Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Synthesis and Biological Activities of Heterocyclic Hybrids Containing Piperidine and Pyridine Moieties: Recent Developments

Author(s): Gangotri Pemawat*, Ayushi Bhatnagar and Rama Kanwar Khangarot

Volume 21, Issue 3, 2024

Published on: 04 April, 2023

Page: [346 - 369] Pages: 24

DOI: 10.2174/1570193X20666230213123453

Price: $65

Abstract

Piperidine and pyridine nuclei are essential heterocyclic systems and act as an essential underpinning for agriculture, medicines, industries, etc. The development of novel methods for the synthesis of these exemplary heterocyclic compounds and their respective hybrids, which show a wide range of biological activities, is a very fascinating theme. The derivatives of these pervasive nuclei are used as antibacterial, antimicrobial, antifungal, antimalarial, anticancer, antiproliferative, antihypertensive, antiparasitic, and many other agents. The hybrids of these nuclei have retained a distinct position in medicinal chemistry and are often incorporated in synthetic drug discovery. In this review, we have compiled relevant literature on different derivatives of piperidine and pyridine moieties and their biological activities.

Graphical Abstract

[1]
Ngemenya, M.N.; Abwenzoh, G.N.; Ikome, H.N.; Zofou, D.; Ntie-Kang, F.; Efange, S.M.N. Structurally simple synthetic 1, 4-disubstituted piperidines with high selectivity for resistant Plasmodium falciparum. BMC Pharmacol. Toxicol., 2018, 19(1), 42.
[http://dx.doi.org/10.1186/s40360-018-0233-2] [PMID: 29973275]
[2]
Sharma, P.; Tripathi, A.; Tripathi, P.N.; Singh, S.S.; Singh, S.P.; Shrivastava, S.K. Novel molecular hybrids of N -Benzylpiperidine and 1,3,4-Oxadiazole as Multitargeted therapeutics to treat Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(10), 4361-4384.
[http://dx.doi.org/10.1021/acschemneuro.9b00430] [PMID: 31491074]
[3]
Tikhov, R.M.; Kuznetsov, N.Y. Construction of piperidine-2,4-dione-type azaheterocycles and their application in modern drug development and natural product synthesis. Org. Biomol. Chem., 2020, 18(15), 2793-2812.
[http://dx.doi.org/10.1039/D0OB00287A] [PMID: 32239033]
[4]
Escolano, M.; Guerola, M.; Torres, J.; Gaviña, D.; Alzuet-Piña, G.; Sánchez-Rosello, M.; del Pozo, C. Organocatalytic enantioselective synthesis of 2,5,5-trisubstituted piperidines bearing a quaternary stereocenter. Vinyl sulfonamide as a new amine protecting group. Chem. Commun. (Camb.), 2020, 56(9), 1425-1428.
[http://dx.doi.org/10.1039/C9CC09113K] [PMID: 31912825]
[5]
Ebule, R.; Mudshinge, S.; Nantz, M.H.; Mashuta, M.S.; Hammond, G.B.; Xu, B.A. 5 + 1 protic acid assisted aza-pummerer approach for synthesis of 4-chloropiperidines from homoallylic amines. J. Org. Chem., 2019, 84(6), 3249-3259.
[http://dx.doi.org/10.1021/acs.joc.8b03162] [PMID: 30758961]
[6]
Seck, R.; Gassama, A.; Cojean, S.; Cavé, C. Synthesis and antimalarial activity of 1,4-disubstituted piperidine derivatives. Molecules, 2020, 25(2), 299.
[http://dx.doi.org/10.3390/molecules25020299] [PMID: 31940857]
[7]
Li, K.; Li, M.L.; Zhang, Q.; Zhu, S.F.; Zhou, Q.L. Highly enantioselective nickel-catalyzed intramolecular hydroalkenylation of N- and O-tethered 1,6-dienes to form six-membered heterocycles. J. Am. Chem. Soc., 2018, 140(24), 7458-7461.
[http://dx.doi.org/10.1021/jacs.8b04703] [PMID: 29863857]
[8]
Qi, X.; Chen, C.; Hou, C.; Fu, L.; Chen, P.; Liu, G. Enantioselective Pd(II)-catalyzed intramolecular oxidative 6- endo aminoacetoxylation of unactivated alkenes. J. Am. Chem. Soc., 2018, 140(24), 7415-7419.
[http://dx.doi.org/10.1021/jacs.8b03767] [PMID: 29812946]
[9]
Liu, X.; Hou, C.; Peng, Y.; Chen, P.; Liu, G. Ligand-controlled regioselective pd-catalyzed diamination of alkenes. Org. Lett., 2020, 22(23), 9371-9375.
[http://dx.doi.org/10.1021/acs.orglett.0c03634] [PMID: 33179502]
[10]
Li, F.; Wang, X.; Liu, Y.M.; Zhang, J.; Yang, J. Synthesis of 3,4,5-trisubstituted piperidine via SN 2′ reaction. Synth. Commun., 2020, 50(1), 56-62.
[http://dx.doi.org/10.1080/00397911.2019.1682612]
[11]
Zhou, H.; Zhu, M.; Ma, L.; Zhou, J.; Dong, B.; Zhang, G.; Cen, S.; Wang, Y.; Wang, J. Piperidine scaffold as the novel P2-ligands in cyclopropyl-containing HIV-1 protease inhibitors: Structure-based design, synthesis, biological evaluation and docking study. PLoS One, 2020, 15(7), e0235483.
[http://dx.doi.org/10.1371/journal.pone.0235483] [PMID: 32697773]
[12]
Wang, W.T.; Qian, H.; Wu, J.W.; Chen, X.W.; Li, J.Q. Synthesis and antidepressant-like activity of novel alkoxy-piperidine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg. Med. Chem. Lett., 2019, 29(24), 126769.
[http://dx.doi.org/10.1016/j.bmcl.2019.126769] [PMID: 31699607]
[13]
Deardorff, D.R.; Niman, S.W.; Paulsen, M.I.; Sookezian, A.; Whalen, M.E. Finlayson, CJ Combined enzyme- and transition metal-catalyzed strategy for the enantioselective syntheses of nitrogen heterocycles: (-)-Coniine, DAB-1, and Nectrisine. ACS Omega, 2020, 5(4), 2005-2014.
[14]
Varano, F.; Catarzi, D.; Vigiani, E.; Vincenzi, F.; Pasquini, S.; Varani, K.; Colotta, V. Piperazine- and piperidine-containing thiazolo[5,4-d]pyrimidine derivatives as new potent and selective adenosine A2A receptor inverse agonists. Pharmaceuticals (Basel), 2020, 13(8), 161.
[http://dx.doi.org/10.3390/ph13080161] [PMID: 32722122]
[15]
Guzmán-Rodríguez, S.; Chávez-Reyes, J.; Vázquez-León, P.; Soriano-Ursúa, M.A.; Rosalez, M.N.; Allende, G.; Marichal-Cancino, B.A. 1-boc-piperidine-4-carboxaldehyde prevents binge-eating behaviour and anxiety in rats. Pharmacology, 2021, 106(5-6), 305-315.
[http://dx.doi.org/10.1159/000513376] [PMID: 33756489]
[16]
Ahamed, A.; Arif, I.A.; Kumar, R.S.; Idhayadhulla, A.; Manilal, A. Synthesis of novel pyridine-connected piperidine and 2H-thiopyran derivatives and their larvicidal, nematicidal, and antimicrobial activities. J. Mex. Chem. Soc., 2018, 62(4), 135-147.
[17]
Seth, A.; Sharma, P.A.; Tripathi, A.; Choubey, P.K.; Srivastava, P.; Tripathi, P.N.; Shrivastava, S.K. Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med. Chem. Res., 2018, 27(4), 1206-1225.
[http://dx.doi.org/10.1007/s00044-018-2141-9]
[18]
Mahooti, K.; Mokhtary, M.; Kefayati, H. One-pot synthesis and antioxidant properties of highly substituted piperidine derivatives promoted by choline chloride/urea. Polycycl. Aromat. Compd., 2020, 1-10.
[19]
De Fenza, M.; Esposito, A.; D’Alonzo, D.; Guaragna, A. Synthesis of piperidine nucleosides as conformationally restricted immucillin mimics. Molecules, 2021, 26(6), 1652.
[http://dx.doi.org/10.3390/molecules26061652] [PMID: 33809603]
[20]
Eshon, J.; Nicastri, K.A.; Schmid, S.C.; Raskopf, W.T.; Guzei, I.A.; Fernández, I.; Schomaker, J.M. Intermolecular [3+3] ring expansion of aziridines to dehydropiperi-dines through the intermediacy of aziridinium ylides. Nat. Commun., 2020, 11(1), 1273.
[http://dx.doi.org/10.1038/s41467-020-15134-x] [PMID: 32152321]
[21]
Singh, R.B.; Das, N.; Singh, G.K.; Singh, S.K.; Zaman, K. Synthesis and pharmacological evaluation of 3-[5-(aryl-[1,3,4]oxadiazole-2-yl]-piperidine derivatives as anticonvulsant and antidepressant agents. Arab. J. Chem., 2020, 13(5), 5299-5311.
[http://dx.doi.org/10.1016/j.arabjc.2020.03.009]
[22]
Ashok, D.; Ram Reddy, M.; Ramakrishna, K.; Nagaraju, N.; Dharavath, R.; Sarasija, M. Iodine mediated synthesis of some new imidazo[1,2‐a]pyridine derivatives and evaluation of their antimicrobial activity. J. Heterocycl. Chem., 2020, 57(6), 2528-2534.
[http://dx.doi.org/10.1002/jhet.3967]
[23]
Pemawat, G; Talesara, G.L. Synthesis of ethoxy phthalimido derivatized thiazolo dihydropyridines assembled with pyrazole and isoxazole systems from common intermediate chalcone and evaluation of their antibacterial activity. 2011, 50B(09), 1173-1180.
[24]
Antoci, V.; Cucu, D.; Zbancioc, G.; Moldoveanu, C.; Mangalagiu, V.; Amariucai-Mantu, D.; Aricu, A.; Mangalagiu, I.I. Bis -(imidazole/benzimidazole)-pyridine derivatives: Synthesis, structure and antimycobacterial activity. Future Med. Chem., 2020, 12(3), 207-222.
[http://dx.doi.org/10.4155/fmc-2019-0063] [PMID: 31916456]
[25]
Durairaju, P.; Umarani, C.; Rajabather, J.R.; Alanazi, A.M.; Periyasami, G.; Wilson, L.D. Synthesis and characterization of pyridine-grafted copolymers of acrylic acid–styrene derivatives for antimicrobial and fluorescence applications. Micromachines (Basel), 2021, 12(6), 672.
[http://dx.doi.org/10.3390/mi12060672] [PMID: 34201351]
[26]
Topa, M.; Petko, F.; Galek, M.; Ortyl, J. Double role of diphenylpyridine derivatives as fluorescent sensors for monitoring photopolymerization and the determination of the efficiencies of the generation of superacids by cationic photoinitiators. Sensors (Basel), 2020, 20(11), 3043.
[http://dx.doi.org/10.3390/s20113043] [PMID: 32471215]
[27]
Sirakanyan, S.N.; Hrubša, M.; Spinelli, D.; Dias, P.; Kartsev, V.; Carazo, A.; Hovakimyan, A.A.; Pourová, J.; Hakobyan, E.K.; Karlíčková, J.; Parvin, S.; Fadraersada, J.; Macáková, K.; Geronikaki, A.; Mladěnka, P. Synthesis of 3,3-dimethyl-6-oxopyrano[3,4- c]pyridines and their antiplatelet and vasodilatory activity. J. Pharm. Pharmacol., 2022, 74(6), 887-895.
[http://dx.doi.org/10.1093/jpp/rgab075] [PMID: 34106261]
[28]
Chen, S.; Zhang, D.L.; Ren, C.L.; Zou, W.Q.; Tian, X.Y.; Du, X.H.; Tan, C.X. Novel pyridyl–oxazole carboxamides: Toxicity assay determination in fungi and zebrafish embryos. Molecules, 2021, 26(13), 3883.
[http://dx.doi.org/10.3390/molecules26133883] [PMID: 34202103]
[29]
Cavinato, L.M.; Volpi, G.; Fresta, E.; Garino, C.; Fin, A.; Barolo, C. Microwave-assisted synthesis, optical and theoretical characterization of novel 2-(imidazo[1,5-a]pyridine-1-yl)pyridinium salts. Chemistry, 2021, 3(3), 714-727.
[http://dx.doi.org/10.3390/chemistry3030050]
[30]
Celik, I.; Erol, M.; Kuyucuklu, G. Molecular modeling, density functional theory, ADME prediction and antimicrobial activity studies of 2-(substituted)oxazolo[4,5- b]pyridine derivatives. New J. Chem., 2021, 45(25), 11108-11118.
[http://dx.doi.org/10.1039/D1NJ00701G]
[31]
Ragab, A.; Fouad, S.A.; Ali, O.A.A.; Ahmed, E.M.; Ali, A.M.; Askar, A.A.; Ammar, Y.A. Sulfaguanidine hybrid with some new pyridine-2-one derivatives: Design, synthesis, and antimicrobial activity against multidrug-resistant bacteria as dual DNA gyrase and DHFR inhibitors. Antibiotics (Basel), 2021, 10(2), 162.
[http://dx.doi.org/10.3390/antibiotics10020162] [PMID: 33562582]
[32]
Zheng, X.; Wang, C.; Zhai, N.; Luo, X.; Liu, G.; Ju, X. In silico screening of novel α1-GABAA receptor PAMs towards schizophrenia based on combined modeling studies of imidazo [1,2-a]-pyridines. Int. J. Mol. Sci., 2021, 22(17), 9645.
[http://dx.doi.org/10.3390/ijms22179645] [PMID: 34502550]
[33]
Ryu, H.; Nam, K.Y.; Kim, H.J.; Song, J.Y.; Hwang, S.G.; Kim, J.S.; Kim, J.; Ahn, J. Discovery of a novel triazolopyridine derivative as a tankyrase inhibitor. Int. J. Mol. Sci., 2021, 22(14), 7330.
[http://dx.doi.org/10.3390/ijms22147330] [PMID: 34298950]
[34]
Marijan, S.; Mastelić, A.; Markotić, A.; Režić-Mužinić, N.; Vučenović, N.; Barker, D.; Pilkington, L.I.; Reynisson, J.; Čulić, V.Č. Thieno[2,3-b]pyridine derivative targets epithelial, mesenchymal and hybrid CD15s+ breast cancer cells. Medicines (Basel), 2021, 8(7), 32.
[http://dx.doi.org/10.3390/medicines8070032] [PMID: 34206154]
[35]
Mizojiri, R.; Nii, N.; Asano, M.; Sasaki, M.; Satoh, Y.; Yamamoto, Y.; Sumi, H.; Maezaki, H. Design and synthesis of a novel 1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative as an orally available ACC1 inhibitor. Bioorg. Med. Chem., 2019, 27(12), 2521-2530.
[http://dx.doi.org/10.1016/j.bmc.2019.03.023] [PMID: 30879862]
[36]
Xi, J.J.; He, R.Y.; Zhang, J.K.; Cai, Z.B.; Zhuang, R.X.; Zhao, Y.M.; Shao, Y.D.; Pan, X.W.; Shi, T.T.; Dong, Z.J.; Liu, S.R.; Kong, L.M. Design, synthesis, and biological evaluation of novel 3‐(thiophen‐2‐ylthio)pyridine derivatives as potential multitarget anticancer agents. Arch. Pharm. (Weinheim), 2019, 352(8), 1900024.
[http://dx.doi.org/10.1002/ardp.201900024] [PMID: 31338897]
[37]
Wang, R.; Chen, Y.; Yang, B.; Yu, S.; Zhao, X.; Zhang, C.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents. Bioorg. Chem., 2020, 94, 103474.
[http://dx.doi.org/10.1016/j.bioorg.2019.103474] [PMID: 31859010]
[38]
Mohamed, S.A.; El-Kady, D.S.; Abd-Rabou, A.A.; Tantawy, M.A.; AbdElhalim, M.M.; Elazabawy, S.R.; Abdallah, A.E.M.; Elmegeed, G.A. Synthesis of novel hybrid hetero-steroids: Molecular docking study augmented anti-proliferative properties against cancerous cells. Steroids, 2020, 154, 108527.
[http://dx.doi.org/10.1016/j.steroids.2019.108527] [PMID: 31676306]
[39]
Vadukoot, A.K.; Sharma, S.; Aretz, C.D.; Kumar, S.; Gautam, N.; Alnouti, Y.; Aldrich, A.L.; Heim, C.E.; Kielian, T.; Hopkins, C.R. Synthesis and SAR Studies of 1 H -Pyrrolo[2,3- b]pyridine-2-carboxamides as Phosphodiesterase 4B (PDE4B) Inhibitors. ACS Med. Chem. Lett., 2020, 11(10), 1848-1854.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00369] [PMID: 33062163]
[40]
Decros, G.; Beauvoit, B.; Colombié, S.; Cabasson, C.; Bernillon, S.; Arrivault, S.; Guenther, M.; Belouah, I.; Prigent, S.; Baldet, P.; Gibon, Y.; Pétriacq, P. Regulation of pyridine nucleotide metabolism during tomato fruit development through transcript and protein profiling. Front. Plant Sci., 2019, 10, 1201.
[http://dx.doi.org/10.3389/fpls.2019.01201] [PMID: 31681351]
[41]
Carrasco, E.; Gomez-Gutierrez, P.; Campos, P.M.; Vega, M.; Messeguer, A.; Perez, J.J. Discovery of novel 2,3,5-trisubstituted pyridine analogs as potent inhibitors of IL-1β via modulation of the p38 MAPK signaling pathway. Eur. J. Med. Chem., 2021, 223, 113620.
[http://dx.doi.org/10.1016/j.ejmech.2021.113620] [PMID: 34186234]
[42]
Murugavel, S.; Ravikumar, C.; Jaabil, G.; Alagusundaram, P. Synthesis, computational quantum chemical study, in silico ADMET and molecular docking analysis, in vitro biological evaluation of a novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties as a potential human topoisomerase IIα inhibiting anticancer agent. Comput. Biol. Chem., 2019, 79, 73-82.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.013] [PMID: 30731361]
[43]
Jian, X.E.; Yang, F.; Jiang, C.S.; You, W.W.; Zhao, P.L. Synthesis and biological evaluation of novel pyrazolo[3,4-b]pyridines as cis-restricted combretastatin A-4 analogues. Bioorg. Med. Chem. Lett., 2020, 30(8), 127025.
[http://dx.doi.org/10.1016/j.bmcl.2020.127025] [PMID: 32063430]
[44]
Sabour, R.; Harras, M.F.; Mehany, A.B.M. Design, synthesis, cytotoxicity screening and molecular docking of new 3-cyanopyridines as survivin inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 94, 103358.
[http://dx.doi.org/10.1016/j.bioorg.2019.103358] [PMID: 31679838]
[45]
Ramírez, D.; Mejia-Gutierrez, M.; Insuasty, B.; Rinné, S.; Kiper, A.K.; Platzk, M.; Müller, T.; Decher, N.; Quiroga, J.; De-la-Torre, P.; González, W. 5-(Indol-2-yl)pyrazolo[3,4-b]pyridines as a new family of TASK-3 channel blockers: A pharmacophore-based regioselective synthesis. Molecules, 2021, 26(13), 3897.
[http://dx.doi.org/10.3390/molecules26133897] [PMID: 34202296]
[46]
Ullah, S.; El-Gamal, M.I.; Zaib, S.; Anbar, H.S.; Zaraei, S.O.; Sbenati, R.M.; Pelletier, J.; Sévigny, J.; Oh, C.H.; Iqbal, J. Synthesis, biological evaluation, and docking studies of new pyrazole-based thiourea and sulfonamide derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Bioorg. Chem., 2020, 99, 103783.
[http://dx.doi.org/10.1016/j.bioorg.2020.103783] [PMID: 32224334]
[47]
Yu, Y.; Han, Y.; Zhang, F.; Gao, Z.; Zhu, T.; Dong, S.; Ma, M. Design, synthesis, and biological evaluation of imidazo[1,2- a]pyridine derivatives as novel PI3K/mTOR dual inhibitors. J. Med. Chem., 2020, 63(6), 3028-3046.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01736] [PMID: 32069401]
[48]
Zhao, F.; Lu, W.; Xu, Y.; Xu, L.; Zhang, J.; Sun, X.; Yang, S.; Zhou, M.; Su, F.; Lin, F.; Cao, F. Synthesis and high antiproliferative activity of dehydroabietylamine pyridine derivatives in vitro and in vivo. Biochem. J., 2020, 477(12), 2383-2399.
[http://dx.doi.org/10.1042/BCJ20200337] [PMID: 32497169]
[49]
Lapier, M.; Ballesteros-Garrido, R.; Guzman-Rivera, D.; González-Herrera, F.; Aguilera-Venegas, B.; Moncada-Basualto, M.; Ballesteros, R.; Abarca, B.; Pesce, B.; Kemmerling, U.; Olea-Azar, C.; Maya, J.D. Novel [1,2,3]triazolo[1,5-a]pyridine derivatives are trypanocidal by sterol biosynthesis pathway alteration. Future Med. Chem., 2019, 11(10), 1137-1155.
[http://dx.doi.org/10.4155/fmc-2018-0242] [PMID: 31280672]
[50]
Lu, X.; Williams, Z.; Hards, K.; Tang, J.; Cheung, C.Y.; Aung, H.L.; Wang, B.; Liu, Z.; Hu, X.; Lenaerts, A.; Woolhiser, L.; Hastings, C.; Zhang, X.; Wang, Z.; Rhee, K.; Ding, K.; Zhang, T.; Cook, G.M. Pyrazolo[1,5- a]pyridine inhibitor of the respiratory cytochrome bcc complex for the treatment of drug-resistant tuberculosis. ACS Infect. Dis., 2019, 5(2), 239-249.
[http://dx.doi.org/10.1021/acsinfecdis.8b00225] [PMID: 30485737]
[51]
Abo-Salem, H.; Abd El Salam, H.; Abdel-Aziem, A.; Abdel-Aziz, M.; El-Sawy, E. Synthesis, molecular docking, and biofilm formation inhibitory activity of Bis(Indolyl)pyridines analogues of the marine alkaloid nortopsentin. Molecules, 2021, 26(14), 4112.
[http://dx.doi.org/10.3390/molecules26144112] [PMID: 34299385]
[52]
Liu, X.; Sun, Y.; Lu, M.; Pan, X.; Wang, Z. Electrochemical and surface analytical studies of transition metal bipyridine dicarboxylic acid complexes as corrosion inhibitors for a mild steel in HCl solution. J. Adhes. Sci. Technol., 2021, 35(19), 2142-2158.
[53]
Wosińska-Hrydczuk, M.; Skarżewski, J. New nitrogen, sulfur-, and selenium-donating ligands derived from chiral pyridine amino alcohols. Molecules, 2021, 26(12), 3493.
[http://dx.doi.org/10.3390/molecules26123493] [PMID: 34201290]
[54]
Nandwana, N.K.; Dhiman, S.; Shinde, V.N.; Beifuss, U.; Kumar, A. Synthesis of π-expanded azole-fused imidazo[1,2- a]pyridine derivatives and their photophysical properties. Eur. J. Org. Chem., 2020, 2020(17), 2576-2582.
[http://dx.doi.org/10.1002/ejoc.202000236]
[55]
Rodríguez, J.C.; Maldonado, R.A.; Ramírez-García, G.; Díaz Cervantes, E.; Cruz, F.N. Microwave‐assisted synthesis and luminescent activity of imidazo[1,2‐ a]pyridine derivatives. J. Heterocycl. Chem., 2020, 57(5), 2279-2287.
[http://dx.doi.org/10.1002/jhet.3950]
[56]
Handlovic, T.T.; Moreira, T.; Khan, A.; Saeed, H.; Khan, Y.; Elshaer, M.R. Facile synthesis and characterization of a bromine-substituted (Chloromethyl)pyridine precursor towards the immobilization of biomimetic metal ion chelates on functionalized carbons. J. Carbon Res., 2021, 7(3), 54.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy