, Y.; Liu, S.; Wu, H.; Tang, X.; Chen, C.; Fu, Y.; Chen, Q.; Guo, T.; Li, J.; Zhang, S.; Zern, M.A.; Ma, K.; Wang, B.; Ou, Y.; Gu, W.; Cao, J.; Chen, H.; Duan, Y. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J. Nanobiotechnology, 2021, 19(1), 437.
[http://dx.doi.org/10.1186/s12951-021-01138-2] [PMID: 34930304]
[92]
Liu, L.; Liu, Y.; Feng, C.; Chang, J.; Fu, R.; Wu, T.; Yu, F.; Wang, X.; Xia, L.; Wu, C.; Fang, B. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials, 2019, 192, 523-536.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.007] [PMID: 30529871]
[93]
Wasupalli, G.K.; Verma, D. Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering. Mater. Sci. Eng. C, 2020, 107, 110343.
[http://dx.doi.org/10.1016/j.msec.2019.110343] [PMID: 31761212]
[94]
Sun, J.; Mou, C.; Shi, Q.; Chen, B.; Hou, X.; Zhang, W.; Li, X.; Zhuang, Y.; Shi, J.; Chen, Y.; Dai, J. Controlled release of collagen-binding SDF-1α from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model. Biomaterials, 2018, 162, 22-33.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.008] [PMID: 29428676]
[95]
Liu, Y.; Cui, J.; Wang, H.; Hezam, K.; Zhao, X.; Huang, H.; Chen, S.; Han, Z.; Han, Z.C.; Guo, Z.; Li, Z. Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment. Stem Cell Res. Ther., 2020, 11(1), 161.
[http://dx.doi.org/10.1186/s13287-020-01668-w] [PMID: 32321594]
[96]
Wu, Z.; He, D.; Li, H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact. Mater., 2021, 6(3), 823-835.
[http://dx.doi.org/10.1016/j.bioactmat.2020.09.011] [PMID: 33024902]
[97]
Gardin, C.; Ferroni, L. Erdoğan, Y.K.; Zanotti, F.; De Francesco, F.; Trentini, M.; Brunello, G.; Ercan, B.; Zavan, B. Nanostructured modifications of titanium surfaces improve vascular regenerative properties of exosomes derived from mesenchymal stem cells: preliminary in vitro results. Nanomaterials (Basel), 2021, 11(12), 3452.
[http://dx.doi.org/10.3390/nano11123452] [PMID: 34947800]
[98]
Park, D.J.; Yun, W.S.; Kim, W.C.; Park, J.E.; Lee, S.H.; Ha, S.; Choi, J.S.; Key, J.; Seo, Y.J. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles. J. Nanobiotechnology, 2020, 18(1), 178.
[http://dx.doi.org/10.1186/s12951-020-00739-7] [PMID: 33287848]
[99]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Palladium nanoparticle-induced oxidative stress, endoplasmic reticulum stress, apoptosis, and immunomodulation enhance the biogenesis and release of exosome in human leukemia monocytic cells (THP-1). Int. J. Nanomedicine, 2021, 16, 2849-2877.
[http://dx.doi.org/10.2147/IJN.S305269] [PMID: 33883895]
[100]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): Oxidative stress and the ceramide pathway are key players. Int. J. Nanomedicine, 2021, 16, 515-538.
[http://dx.doi.org/10.2147/IJN.S291138] [PMID: 33519199]
[101]
Álvarez-Viejo, M. Mesenchymal stem cells from different sources and their derived exosomes: A pre-clinical perspective. World J. Stem Cells, 2020, 12(2), 100-109.
[http://dx.doi.org/10.4252/wjsc.v12.i2.100] [PMID: 32184935]
[102]
Hass, R.; Kasper, C.; Böhm, S.; Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal., 2011, 9(1), 12.
[http://dx.doi.org/10.1186/1478-811X-9-12] [PMID: 21569606]
[103]
Tracy, S.A.; Ahmed, A.; Tigges, J.C.; Ericsson, M.; Pal, A.K.; Zurakowski, D.; Fauza, D.O. A comparison of clinically relevant sources of mesenchymal stem cell-derived exosomes: Bone marrow and amniotic fluid. J. Pediatr. Surg., 2019, 54(1), 86-90.
[http://dx.doi.org/10.1016/j.jpedsurg.2018.10.020] [PMID: 30361074]
[104]
Ji, L.; Bao, L.; Gu, Z.; Zhou, Q.; Liang, Y.; Zheng, Y.; Xu, Y.; Zhang, X.; Feng, X. Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunol. Res., 2019, 67(4-5), 432-442.
[http://dx.doi.org/10.1007/s12026-019-09088-6] [PMID: 31407157]
[105]
Liao, Q.; Li, B.J.; Li, Y.; Xiao, Y.; Zeng, H.; Liu, J.M.; Yuan, L.X.; Liu, G. Low-intensity pulsed ultrasound promotes osteoarthritic cartilage regeneration by BMSC-derived exosomes via modulating the NF-κB signaling pathway. Int. Immunopharmacol., 2021, 97, 107824.
[http://dx.doi.org/10.1016/j.intimp.2021.107824] [PMID: 34102487]
[106]
Snehota, M.; Vachutka, J.; ter Haar, G.; Dolezal, L.; Kolarova, H. Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. Ultrasonics, 2020, 107, 106167.
[http://dx.doi.org/10.1016/j.ultras.2020.106167] [PMID: 32402858]
[107]
Bai, Y.; Han, Y.; Yan, X.; Ren, J.; Zeng, Q.; Li, X.; Pei, X.; Han, Y. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury. Biochem. Biophys. Res. Commun., 2018, 500(2), 310-317.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.065] [PMID: 29654765]
[108]
Stojiljković A.; Gaschen, V.; Forterre, F.; Rytz, U.; Stoffel, M.H.; Bluteau, J. Novel immortalization approach defers senescence of cultured canine adipose-derived mesenchymal stromal cells. Geroscience, 2022, 44(3), 1301-1323.
[PMID: 34806133]
[109]
Lai, R.C.; Yeo, R.W.Y.; Padmanabhan, J.; Choo, A.; de Kleijn, D.P.V.; Lim, S.K. Isolation and Characterization of Exosome from Human Embryonic Stem Cell-Derived C-Myc-Immortalized Mesenchymal Stem Cells. Methods Mol. Biol., 2016, 1416, 477-494.
[http://dx.doi.org/10.1007/978-1-4939-3584-0_29] [PMID: 27236691]
[110]
Yang, Z.; Shi, J.; Xie, J.; Wang, Y.; Sun, J.; Liu, T.; Zhao, Y.; Zhao, X.; Wang, X.; Ma, Y.; Malkoc, V.; Chiang, C.; Deng, W.; Chen, Y.; Fu, Y.; Kwak, K.J.; Fan, Y.; Kang, C.; Yin, C.; Rhee, J.; Bertani, P.; Otero, J.; Lu, W.; Yun, K.; Lee, A.S.; Jiang, W.; Teng, L.; Kim, B.Y.S.; Lee, L.J. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng., 2020, 4(1), 69-83.
[http://dx.doi.org/10.1038/s41551-019-0485-1] [PMID: 31844155]
[111]
Kimiz-Gebologlu, I.; Oncel, S.S. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J. Control. Release, 2022, 347, 533-543.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.027] [PMID: 35597405]
[112]
Lee, J.H.; Ha, D.H.; Go, H.; Youn, J.; Kim, H.; Jin, R.C.; Miller, R.B.; Kim, D.; Cho, B.S.; Yi, Y.W. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int. J. Mol. Sci., 2020, 21(13), 4774.
[http://dx.doi.org/10.3390/ijms21134774] [PMID: 32635660]
[113]
Burnouf, T.; Strunk, D.; Koh, M.B.C.; Schallmoser, K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials, 2016, 76, 371-387.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.065] [PMID: 26561934]
[114]
Pachler, K.; Lener, T.; Streif, D.; Dunai, Z.A.; Desgeorges, A.; Feichtner, M.; Öller, M.; Schallmoser, K.; Rohde, E.; Gimona, M. A Good Manufacturing Practice–grade standard protocol for exclusively human mesenchymal stromal cell–derived extracellular vesicles. Cytotherapy, 2017, 19(4), 458-472.
[http://dx.doi.org/10.1016/j.jcyt.2017.01.001] [PMID: 28188071]
[115]
Andriolo, G.; Provasi, E.; Lo Cicero, V.; Brambilla, A.; Soncin, S.; Torre, T.; Milano, G.; Biemmi, V.; Vassalli, G.; Turchetto, L.; Barile, L.; Radrizzani, M. Exosomes from human cardiac progenitor cells for therapeutic applications: Development of a GMP-grade manufacturing method. Front. Physiol., 2018, 9, 1169.
[http://dx.doi.org/10.3389/fphys.2018.01169] [PMID: 30197601]
[116]
Mendt, M.; Kamerkar, S.; Sugimoto, H.; McAndrews, K.M.; Wu, C.C.; Gagea, M.; Yang, S.; Blanko, E.V.R.; Peng, Q.; Ma, X.; Marszalek, J.R.; Maitra, A.; Yee, C.; Rezvani, K.; Shpall, E.; LeBleu, V.S.; Kalluri, R. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight, 2018, 3(8), e99263.
[http://dx.doi.org/10.1172/jci.insight.99263] [PMID: 29669940]
[117]
Syromiatnikova, V.; Prokopeva, A.; Gomzikova, M. Methods of the large-scale production of extracellular vesicles. Int. J. Mol. Sci., 2022, 23(18), 10522.
[http://dx.doi.org/10.3390/ijms231810522] [PMID: 36142433]
[118]
Corso, G.; Mäger, I.; Lee, Y.; Görgens, A.; Bultema, J.; Giebel, B.; Wood, M.J.A.; Nordin, J.Z.; Andaloussi, S.E.L. Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci. Rep., 2017, 7(1), 11561.
[http://dx.doi.org/10.1038/s41598-017-10646-x] [PMID: 28912498]
[119]
Royo, F.; Théry, C.; Falcón-Pérez, J.M.; Nieuwland, R.; Witwer, K.W. Methods for separation and characterization of extracellular vesicles: Results of a worldwide survey performed by the ISEV Rigor and standardization subcommittee. Cells, 2020, 9(9), 1955.
[http://dx.doi.org/10.3390/cells9091955] [PMID: 32854228]
[120]
Liangsupree, T.; Multia, E.; Riekkola, M.L. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A, 2021, 1636, 461773.
[http://dx.doi.org/10.1016/j.chroma.2020.461773] [PMID: 33316564]
[121]
Visan, K.S.; Lobb, R.J.; Ham, S.; Lima, L.G.; Palma, C.; Edna, C.P.Z.; Wu, L.Y.; Gowda, H.; Datta, K.K.; Hartel, G.; Salomon, C.; Möller, A. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J. Extracell. Vesicles, 2022, 11(9), 12266.
[http://dx.doi.org/10.1002/jev2.12266] [PMID: 36124834]
[122]
Chernyshev, V.S.; Chuprov-Netochin, R.N.; Tsydenzhapova, E.; Svirshchevskaya, E.V.; Poltavtseva, R.A.; Merdalimova, A.; Yashchenok, A.; Keshelava, A.; Sorokin, K.; Keshelava, V.; Sukhikh, G.T.; Gorin, D.; Leonov, S.; Skliar, M. Asymmetric depth-filtration: A versatile and scalable method for high-yield isolation of extracellular vesicles with low contamination. J. Extracell. Vesicles, 2022, 11(8), e12256.
[http://dx.doi.org/10.1002/jev2.12256] [PMID: 35942823]
[123]
Anusha, R.; Priya, S. Dietary exosome-like nanoparticles: An updated review on their pharmacological and drug delivery applications. Mol. Nutr. Food Res., 2022, 66(14), 2200142.
[http://dx.doi.org/10.1002/mnfr.202200142] [PMID: 35593481]
[124]
Subudhi, P.D.; Bihari, C.; Sarin, S.K.; Baweja, S. Emerging role of edible exosomes-like nanoparticles (ELNs) as hepatoprotective agents. Nanotheranostics, 2022, 6(4), 365-375.
[http://dx.doi.org/10.7150/ntno.70999] [PMID: 35795340]
[125]
Lei, C.; Mu, J.; Teng, Y.; He, L.; Xu, F.; Zhang, X.; Sundaram, K.; Kumar, A.; Sriwastva, M.K.; Lawrenz, M.B.; Zhang, L.; Yan, J.; Feng, W.; McClain, C.J.; Zhang, X.; Zhang, H.G. Lemon Exosome-like Nanoparticles-Manipulated Probiotics Protect Mice from C. diff Infection. iScience, 2020, 23(10), 101571.
[http://dx.doi.org/10.1016/j.isci.2020.101571] [PMID: 33083738]
[126]
Wang, B.; Zhuang, X.; Deng, Z.B.; Jiang, H.; Mu, J.; Wang, Q.; Xiang, X.; Guo, H.; Zhang, L.; Dryden, G.; Yan, J.; Miller, D.; Zhang, H.G. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol. Ther., 2014, 22(3), 522-534.
[http://dx.doi.org/10.1038/mt.2013.190] [PMID: 23939022]
[127]
Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther., 2021, 29(1), 13-31.
[http://dx.doi.org/10.1016/j.ymthe.2020.11.030] [PMID: 33278566]
[128]
Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; Merlin, D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 2016, 101, 321-340.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.018] [PMID: 27318094]
[129]
Zhuang, X.; Deng, Z.B.; Mu, J.; Zhang, L.; Yan, J.; Miller, D.; Feng, W.; McClain, C.J.; Zhang, H.G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles, 2015, 4(1), 28713.
[http://dx.doi.org/10.3402/jev.v4.28713] [PMID: 26610593]
[130]
Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by? -glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927.
[http://dx.doi.org/10.1002/jnr.10810] [PMID: 14648597]
[131]
Chen, Q.; Li, Q.; Liang, Y.; Zu, M.; Chen, N.; Canup, B.S.B.; Luo, L.; Wang, C.; Zeng, L.; Xiao, B. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm. Sin. B, 2022, 12(2), 907-923.
[http://dx.doi.org/10.1016/j.apsb.2021.08.016] [PMID: 35256954]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy