Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Oxidative Chlorination: A Sustainable Alternative for the Preparation of Chloroarenes

Author(s): Vitor S.C. de Andrade* and Marcio C.S. de Mattos*

Volume 10, Issue 2, 2023

Published on: 06 March, 2023

Page: [143 - 159] Pages: 17

DOI: 10.2174/2213346110666230213113910

Price: $65

Abstract

Chloroarenes are important from both academic and industrial points of view. They are useful intermediates and building blocks in manufacturing a range of bulk and fine aromatic chemicals, dyes, flame retardants in electronic boards, disinfectants, and pharmaceutical drugs. In addition, diverse agrochemicals, synthetic drugs, and natural products are chloroarenes. Although conventional chlorination of arenes is a well-established transformation that has been studied in detail in many textbooks, current challenges have driven scientists to design new strategies that can address the need for efficiency and sustainability. The oxidative chlorination reaction proceeds via an oxidation step of the chloride ion to generate the active electrophilic chlorenium species in situ. In these regards, the present review focused on the main achievementsof the oxidative chlorination of arenes, with special focus on their generality and green aspects. Therefore, the use of different oxidants (hydrogen peroxide, oxygen, iodine(III) reagents, enzymes) and conditions of electrochemistry and photocatalysis are presented.

Graphical Abstract

[1]
Pereira, M.S. Polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and polychlorinated biphenyls (PCB): Main sources, environmental behaviour and risk to man and biota. Quim. Nova, 2004, 27(6), 934-943.
[http://dx.doi.org/10.1590/S0100-40422004000600018]
[2]
Ashraf, M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut. Res. Int., 2017, 24(5), 4223-4227.
[http://dx.doi.org/10.1007/s11356-015-5225-9] [PMID: 26370807]
[3]
Harada, T.; Takeda, M.; Kojima, S.; Tomiyama, N. Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicol. Res., 2016, 32(1), 21-33.
[http://dx.doi.org/10.5487/TR.2016.32.1.021] [PMID: 26977256]
[4]
Martin, T.J.; Maise, J.; Gabure, S.; Whalen, M.M. Exposures to the environmental contaminants pentachlorophenol and dichlorodiphenyltrichloroethane increase production of the proinflammatory cytokine, interleukin‐1β in human immune cells. J. Appl. Toxicol., 2019, 39(8), 1132-1142.
[http://dx.doi.org/10.1002/jat.3798] [PMID: 30912175]
[5]
Wójcik, A.; Bieniasz, A.; Wydro, P.; Broniatowski, M. The effect of chlorination degree and substitution pattern on the interactions of polychlorinated biphenyls with model bacterial membranes. Biochim. Biophys. Acta Biomembr., 2019, 1861(6), 1057-1068.
[http://dx.doi.org/10.1016/j.bbamem.2019.03.009] [PMID: 30890470]
[6]
Vasseur, P.; Cossu-Leguille, C. Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere, 2006, 62(7), 1033-1042.
[http://dx.doi.org/10.1016/j.chemosphere.2005.05.043] [PMID: 16055165]
[7]
Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 173, 117-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.063] [PMID: 30995567]
[8]
(a) Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2020, 37(2), 175-223.
[http://dx.doi.org/10.1039/C9NP00069K] [PMID: 32025684];
(b) Gribble, G.W. A recent survey of naturally occurring organohalogen compounds. Environ. Chem., 2015, 12(4), 396-405.
[http://dx.doi.org/10.1071/EN15002]
[9]
Naumann, K. Influence of chlorine substituents on biological activity of chemicals: A review. Pest Manag. Sci., 2000, 56(1), 3-21.
[http://dx.doi.org/10.1002/(SICI)1526-4998(200001)56:1<3::AIDPS107>3.0.CO;2-P]
[10]
Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem., 2013, 56(4), 1363-1388.
[http://dx.doi.org/10.1021/jm3012068] [PMID: 23145854]
[11]
Smith, B.R.; Eastman, C.M.; Njardarson, J.T.; Beyond, C.; Beyond, C. H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem., 2014, 57(23), 9764-9773.
[http://dx.doi.org/10.1021/jm501105n] [PMID: 25255063]
[12]
Brown, D.G.; Gagnon, M.M.; Boström, J. Understanding our love affair with p-chlorophenyl: present day implications from historical biases of reagent selection. J. Med. Chem., 2015, 58(5), 2390-2405.
[http://dx.doi.org/10.1021/jm501894t] [PMID: 25658759]
[13]
Calcaterra, N.E.; Barrow, J.C. Classics in chemical neuroscience: diazepam (valium). ACS Chem. Neurosci., 2014, 5(4), 253-260.
[http://dx.doi.org/10.1021/cn5000056] [PMID: 24552479]
[14]
(a) Farde, L.; Ehrin, E.; Eriksson, L.; Greitz, T.; Hall, H.; Hedström, C.G.; Litton, J.E.; Sedvall, G. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc. Natl. Acad. Sci. USA, 1985, 82(11), 3863-3867.
[http://dx.doi.org/10.1073/pnas.82.11.3863] [PMID: 3873656];
(b) Lee, J.; Cheong, I.; Lee, S.Y. Successful application of a neutral organic base, 1,8-bis(tetramethylguanidino)naphthalene (TMGN), for the radiosynthesis of [11C]raclopride. Appl. Radiat. Isot., 2016, 118, 382-388.
[http://dx.doi.org/10.1016/j.apradiso.2016.10.006] [PMID: 27894050]
[15]
Mortier, J. Arene Chemistry, Reaction Mechanisms and Methods for Aromatic Compounds; John Wiley & Sons: Hoboken, 2016.
[16]
Krishnamurti, R. Chlorinated benzenes. In: Kirk-Othmer Encyclopedia of Technical Technology; John Wiley & Sons: Hoboken, 2001; Vol. 6, pp. 211-225.
[http://dx.doi.org/10.1002/0471238961.0308121502182501.a01.pub2]
[17]
de Andrade, V.S.C.; de Mattos, M.C.S. Industrial arene chemistry: markets, technologies, processes and case studies of aromatic commodities; Mortier, J., Ed.; Wiley-VCH: Weinheim, 2023, Vol. 4, pp. 1769-1802.
[18]
(a) Mendonça, G.; de Almeida, L.; de Mattos, M.; Esteves, P.; Ribeiro, R. New ideas for a 160 years-old reaction. Curr. Org. Synth., 2015, 12(5), 603-617.
[http://dx.doi.org/10.2174/157017941205150821130712];
(b) Mendonça, G.; Mattos, M. Green chlorination of organic compounds using trichloroisocyanuric acid (TCCA). Curr. Org. Synth., 2014, 10(6), 820-836.
[http://dx.doi.org/10.2174/157017941006140206102255]
[19]
Vaillancourt, F.H.; Yeh, E.; Vosburg, D.A.; Garneau-Tsodikova, S.; Walsh, C.T. Nature’s inventory of halogenation catalysts: Oxidative strategies predominate. Chem. Rev., 2006, 106(8), 3364-3378.
[http://dx.doi.org/10.1021/cr050313i] [PMID: 16895332]
[20]
Hering, T.; Meyer, A.U.; König, B. Photocatalytic anion oxidation and applications in organic synthesis. J. Org. Chem., 2016, 81(16), 6927-6936.
[http://dx.doi.org/10.1021/acs.joc.6b01050] [PMID: 27355754]
[21]
Barhate, N.B.; Gajare, A.S.; Wakharkar, R.D.; Bedekar, A.V. Simple and practical halogenation of arenes, alkenes and alkynes with hydrohalic acid/H2O2 (or TBHP). Tetrahedron, 1999, 55(36), 11127-11142.
[http://dx.doi.org/10.1016/S0040-4020(99)00628-6]
[22]
Chung, K.H.; Kim, H.J.; Kim, H.R.; Ryu, E.K. Oxidative chlorination of phenols with hydrogen chloride/m-chloroperbenzoic acid/N,N-dimethylformamide system. Synth. Commun., 1990, 20(19), 2991-2997.
[http://dx.doi.org/10.1080/00397919008051517]
[23]
Chung, K.H.; Kim, K.M.; Kim, J.N.; Ryu, E.K. Oxidative chlorination of acetanilides with hydrogen chloride/m-chloroperbenzoi acid/N,N-dimethylformamide system. Synth. Commun., 1991, 21(18-19), 1917-1922.
[http://dx.doi.org/10.1080/00397919108021782]
[24]
(a) Hussain, H.; Green, I.R.; Ahmed, I. Journey describing applications of oxone in synthetic chemistry. Chem. Rev., 2013, 113(5), 3329-3371.
[http://dx.doi.org/10.1021/cr3004373] [PMID: 23451713];
(b) Alvi, S.; Jayant, V.; Ali, R. Applications of oxone® in organic synthesis: An emerging green reagent of modern era. ChemistrySelect, 2022, 7(23), e20220070.
[http://dx.doi.org/10.1002/slct.202200704]
[25]
Montgomery, R.E. Catalysis of peroxymonosulfate reactions by ketones. J. Am. Chem. Soc., 1974, 96(25), 7820-7821.
[http://dx.doi.org/10.1021/ja00832a040]
[26]
(a) de Souza, S.P.L.; da Silva, J.F.M.; de Mattos, M.C.S. A green preparation of N-chloro- and N-bromosaccharin. Synth. Commun., 2003, 33(6), 935-939.
[http://dx.doi.org/10.1081/SCC-120016353];
(b) de Almeida, L.S. Esteves, de Mattos, M.C.S. Tribromoisocyanuric acid: A new reagent for regioselective cobromination of alkenes. Synlett, 2006, 1515-1518.
[27]
Narender, N.; Kandepi, V. Ecofriendly oxidative nuclear halogenation of aromatic compounds using potassium and ammonium halides. Synthesis, 2012, 44(1), 15-26.
[http://dx.doi.org/10.1055/s-0031-1289620]
[28]
Tamhankar, B.V.; Desai, U.V.; Mane, R.B.; Wadgaonkar, P.P.; Bedekar, A.V. A simple and practical halogenation of activated arenes using potassium halide and oxone® in water-acetonitrile medium. Synth. Commun., 2001, 31(13), 2021-2027.
[http://dx.doi.org/10.1081/SCC-100104419]
[29]
Narender, N.; Srinivasu, P.; Kulkarni, S.J.; Raghavan, K.V. Highly efficient, para-selective xychlorination of aromatic compounds using potassium chloride and oxone®. Synth. Commun., 2002, 32(2), 279-286.
[http://dx.doi.org/10.1081/SCC-120002013]
[30]
Narender, N.; Krishna Mohan, K.V.V.; Srinivasu, P.; Kulkarni, S.J.; Raghavan, K.V. Mild and regioselective oxidative bromination of aromatic compounds using ammonium bromide and oxone. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem, 2004, 43, 1335-138.
[31]
Schmidt, R.; Stolle, A.; Ondruschka, B. Aromatic substitution in ball mills: Formation of aryl chlorides and bromides using potassium peroxomonosulfate and NaX. Green Chem., 2012, 14(6), 1673-1679.
[http://dx.doi.org/10.1039/c2gc16508b]
[32]
Mahajan, T.; Kumar, L.; Dwivedi, K.; Agarwal, D.D. Sodium lauryl sulfate–catalyzed oxidative chlorination of aromatic compounds. Synth. Commun., 2012, 42(24), 3655-3663.
[http://dx.doi.org/10.1080/00397911.2011.589560]
[33]
Gu, L.; Lu, T.; Zhang, M.; Tou, L.; Zhang, Y. Efficient oxidative chlorination of aromatics on saturated chloride solution. Adv. Synth. Catal., 2013, 355(6), 1077-1082.
[http://dx.doi.org/10.1002/adsc.201300062]
[34]
Muathen, H.A. Oxidative halogenation of aromatic compounds with metal halides and. sodium bismuthate. Helv. Chim. Acta, 2003, 86(1), 164-168.
[http://dx.doi.org/10.1002/hlca.200390007]
[35]
(a) Arenas, J.L.; Crousse, B. An overview of 4- and 5-halo-1,2,3-triazoles from cycloaddition reactions. Eur. J. Org. Chem., 2021, 2021(18), 2665-2679.
[http://dx.doi.org/10.1002/ejoc.202100327];
(b) Kumar, A.; Salahuddin; Mazumder, A.; Yar, M.S.; Kumar, R.; Ahsan, M.J. Salahuddin; Mazumder, A.; Yar, M.S.; Kumar, S.; Ahsan, M.J. The synthesis and anticancer potentials of quinoline analogues: A review of literature. Mini Rev. Org. Chem., 2021, 18(6), 735-768.
[http://dx.doi.org/10.2174/1570193X17999201012182001];
(c) Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[36]
Rai, V.; Sorabad, G.S.; Maddani, M.R. Facile and direct halogenation of 1,2,3-triazoles promoted by a KX-oxone system under transition metal free conditions. New J. Chem., 2021, 45(8), 3969-3973.
[http://dx.doi.org/10.1039/D0NJ05170E]
[37]
Wang, Y.; Wang, Y.; Jiang, K.; Zhang, Q.; Li, D. Transition-metal-free oxidative C5 C-H-halogenation of 8-aminoquinoline amides using sodium halides. Org. Biomol. Chem., 2016, 14(43), 10180-10184.
[http://dx.doi.org/10.1039/C6OB02079H] [PMID: 27753444]
[38]
Olsen, K.L.; Jensen, M.R.; MacKay, J.A. A mild halogenation of pyrazoles using sodium halide salts and Oxone. Tetrahedron Lett., 2017, 58(43), 4111-4114.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.042]
[39]
Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. Sodium salts (NaI/NaBr/NaCl) for the halogenation of imidazo-fused heterocycles. J. Org. Chem., 2019, 84(2), 792-805.
[http://dx.doi.org/10.1021/acs.joc.8b02637] [PMID: 30561207]
[40]
Podgoršek, A.; Zupan, M.; Iskra, J. Oxidative halogenation with “green” oxidants: Oxygen and hydrogen peroxide. Angew. Chem. Int. Ed., 2009, 48(45), 8424-8450.
[http://dx.doi.org/10.1002/anie.200901223] [PMID: 19827067]
[41]
Vyas, P.V.; Bhatt, A.K.; Ramachandraiah, G.; Bedekar, A.V. Environmentally benign chlorination and bromination of aromatic amines, hydrocarbons and naphthols. Tetrahedron Lett., 2003, 44(21), 4085-4088.
[http://dx.doi.org/10.1016/S0040-4039(03)00834-7]
[42]
Ben-Daniel, R.; de Visser, S.P.; Shaik, S.; Neumann, R. Electrophilic aromatic chlorination and haloperoxidation of chloride catalyzed by polyfluorinated alcohols: A new manifestation of template catalysis. J. Am. Chem. Soc., 2003, 125(40), 12116-12117.
[http://dx.doi.org/10.1021/ja0364524] [PMID: 14518997]
[43]
Mukhopadhyay, S.; Chandnani, K.H.; Chandalia, S.B. Highly selective oxidative monochlorination to synthesize organic intermediates: 2-chlorotoluene, 2-chloroaniline, 2-chlorophenol, and 2-chloro-4-methylphenol. Org. Process Res. Dev., 1999, 3(3), 196-200.
[http://dx.doi.org/10.1021/op980083s]
[44]
Chen, Z. Recent development of biomimetic halogenation inspired by vanadium dependent haloperoxidase. Coord. Chem. Rev., 2022, 457, 214404.
[http://dx.doi.org/10.1016/j.ccr.2021.214404]
[45]
Dinesh, C.U.; Kumar, R.; Pandey, B.; Kumar, P. Catalytic halogenation of selected organic compounds mimicking vanadate-dependent marine metalloenzymes. J. Chem. Soc. Chem. Commun., 1995, (6), 611-612.
[http://dx.doi.org/10.1039/c39950000611]
[46]
Bogdal, D.; Lukasiewicz, M.; Pielichowski, J. Halogenation of carbazole and other aromatic compounds with hydrohalic acids and hydrogen peroxide under microwave irradiation. Green Chem., 2004, 6(2), 110-113.
[http://dx.doi.org/10.1039/b312706k]
[47]
Xin, H.; Yang, S.; An, B.; An, Z. Selective water-based oxychlorination of phenol with hydrogen peroxide catalyzed by manganous sulfate. RSC Adv., 2017, 7(22), 13467-13472.
[http://dx.doi.org/10.1039/C7RA00319F]
[48]
Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc. Rev., 2012, 41(8), 3381-3430.
[http://dx.doi.org/10.1039/c2cs15224j] [PMID: 22358177]
[49]
Hao, W.; Liu, Y. C–H bond halogenation catalyzed or mediated by copper: An overview. Beilstein J. Org. Chem., 2015, 11, 2132-2144.
[http://dx.doi.org/10.3762/bjoc.11.230] [PMID: 26664634]
[50]
Menini, L.; Gusevskaya, E.V. Aerobic oxychlorination of phenols catalyzed by copper(II) chloride. Appl. Catal. A Gen., 2006, 309(1), 122-128.
[http://dx.doi.org/10.1016/j.apcata.2006.05.006]
[51]
Mo, S.; Zhu, Y.; Shen, Z. Copper-catalyzed aromatic C–H bond halogenation with lithium halides under aerobic conditions. Org. Biomol. Chem., 2013, 11(17), 2756-2760.
[http://dx.doi.org/10.1039/c3ob40185e] [PMID: 23446816]
[52]
Yang, L.; Lu, Z.; Stahl, S.S. Regioselective copper-catalyzed chlorination and bromination of arenes with O2 as the oxidant. Chem. Commun., 2009, (42), 6460-6462.
[http://dx.doi.org/10.1039/b915487f] [PMID: 19841809]
[53]
Limberg, C.; Teles, J.H. The activation of O2 at ruthenium complexes: Catalytic chlorination of unsaturated organic substrates within the system O2/HCl/H2O. Adv. Synth. Catal., 2001, 343(5), 447-449.
[http://dx.doi.org/10.1002/1615-4169(200107)343:5<447::AIDADSC447>3.0.CO;2-K]
[54]
Willgerodt, C. Ueber einige aromatische Jodidchloride. J. Prakt. Chem., 1885, 33(1), 154-160.
[http://dx.doi.org/10.1002/prac.18860330117]
[55]
(a) Bauer, A.; Maulide, N. Recent discoveries on the structure of iodine(III) reagents and their use in cross-nucleophile coupling. Chem. Sci., 2021, 12(3), 853-864.
[http://dx.doi.org/10.1039/D0SC03266B] [PMID: 34163852];
(b) Parra, A. Chiral hypervalent iodines: Active players in asymmetric synthesis. Chem. Rev., 2019, 119(24), 12033-12088.
[http://dx.doi.org/10.1021/acs.chemrev.9b00338] [PMID: 31741377];
(c) Yoshimura, A.; Zhdankin, V.V. Advanes in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[56]
Wang, X.; Studer, A. Iodine(III) reagents in radical chemistry. Acc. Chem. Res., 2017, 50(7), 1712-1724.
[http://dx.doi.org/10.1021/acs.accounts.7b00148] [PMID: 28636313]
[57]
(a) Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Satkar, Y.; Juárez Ornelas, K.A.; Mali, N.; Patil, D.B.; Gámez-Montaño, R.; Zapata-Morales, J.R.; Lagunas-Rivera, S.; Ortíz-Alvarado, R.; Solorio-Alvarado, C.R. Oxidative halogenation of arenes, olefins and alkynes mediated by iodine(III) reagents. Mini Rev. Org. Chem., 2021, 18(2), 159-172.
[http://dx.doi.org/10.2174/1570193X17999200504095803];
(b) Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Juárez-Ornelas, K.A.; Alonso-Castro, A.J.; Ortiz-Alvarado, R.; Dohi, T.; Solorio-Alvarado, C.R. Iodine(III) reagents for oxidative aromatic halogenation. Org. Biomol. Chem., 2022, 20(25), 5009-5034.
[http://dx.doi.org/10.1039/D2OB00741J] [PMID: 35703407]
[58]
Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. Acid activation in phenyliodine dicarboxylates: Direct observation, structures, and implications. J. Am. Chem. Soc., 2016, 138(39), 12747-12750.
[http://dx.doi.org/10.1021/jacs.6b07999] [PMID: 27606591]
[59]
Neu, R. Zur Kenntnis der Aryljodidchloride (I. Mitteil.). Ber. Dtsch. Chem. Ges. B, 1939, 72(8), 1505-1512.
[http://dx.doi.org/10.1002/cber.19390720806]
[60]
Zanka, A.; Takeuchi, H.; Kubota, A. Large-scale preparation of iodobenzene dichloride and efficient monochlorination of 4-aminoacetophenone. Org. Process Res. Dev., 1998, 2(4), 270-273.
[http://dx.doi.org/10.1021/op980024e]
[61]
Wang, M.; Zhang, Y.; Wang, T.; Wang, C.; Xue, D.; Xiao, J. Story of an age-old reagent: An electrophilic chlorination of arenes and heterocycles by 1-chloro-1,2-benziodoxol-3-one. Org. Lett., 2016, 18(9), 1976-1979.
[http://dx.doi.org/10.1021/acs.orglett.6b00547] [PMID: 27074528]
[62]
Bovonsombat, P.; Djuardi, E.; Mc Nelis, E. Ring halogenations of polyalkylbenzenes by ionic halides and Koser’s reagent. Tetrahedron Lett., 1994, 35(18), 2841-2844.
[http://dx.doi.org/10.1016/S0040-4039(00)76639-1]
[63]
Granados, A.; Jia, Z.; del Olmo, M.; Vallribera, A. In situ generation of hypervalent iodine reagents for the electrophilic chlorination of arenes. Eur. J. Org. Chem., 2019, 2019(17), 2812-2818.
[http://dx.doi.org/10.1002/ejoc.201900237]
[64]
Himabindu, V.; Parvathaneni, S.P.; Rao, V.J.PhI. (OAc)2/NaX-mediated halogenation providing access to valuable synthons 3-haloindole derivatives. New J. Chem., 2018, 42(23), 18889-18893.
[http://dx.doi.org/10.1039/C8NJ03822H]
[65]
Nahide, P.D.; Ramadoss, V.; Juárez-Ornelas, K.A.; Satkar, Y.; Ortiz-Alvarado, R.; Cervera-Villanueva, J.M.J.; Alonso-Castro, Á.J.; Zapata-Morales, J.R.; Ramírez-Morales, M.A.; Ruiz-Padilla, A.J.; Deveze-Álvarez, M.A.; Solorio-Alvarado, C.R. New in situ formed I(III)-based reagent for the electrophilic ortho-chlorination of phenols and phenol-ethers: The use of PIFA-AlCl3 system. Eur. J. Org. Chem., 2018, 2018(4), 485-493.
[http://dx.doi.org/10.1002/ejoc.201701399]
[66]
Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C.R. Iodine(III)/AlX3-mediated electrophilic chlorination and bromination of arenes. Dual role of AlX3 (X = Cl, Br) for (PhIO)n depolymerization and as the halogen source. Tetrahedron Lett., 2019, 60(23), 1551-1555.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.019]
[67]
Fosu, S.C.; Hambira, C.M.; Chen, A.D.; Fuchs, J.R.; Nagib, D.A. Site-selective C–H functionalization of (hetero)arenes via transient, non-symmetric iodanes. Chem, 2019, 5(2), 417-428.
[http://dx.doi.org/10.1016/j.chempr.2018.11.007] [PMID: 31032461]
[68]
Perumgani, P.C.; Parvathaneni, S.P.; Surendra Babu, G.V.; Srinivas, K.; Mandapati, M.R. Copper(I) halide for regioselective ortho-halogenation of directed arenes. Catal. Lett., 2018, 148(4), 1067-1072.
[http://dx.doi.org/10.1007/s10562-018-2324-5]
[69]
Höfler, G.T.; But, A.; Hollmann, F. Haloperoxidases as catalysts in organic synthesis. Org. Biomol. Chem., 2019, 17(42), 9267-9274.
[http://dx.doi.org/10.1039/C9OB01884K] [PMID: 31599911]
[70]
Fejzagić, A.V.; Gebauer, J.; Huwa, N.; Classen, T. Halogenating enzymes for active agent synthesis: First steps are done and many have to follow. Molecules, 2019, 24(21), 4008.
[http://dx.doi.org/10.3390/molecules24214008] [PMID: 31694313]
[71]
Littlechild, J. Haloperoxidases and their role in biotransformation reactions. Curr. Opin. Chem. Biol., 1999, 3(1), 28-34.
[http://dx.doi.org/10.1016/S1367-5931(99)80006-4] [PMID: 10021409]
[72]
Agarwal, V.; Miles, Z.D.; Winter, J.M.; Eustáquio, A.S.; El Gamal, A.A.; Moore, B.S. Enzymatic halogenation and dehalogenation reactions: Pervasive and mechanistically diverse. Chem. Rev., 2017, 117(8), 5619-5674.
[http://dx.doi.org/10.1021/acs.chemrev.6b00571] [PMID: 28106994]
[73]
Sundaramoorthy, M.; Terner, J.; Poulos, T.L. The crystal structure of chloroperoxidase: A heme peroxidase-cytochrome P450 functional hybrid. Structure, 1995, 3(12), 1367-1378.
[http://dx.doi.org/10.1016/S0969-2126(01)00274-X] [PMID: 8747463]
[74]
Hofmann, B.; Tölzer, S.; Pelletier, I.; Altenbuchner, J.; van Pée, K.H.; Hecht, H.J. Structural investigation of the cofactor-free chloroperoxidases. J. Mol. Biol., 1998, 279(4), 889-900.
[http://dx.doi.org/10.1006/jmbi.1998.1802] [PMID: 9642069]
[75]
(a) Engbers, S.; Hage, R.; Klein, J.E.M.N. Toward environmentally benign electrophilic chlorinations: From chloroperoxidase to bioinspired isoporphyrins. Inorg. Chem., 2022, 61(21), 8105-8111.
[http://dx.doi.org/10.1021/acs.inorgchem.2c00602] [PMID: 35574587];
(b) Dachwitz, S.; Widmann, C.; Frese, M.; Niemann, H.H.; Sewald, N. Enzymatic halogenation: Enzyme mining, mechanisms, and implementation in reaction cascades. Amino Acids Pept. Proteins, 2021, 44, 1-43.;
(c) Latham, J.; Brandenburger, E.; Shepherd, S.A.; Menon, B.R.K.; Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev., 2018, 118(1), 232-269.
[http://dx.doi.org/10.1021/acs.chemrev.7b00032] [PMID: 28466644]
[76]
Ludewig, H.; Molyneux, S.; Ferrinho, S.; Guo, K.; Lynch, R.; Gkotsi, D.S.; Goss, R.J.M. Halogenases: Structures and functions. Curr. Opin. Struct. Biol., 2020, 65, 51-60.
[http://dx.doi.org/10.1016/j.sbi.2020.05.012] [PMID: 32619660]
[77]
Wannstedt, C.; Rotella, D.; Siuda, J.F. Chloroperoxidase mediated halogenation of phenols. Bull. Environ. Contam. Toxicol., 1990, 44(2), 282-287.
[http://dx.doi.org/10.1007/BF01700148] [PMID: 2322670]
[78]
Chen, Y.; Lin, K.; Chen, D.; Wang, K.; Zhou, W.; Wu, Y.; Huang, X. Formation of environmentally relevant polyhalogenated carbazoles from chloroperoxidase-catalyzed halogenation of carbazole. Environ. Pollut., 2018, 232, 264-273.
[http://dx.doi.org/10.1016/j.envpol.2017.09.045] [PMID: 28951041]
[79]
Getrey, L.; Krieg, T.; Hollmann, F.; Schrader, J.; Holtmann, D. Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chem., 2014, 16(3), 1104-1108.
[http://dx.doi.org/10.1039/C3GC42269K]
[80]
Vázquez-Duhalt, R.; Ayala, M.; Márquez-Rocha, F.J. Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry, 2001, 58(6), 929-933.
[http://dx.doi.org/10.1016/S0031-9422(01)00326-0] [PMID: 11684191]
[81]
Andorfer, M.C.; Belsare, K.D.; Girlich, A.M.; Lewis, J.C. Aromatic halogenation by using bifunctional flavin reductase-halogenase fusion enzymes. Chem. Bio. Chem., 2017, 18(21), 2099-2103.
[http://dx.doi.org/10.1002/cbic.201700391] [PMID: 28879681]
[82]
Tufvesson, P.; Lima-Ramos, J.; Nordblad, M.; Woodley, J.M. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org. Process Res. Dev., 2011, 15(1), 266-274.
[http://dx.doi.org/10.1021/op1002165]
[83]
Pollok, D.; Waldvogel, S.R. Electro-organic synthesis-a 21st century technique. Chem. Sci., 2020, 11(46), 12386-12400.
[http://dx.doi.org/10.1039/D0SC01848A] [PMID: 34123227]
[84]
Scheide, M.R.; Nicoleti, C.R.; Martins, G.M.; Braga, A.L. Electrohalogenation of organic compounds. Org. Biomol. Chem., 2021, 19(12), 2578-2602.
[http://dx.doi.org/10.1039/D0OB02459G] [PMID: 33656034]
[85]
Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. Palladium-catalyzed aromatic C-H halogenation with hydrogen halides by means of electrochemical oxidation. J. Am. Chem. Soc., 2009, 131(32), 11310-11311.
[http://dx.doi.org/10.1021/ja9049228] [PMID: 19637871]
[86]
Konishi, M.; Tsuchida, K.; Sano, K.; Kochi, T.; Kakiuchi, F. Palladium-catalyzed ortho-selective C-H chlorination of benzamide derivatives under anodic oxidation conditions. J. Org. Chem., 2017, 82(16), 8716-8724.
[http://dx.doi.org/10.1021/acs.joc.7b01137] [PMID: 28758746]
[87]
Liang, Y.; Lin, F.; Adeli, Y.; Jin, R.; Jiao, N. Efficient electrocatalysis for the preparation of (hetero)aryl chlorides and vinyl chloride with 1,2-dichloroethane. Angew. Chem. Int. Ed., 2019, 58(14), 4566-4570.
[http://dx.doi.org/10.1002/anie.201814570] [PMID: 30664331]
[88]
Chen, B.; Yang, Y.; Yang, Y.; Liu, S.; Chen, Q.; Zeng, X.; Xu, B. Effects of the hydrogen bonding network on electrophilic activation and electrode passivation: Electrochemical chlorination and bromination of arenes. Chem. Electro. Chem., 2019, 6(14), 3726-3730.
[http://dx.doi.org/10.1002/celc.201900869]
[89]
Yuan, Y.; Yao, A.; Zheng, Y.; Gao, M.; Zhou, Z.; Qiao, J.; Hu, J.; Ye, B.; Zhao, J.; Wen, H.; Lei, A. Electrochemical oxidative clean halogenation using HX/NaX with hydrogen evolution. iScience, 2019, 12, 293-303.
[http://dx.doi.org/10.1016/j.isci.2019.01.017] [PMID: 30735897]
[90]
Parisotto, S.; Azzi, E.; Lanfranco, A.; Renzi, P.; Deagostino, A. Recent progress in the preparation of chlorinated molecules: electrocatalysis and photoredox catalysis in the spotlight. Reactions, 2022, 3(2), 233-253.
[http://dx.doi.org/10.3390/reactions3020018]
[91]
Luu, T.G.; Jung, Y.; Kim, H.K. Visible-light-induced catalytic selective halogenation with photocatalyst. Molecules, 2021, 26(23), 7380.
[http://dx.doi.org/10.3390/molecules26237380] [PMID: 34885962]
[92]
Hering, T.; König, B. Photocatalytic activation of N-chloro compounds for the chlorination of arenes. Tetrahedron, 2016, 72(48), 7821-7825.
[http://dx.doi.org/10.1016/j.tet.2016.06.028]
[93]
Rogers, D.A.; Hopkins, M.D.; Rajagopal, N.; Varshney, D.; Howard, H.A.; LeBlanc, G.; Lamar, A.A. US Food and Drug Administration-certified food dyes as organocatalysts in the visible light-promoted chlorination of aromatics and heteroaromatics. ACS Omega, 2020, 5(13), 7693-7704.
[http://dx.doi.org/10.1021/acsomega.0c00631] [PMID: 32280913]
[94]
Rogers, D.A.; Bensalah, A.T.; Espinosa, A.T.; Hoerr, J.L.; Refai, F.H.; Pitzel, A.K.; Alvarado, J.J.; Lamar, A.A. Amplification of trichloroisocyanuric acid (TCCA) reactivity for chlorination of arenes and heteroarenes via catalytic organic dye activation. Org. Lett., 2019, 21(11), 4229-4233.
[http://dx.doi.org/10.1021/acs.orglett.9b01414] [PMID: 31140821]
[95]
Zhang, L.; Hu, X. Room temperature C(sp2)-H oxidative chlorination via photoredox catalysis. Chem. Sci., 2017, 8(10), 7009-7013.
[http://dx.doi.org/10.1039/C7SC03010J]
[96]
Hering, T.; Mühldorf, B.; Wolf, R.; König, B. Halogenase-inspired oxidative chlorination using flavin photocatalysis. Angew. Chem. Int. Ed., 2016, 55(17), 5342-5345.
[http://dx.doi.org/10.1002/anie.201600783] [PMID: 26991557]
[97]
Markushyna, Y.; Teutloff, C.; Kurpil, B.; Cruz, D.; Lauermann, I.; Zhao, Y.; Antonietti, M.; Savateev, A. Halogenation of aromatic hydrocarbons by halide anion oxidation with poly(heptazine imide) photocatalyst. Appl. Catal. B, 2019, 248, 211-217.
[http://dx.doi.org/10.1016/j.apcatb.2019.02.016]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy