Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Exosomal miRNAs as Next-generation Therapy Vehicles in Breast Cancer

Author(s): Priyanka Thakur, Harshita Dahiya, Ankur Kaushal, Vijai Kumar Gupta, Adesh K. Saini and Reena V. Saini*

Volume 23, Issue 5, 2023

Published on: 09 March, 2023

Page: [330 - 342] Pages: 13

DOI: 10.2174/1566523223666230215103524

Price: $65

Abstract

The second most pervasive cancer affecting the survival of women across the world is breast cancer. One of the biggest challenges in breast cancer treatment is the chemoresistance of cancer cells to various medications after some time. Therefore, highly specific blood-based biomarkers are required for early breast cancer diagnosis to overcome chemoresistance and improve patient survival. These days, exosomal miRNAs have attracted much attention as early diagnostic blood-based biomarkers because of their high stability, secretion from malignant tumor cells, and excellent specificity for different breast cancer subtypes. In addition, exosomal miRNAs regulate cell proliferation, invasion, metastasis, and apoptosis by binding to the 3′UTR of their target genes and limiting their production. This review focuses on the functions of exosomal miRNAs in tumorigenesis via targeting multiple signaling pathways as well as chemosensitivity and resistance mechanisms. In addition, the growing pieces of evidence discussed in this review suggest that circulating exosomal miRNAs could be utilized as potential next-generation therapeutic target vehicles in the treatment of breast cancer.

Graphical Abstract

[1]
Thakur P, Saini RV, Chhillar AK, et al. Alteration in the expression of microRNA-21 regulated target genes: Role in breast cancer. Biocell 2022; 46(2): 309-24.
[http://dx.doi.org/10.32604/biocell.2022.016916]
[2]
Wong GL, Abu Jalboush S, Lo HW. Exosomal MicroRNAs and organotropism in breast cancer metastasis. Cancers 2020; 12(7): 1827.
[http://dx.doi.org/10.3390/cancers12071827] [PMID: 32646059]
[3]
Brody JG, Rudel R, Maxwell NI, Swedis SR. Mapping out a search for environmental causes of breast cancer. Public Health Rep 1996; 111(6): 494-507.
[PMID: 8955694]
[4]
Steiner E, Klubert D, Knutson D. Assessing breast cancer risk in women. Am Fam Physician 2008; 78(12): 1361-6.
[PMID: 19119554]
[5]
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers 2019; 5(1): 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[6]
Jaglan P, Dass R, Duhan M. Breast cancer detection techniques: issues and challenges. J Inst Eng Series B 2019; 100(4): 379-86.
[http://dx.doi.org/10.1007/s40031-019-00391-2]
[7]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[8]
Hurley JH. ESCRTs are everywhere. EMBO J 2015; 34(19): 2398-407.
[http://dx.doi.org/10.15252/embj.201592484] [PMID: 26311197]
[9]
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9(1): 19.
[http://dx.doi.org/10.1186/s13578-019-0282-2] [PMID: 30815248]
[10]
Chiu YJ, Cai W, Shih YRV, Lian I, Lo YH. A single-cell assay for time lapse studies of exosome secretion and cell behaviors. Small 2016; 12(27): 3658-66.
[http://dx.doi.org/10.1002/smll.201600725] [PMID: 27254278]
[11]
Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor- 1. Haematologica 2011; 96(9): 1302-9.
[http://dx.doi.org/10.3324/haematol.2010.039743] [PMID: 21606166]
[12]
Dabitao D, Margolick JB, Lopez J, Bream JH. Multiplex measurement of proinflammatory cytokines in human serum: Comparison of the meso scale discovery electrochemiluminescence assay and the cytometric bead array. J Immunol Methods 2011; 372(1-2): 71-7.
[http://dx.doi.org/10.1016/j.jim.2011.06.033] [PMID: 21781970]
[13]
Najminejad H, Kalantar SM, Abdollahpour-Alitappeh M, et al. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life 2019; 71(11): 1672-84.
[http://dx.doi.org/10.1002/iub.2116] [PMID: 31322822]
[14]
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem 2017; 8(1): 45-56.
[http://dx.doi.org/10.4331/wjbc.v8.i1.45] [PMID: 28289518]
[15]
Bartel DP. MicroRNAs. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[16]
Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 2(1): 282.
[http://dx.doi.org/10.1038/ncomms1285] [PMID: 21505438]
[17]
Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev 2018; 37(1): 5-15.
[http://dx.doi.org/10.1007/s10555-017-9712-y] [PMID: 29234933]
[18]
Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294(5543): 858-62.
[http://dx.doi.org/10.1126/science.1065062] [PMID: 11679671]
[19]
Kobayashi T, Gu F, Gruenberg J. Lipids, lipid domains and lipid–protein interactions in endocytic membrane traffic. Semin Cell Dev Biol 1998; 9(5): 517-26.
[http://dx.doi.org/10.1006/scdb.1998.0257] [PMID: 9835639]
[20]
Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteomics 2010; 73(10): 1907-20.
[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]
[21]
Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010; 2(63)63ra94
[http://dx.doi.org/10.1126/scitranslmed.3001375] [PMID: 21178137]
[22]
van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: A common pathway for a specialized function. J Biochem 2006; 140(1): 13-21.
[http://dx.doi.org/10.1093/jb/mvj128] [PMID: 16877764]
[23]
Zhong S, Chen X, Wang D, et al. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget 2016; 7(15): 19601-9.
[http://dx.doi.org/10.18632/oncotarget.7481] [PMID: 26910922]
[24]
Sueta A, Fujiki Y, Goto-Yamaguchi L, et al. Exosomal miRNA profiles of triple negative breast cancer in neoadjuvant treatment. Oncol Lett 2021; 22(6): 819.
[http://dx.doi.org/10.3892/ol.2021.13080] [PMID: 34671433]
[25]
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133(2): 647-58.
[http://dx.doi.org/10.1053/j.gastro.2007.05.022] [PMID: 17681183]
[26]
Silver FH. Mechanotransduction-The relationship between gravity, cells and tensile loading in extracellular matrix. Biocell 2022; 46(2): 297.
[http://dx.doi.org/10.32604/biocell.2022.017406]
[27]
Santos JC, Lima NS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 2018; 8(1): 829.
[http://dx.doi.org/10.1038/s41598-018-19339-5] [PMID: 29339789]
[28]
Sharma Y, Saini AK, Kashyap S, et al. Host miRNA and immune cell interactions: Relevance in nano-therapeutics for human health. Immunol Res 2022; 70(1): 1-18.
[http://dx.doi.org/10.1007/s12026-021-09247-8] [PMID: 34716546]
[29]
Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012; 119(3): 756-66.
[http://dx.doi.org/10.1182/blood-2011-02-338004] [PMID: 22031862]
[30]
Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[31]
Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic potential of engineered extracellular vesicles. AAPS J 2018; 20(3): 50.
[http://dx.doi.org/10.1208/s12248-018-0211-z] [PMID: 29546642]
[32]
Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: The exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 2012; 44(9): 1574-84.
[http://dx.doi.org/10.1016/j.biocel.2012.06.018] [PMID: 22728313]
[33]
Vallee RB, Herskovits JS, Aghajanian JG, Burgess CC, Shpetner HS. Dynamin, a GTPase involved in the initial stages of endocytosis. Ciba Found Symp 1993; 176: 185-93.
[PMID: 8299419]
[34]
Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[35]
He J, Ren W, Wang W, Han W, Jiang L, Zhang D, et al. Exosomal targeting and its potential clinical application. Drug Deliv Transl Res 2021; 6: 1-8.
[PMID: 34973131]
[36]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[37]
He Y, Deng F, Yang S, et al. Exosomal microRNA: A novel biomarker for breast cancer. Biomarkers Med 2018; 12(2): 177-88.
[http://dx.doi.org/10.2217/bmm-2017-0305] [PMID: 29151358]
[38]
Place AE, Jin Huh S, Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res 2011; 13(6): 227.
[http://dx.doi.org/10.1186/bcr2912] [PMID: 22078026]
[39]
Liu Q, Peng F, Chen J. The role of exosomal microRNAs in the tumor microenvironment of breast cancer. Int J Mol Sci 2019; 20(16): 3884.
[http://dx.doi.org/10.3390/ijms20163884] [PMID: 31395836]
[40]
Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology 2015; 82(3-4): 142-52.
[http://dx.doi.org/10.1159/000430499] [PMID: 26330355]
[41]
Li JJ, Tsang JY, Tse GM. Tumor microenvironment in breast cancer—updates on therapeutic implications and pathologic assessment. Cancers 2021; 13(16): 4233.
[http://dx.doi.org/10.3390/cancers13164233] [PMID: 34439387]
[42]
Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an international TILs working group 2014. Ann Oncol 2015; 26(2): 259-71.
[http://dx.doi.org/10.1093/annonc/mdu450] [PMID: 25214542]
[43]
Choi WWL, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol 2005; 18(1): 143-52.
[http://dx.doi.org/10.1038/modpathol.3800253] [PMID: 15297858]
[44]
Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev 2016; 30(9): 1002-19.
[http://dx.doi.org/10.1101/gad.279737.116] [PMID: 27151975]
[45]
Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121(3): 335-48.
[http://dx.doi.org/10.1016/j.cell.2005.02.034] [PMID: 15882617]
[46]
Swartz MA, Iida N, Roberts EW, et al. Tumor microenvironment complexity: Emerging roles in cancer therapy. Cancer Res 2012; 72(10): 2473-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0122] [PMID: 22414581]
[47]
Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 2013; 32(1-2): 303-15.
[http://dx.doi.org/10.1007/s10555-012-9415-3] [PMID: 23114846]
[48]
Yan W, Wu X, Zhou W, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol 2018; 20(5): 597-609.
[http://dx.doi.org/10.1038/s41556-018-0083-6] [PMID: 29662176]
[49]
Fong MY, Zhou W, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 2015; 17(2): 183-94.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[50]
Baroni S, Romero-Cordoba S, Plantamura I, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis 2016; 7(7)e2312
[http://dx.doi.org/10.1038/cddis.2016.224] [PMID: 27468688]
[51]
Gupta GP, Massagué J. Cancer metastasis: Building a framework. Cell 2006; 127(4): 679-95.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[52]
Thulin A, Rönnerman E, Zhang C, et al. Clinical outcome of patients with brain metastases from breast cancer - A population based study over 21 years. Breast 2020; 50: 113-24.
[http://dx.doi.org/10.1016/j.breast.2020.02.007] [PMID: 32145571]
[53]
Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the management of brain metastases. Nat Rev Clin Oncol 2020; 17(5): 279-99.
[http://dx.doi.org/10.1038/s41571-019-0320-3] [PMID: 32080373]
[54]
Singh R, Pochampally R, Watabe K, Lu Z, Mo YY. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer 2014; 13(1): 256.
[http://dx.doi.org/10.1186/1476-4598-13-256] [PMID: 25428807]
[55]
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449(7163): 682-8.
[http://dx.doi.org/10.1038/nature06174] [PMID: 17898713]
[56]
Lee TH, Avraham HK, Jiang S, Avraham S. Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 2003; 278(7): 5277-84.
[http://dx.doi.org/10.1074/jbc.M210063200] [PMID: 12446667]
[57]
Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25(4): 501-15.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[58]
Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun 2015; 6(1): 6716.
[http://dx.doi.org/10.1038/ncomms7716] [PMID: 25828099]
[59]
Zhang L, Zhang S, Yao J, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 2015; 527(7576): 100-4.
[http://dx.doi.org/10.1038/nature15376] [PMID: 26479035]
[60]
Xing F, Liu Y, Wu SY, et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res 2018; 78(15): 4316-30.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1102] [PMID: 30026327]
[61]
Le MTN, Hamar P, Guo C, et al. miR-200–containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 2014; 124(12): 5109-28.
[http://dx.doi.org/10.1172/JCI75695] [PMID: 25401471]
[62]
Lim PK, Bliss SA, Patel SA, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 2011; 71(5): 1550-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2372] [PMID: 21343399]
[63]
Ono M, Kosaka N, Tominaga N, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014; 7(332): ra63.
[http://dx.doi.org/10.1126/scisignal.2005231] [PMID: 24985346]
[64]
Wu HJ, Hao M, Yeo SK, Guan JL. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene 2020; 39(12): 2539-49.
[http://dx.doi.org/10.1038/s41388-020-1162-2] [PMID: 31988451]
[65]
Ozawa PMM, Alkhilaiwi F, Cavalli IJ, Malheiros D, de Souza FREM, Cavalli LR. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat 2018; 172(3): 713-23.
[http://dx.doi.org/10.1007/s10549-018-4925-5] [PMID: 30173296]
[66]
Li C, Zhou T, Chen J, et al. The role of Exosomal miRNAs in cancer. J Transl Med 2022; 20(1): 6.
[http://dx.doi.org/10.1186/s12967-021-03215-4] [PMID: 34980158]
[67]
Rodríguez-Martínez A, de Miguel-Pérez D, Ortega FG, et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res 2019; 21(1): 21.
[http://dx.doi.org/10.1186/s13058-019-1109-0] [PMID: 30728048]
[68]
Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent manner. Curr Drug Metab 2019; 20(10): 804-14.
[http://dx.doi.org/10.2174/1389200220666190819151946] [PMID: 31424364]
[69]
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by exosomes. Mol Cancer 2019; 18(1): 58.
[http://dx.doi.org/10.1186/s12943-019-0970-x] [PMID: 30925921]
[70]
Guan J, Chen J. Mesenchymal stem cells in the tumor microenvironment. Biomed Rep 2013; 1(4): 517-21.
[http://dx.doi.org/10.3892/br.2013.103] [PMID: 24648978]
[71]
Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012; 227(2): 658-67.
[http://dx.doi.org/10.1002/jcp.22773] [PMID: 21465472]
[72]
Hu J, Kwak KJ, Shi J, Yu B, Sheng Y, Lee LJ. Overhang molecular beacons encapsulated in tethered cationic lipoplex nanoparticles for detection of single-point mutation in extracellular vesicle-associated RNAs. Biomaterials 2018; 183: 20-9.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.038] [PMID: 30145409]
[73]
Pan X, Hong X, Lai J, et al. Exosomal MicroRNA-221-3p confers adriamycin resistance in breast cancer cells by targeting PIK3R1. Front Oncol 2020; 10: 441.
[http://dx.doi.org/10.3389/fonc.2020.00441] [PMID: 32426266]
[74]
Yamamoto Y, Yoshioka Y, Minoura K, et al. An integrative genomic analysis revealed the relevance of microRNA and gene expression for drug-resistance in human breast cancer cells. Mol Cancer 2011; 10(1): 135.
[http://dx.doi.org/10.1186/1476-4598-10-135] [PMID: 22051041]
[75]
Zhu Y, Wu J, Li S, et al. The function role of miR-181a in chemosensitivity to adriamycin by targeting Bcl-2 in low-invasive breast cancer cells. Cell Physiol Biochem 2013; 32(5): 1225-37.
[http://dx.doi.org/10.1159/000354521] [PMID: 24335172]
[76]
Wang Z, Wang N, Liu P, et al. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget 2014; 5(16): 7013-26.
[http://dx.doi.org/10.18632/oncotarget.2192] [PMID: 25026296]
[77]
Cataldo A, Cheung DG, Balsari A, et al. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget 2016; 7(1): 786-97.
[http://dx.doi.org/10.18632/oncotarget.6381] [PMID: 26623722]
[78]
Sprowl JA, Parissenti A. Abstract 3550: Role of TNFα in the cytotoxicity of docetaxel and in docetaxel resistance in MCF-7 cells. Cancer Res 2010; 70(8) (Supplement): 3550.
[http://dx.doi.org/10.1158/1538-7445.AM10-3550]
[79]
Chen W, Liu X, Lv M, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 2014; 9(4)e95240
[http://dx.doi.org/10.1371/journal.pone.0095240] [PMID: 24740415]
[80]
Chen W, Xu L, Qian Q, et al. d Rhamnose β-hederin reverses chemoresistance of breast cancer cells by regulating exosome-mediated resistance transmission. Biosci Rep 2018; 38(5)BSR20180110
[http://dx.doi.org/10.1042/BSR20180110] [PMID: 30061173]
[81]
Zhao Y, Jin LJ, Zhang XY. Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1. Aging 2021; 13(14): 18498-514.
[http://dx.doi.org/10.18632/aging.203298] [PMID: 34292880]
[82]
Wei Y, Lai X, Yu S, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 2014; 147(2): 423-31.
[http://dx.doi.org/10.1007/s10549-014-3037-0] [PMID: 25007959]
[83]
Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 2001; 1(2): 85-94.
[PMID: 12467226]
[84]
Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11): 783-92.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[85]
Gong C, Yao Y, Wang Y, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 2011; 286(21): 19127-37.
[http://dx.doi.org/10.1074/jbc.M110.216887] [PMID: 21471222]
[86]
Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6(2): 117-27.
[http://dx.doi.org/10.1016/j.ccr.2004.06.022] [PMID: 15324695]
[87]
De Mattos-Arruda L, Bottai G, Nuciforo PG, et al. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget 2015; 6(35): 37269-80.
[http://dx.doi.org/10.18632/oncotarget.5495] [PMID: 26452030]
[88]
Ye X, Bai W, Zhu H, et al. MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN. BMB Rep 2014; 47(5): 268-73.
[http://dx.doi.org/10.5483/BMBRep.2014.47.5.165] [PMID: 24286315]
[89]
Ye XM, Zhu HY, Bai WD, et al. Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer 2014; 14(1): 134.
[http://dx.doi.org/10.1186/1471-2407-14-134] [PMID: 24571711]
[90]
Venturutti L, Cordo RRI, Rivas MA, et al. MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene 2016; 35(48): 6189-202.
[http://dx.doi.org/10.1038/onc.2016.151] [PMID: 27157613]
[91]
Ma T, Yang L, Zhang J. MiRNA-542-3p downregulation promotes trastuzumab resistance in breast cancer cells via AKT activation. Oncol Rep 2015; 33(3): 1215-20.
[http://dx.doi.org/10.3892/or.2015.3713] [PMID: 25586125]
[92]
Kim VN. MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6(5): 376-85.
[http://dx.doi.org/10.1038/nrm1644] [PMID: 15852042]
[93]
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39(16): 7223-33.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[94]
Eichelser C, Stückrath I, Müller V, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 2014; 5(20): 9650-63.
[http://dx.doi.org/10.18632/oncotarget.2520] [PMID: 25333260]
[95]
Mihelich BL, Dambal S, Lin S, Nonn L. miR-182, of the miR-183 cluster family, is packaged in exosomes and is detected in human exosomes from serum, breast cells and prostate cells. Oncol Lett 2016; 12(2): 1197-203.
[http://dx.doi.org/10.3892/ol.2016.4710] [PMID: 27446418]
[96]
O’Brien K, Lowry MC, Corcoran C, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 2015; 6(32): 32774-89.
[http://dx.doi.org/10.18632/oncotarget.5192] [PMID: 26416415]
[97]
De Cola A, Volpe S, Budani MC, et al. miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell Death Dis 2015; 6(7)e1823
[http://dx.doi.org/10.1038/cddis.2015.192] [PMID: 26181203]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy