Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

An Overview of Recent Development in Carbon-Based Sensors for Neurotransmitter Detection

Author(s): Madikeri Manjunth Charithra, Jamballi Gangadarappa gowda Manjunatha*, Nagarajappa Hareesha, Subbaiah Nambudamada Prinith, Doddarsikere K. Ravishankar and Huligerepura J. Arpitha

Volume 26, Issue 15, 2023

Published on: 16 March, 2023

Page: [2614 - 2624] Pages: 11

DOI: 10.2174/1386207326666230213113322

Price: $65

Abstract

The electrochemical detection of neurotransmitters is an imperative application in the field of analytical chemistry. The recent development in the electrochemical sensors based on carbon electrodes is very important due to their sensitivity and simplicity. Using the carbon-based sensor for the electrochemical analysis of the neurotransmitters is a simple method. Furthermore, these above methods provide high sensitivity, are user-friendly, and are well-matched with the concept of green chemistry. In light of this matter, this review article is devoted to the voltammetric detection of neurotransmitters by using the carbon-based electrode. Here, we survey the accomplishments in the determination of numerous neurotransmitters with high selectivity and sensitivity provided using carbon-based electrodes. Attention is concentrated on the working electrode and its promising modification which is vital for further analysis of the neurotransmitters.

Graphical Abstract

[1]
Cooper, D.R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; Yu, V. Experimental review of graphene. ISRN Condensed Matter Physics, 2012, 2012, 1-56.
[http://dx.doi.org/10.5402/2012/501686]
[2]
Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 2010, 22(10), 1027-1036.
[http://dx.doi.org/10.1002/elan.200900571]
[3]
Uslu, B.; Ozkan, S. Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett., 2007, 40(5), 817-853.
[http://dx.doi.org/10.1080/00032710701242121]
[4]
Pushpanjali, P.A.; Manjunatha, J.G.; Hareesha, N.; Souza, E.S.D.; Charithra, M.M.; Prinith, N.S. Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly(L-Leucine) layered carbon nanotube paste electrode. Surf. Interfaces, 2021, 24(4), 101154.
[http://dx.doi.org/10.1016/j.surfin.2021.101154]
[5]
Jg, M. A new electrochemical sensor based on modified carbon nanotube-graphite mixture paste electrode for voltammetric determination of resorcinol. Asian J. Pharm. Clin. Res., 2017, 10(12), 295-300.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i12.21028]
[6]
Manjunatha, J.G. A novel voltammetric method for the enhanced detection of the food additive tartrazine using an electrochemical sensor. Heliyon, 2018, 4(11), e00986.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00986] [PMID: 30761373]
[7]
Alam, A.U.; Qin, Y.; Howlader, M.M.R.; Hu, N.X.; Deen, M.J. Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens. Actuators B Chem., 2018, 254, 896-909.
[http://dx.doi.org/10.1016/j.snb.2017.07.127]
[8]
Deroco, P.B.; Fatibello-Filho, O.; Arduini, F.; Moscone, D. Effect of different carbon blacks on the simultaneous electroanalysis of drugs as water contaminants based on screen-printed sensors. Electroanalysis, 2019, 31(11), 2145-2154.
[http://dx.doi.org/10.1002/elan.201900042]
[9]
Pasban, A.A.; Nia, E.H.; Piryaei, M. Determination of acetaminophen via TiO2/MWCNT modified electrode. J. Nanoanalysis., 2017, 4, 142-149.
[http://dx.doi.org/10.22034/jna.2017.02.007]
[10]
Charithra, M.M.; Manjunatha, J.G. Electrochemical sensing of Paracetamol using electropolymerised and Sodium lauryl sulfate modified carbon nanotube paste electrode. Chem. Select, 2020, 5, pp. 9323-9329.
[11]
Karimi-Maleh, H.; Cellat, K. Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[12]
Si, B.; Song, E. Recent advances in the detection of neurotransmitters. Chemosensors (Basel), 2018, 6(1), 1-24.
[http://dx.doi.org/10.3390/chemosensors6010001]
[13]
Banerjee, S.; McCracken, S.; Hossain, M.F.; Slaughter, G. Electrochemical detection of neurotransmitters. Biosensors (Basel), 2020, 10(8), 101.
[http://dx.doi.org/10.3390/bios10080101] [PMID: 32824869]
[14]
Bucher, E.S.; Wightman, R.M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2015, 8(1), 239-261.
[http://dx.doi.org/10.1146/annurev-anchem-071114-040426] [PMID: 25939038]
[15]
Hasanzadeh, M.; Shadjou, N.; Guardia, M. Current advancement in electrochemical analysis of neurotransmitters in biological fluids. Trends Analyt. Chem., 2017, 86, 107-121.
[http://dx.doi.org/10.1016/j.trac.2016.11.001]
[16]
Xie, L.Q.; Zhang, Y.H.; Gao, F.; Wu, Q.A.; Xu, P.Y.; Wang, S.S.; Gao, N.N.; Wang, Q.X. A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite. Chin. Chem. Lett., 2017, 28(1), 41-48.
[http://dx.doi.org/10.1016/j.cclet.2016.05.015]
[17]
Ejaz, A.; Joo, Y.; Jeon, S. Fabrication of 1,4-bis(aminomethyl) benzene and cobalt hydroxide @ graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin. Sens. Actuators B Chem., 2017, 240, 297-307.
[http://dx.doi.org/10.1016/j.snb.2016.08.171]
[18]
Anuar, N.S.; Basirun, W.J.; Shalauddin, M.; Akhter, S. A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode. RSC Advances, 2020, 10(29), 17336-17344.
[http://dx.doi.org/10.1039/C9RA11056A] [PMID: 35521477]
[19]
Wang, Y.; Hamid, S.; Zhang, X.; Akhtar, N.; Zhang, X.; He, T. An electrochemiluminescent biosensor for dopamine detection using a poly(luminol–benzidine sulfate) electrode modified by tyramine oxidase. New J. Chem., 2017, 41(4), 1591-1597.
[http://dx.doi.org/10.1039/C6NJ03338E]
[20]
Bergquist, J. Ściubisz, A.; Kaczor, A.; Silberring, J. Catecholamines and methods for their identification and quantitation in biological tissues and fluids. J. Neurosci. Methods, 2002, 113(1), 1-13.
[http://dx.doi.org/10.1016/S0165-0270(01)00502-7] [PMID: 11741716]
[21]
Fotopoulou, M.A.; Ioannou, P.C. Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography. Anal. Chim. Acta, 2002, 462(2), 179-185.
[http://dx.doi.org/10.1016/S0003-2670(02)00312-4]
[22]
He, Q.; Li, M.; Wang, X.; Xia, Z.; Du, Y.; Li, Y.; Wei, L.; Shang, J. A simple, efficient and rapid HPLC–UV method for the detection of 5-HT in RIN-14B cell extract and cell culture medium. BMC Chem., 2019, 13(1), 76.
[http://dx.doi.org/10.1186/s13065-019-0591-x] [PMID: 31384823]
[23]
Lamy, E.; Pilyser, L.; Paquet, C.; Bouaziz-Amar, E.; Grassin-Delyle, S. High-sensitivity quantification of acetylcholine and choline in human cerebrospinal fluid with a validated LC-MS/MS method. Talanta, 2020, 121881.
[http://dx.doi.org/10.1016/j.talanta.2020.121881] [PMID: 33379090]
[24]
Charithra, M.M.; Manjunatha, J.G. Fabrication of poly (Evans blue) modified graphite paste electrode as an electrochemical sensor for sensitive and instant riboflavin detection. Mor. J. Chem., 2021, 9, 17.
[http://dx.doi.org/10.48317/IMIST.PRSM/morjchem-v9i1.18239]
[25]
Donmez, S. A novel electrochemical glucose biosensor based on a poly (L-aspartic acid)-modified carbon-paste electrode. Prep. Biochem. Biotechnol., 2020, 50(9), 961-967.
[http://dx.doi.org/10.1080/10826068.2020.1805758] [PMID: 32779995]
[26]
Tigari, G.; Manjunatha, J.G.; Raril, C.; Hareesha, N. Determination of riboflavin at carbon nanotube paste electrodes modified with an anionic surfactant. ChemistrySelect, 2019, 4(7), 2168-2173.
[http://dx.doi.org/10.1002/slct.201803191]
[27]
Bard, A.J. Electroanalytical Methods, 3rd ed; Marcel Dekker: New York, 2000.
[28]
Charithra, M.M.; Manjunatha, J.G. Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor. J. Electrochem. Sci. Eng., 2019, 10(1), 29-40.
[http://dx.doi.org/10.5599/jese.717]
[29]
Bagotsky, V.S. Fundamentals of electrochemistry, 2nd ed; , 2005.
[http://dx.doi.org/10.1002/047174199X]
[30]
Charithra, M.M.; Manjunatha, J.G. Sensitive detection of anthrone using poly (L-Arginine) modified Carbon paste electrode by voltammetric method. Open Access J. Chem., 2018, 3, 8-14.
[31]
Compton, R.G. banks, C. E. Understanding Voltammetry, 2nd Edition; Manchester Metropolitan University, UK, 2011.
[32]
Mattioli, I.A.; Cervini, P.; Cavalheiro, É.T.G. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: a comparative study. Mikrochim. Acta, 2020, 187(6), 318.
[http://dx.doi.org/10.1007/s00604-020-04259-x] [PMID: 32388628]
[33]
Charithra, M.M.; Manjunatha, J.G. Electroanalytical determination of acetaminophen using polymerized carbon nanocomposite based sensor. Chem. Data Collect., 2021, 33, 100718.
[http://dx.doi.org/10.1016/j.cdc.2021.100718]
[34]
Yola, M.L.; Atar, N. LütfiYola, M. Simultaneous determination of β-agonists on hexagonal boron nitride nanosheets/multi-walled carbon nanotubes nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C, 2019, 96, 669-676.
[http://dx.doi.org/10.1016/j.msec.2018.12.004]
[35]
Charithra, M.M.; Manjunatha, J.G.G.; Raril, C. Surfactant modified graphite paste electrode as an electrochemical sensor for the enhanced voltammetric detection of estriol with dopamine and uric acid. Adv. Pharm. Bull., 2020, 10(2), 247-253.
[http://dx.doi.org/10.34172/apb.2020.029] [PMID: 32373493]
[36]
He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J. Preparation of Cu2O-reduced graphene nanocomposite modified electrodes towards ultrasensitive dopamine detection. Sensors (Basel), 2018, 18(1), 1-13.
[http://dx.doi.org/10.3390/s16010001] [PMID: 29329206]
[37]
Kim, D.; Lee, S.; Piao, Y. Electrochemical determination of dopamine and acetaminophen using activated graphene-Nafion modified glassy carbon electrode. J. Electroanal. Chem. (Lausanne), 2017, 794, 221-228.
[http://dx.doi.org/10.1016/j.jelechem.2017.04.018]
[38]
Xu, G.; Jarjes, Z.A.; Desprez, V.; Kilmartin, P.A.; Travas-Sejdic, J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron., 2018, 107, 184-191.
[http://dx.doi.org/10.1016/j.bios.2018.02.031] [PMID: 29459331]
[39]
Chen, X.; Chen, J.; Dong, H.; Yu, Q.; Zhang, S.; Chen, H. Sensitive detection of dopamine using a platinum microelectrode modified by reduced graphene oxide and gold nanoparticles. J. Electroanal. Chem. (Lausanne), 2019, 848, 113244.
[http://dx.doi.org/10.1016/j.jelechem.2019.113244]
[40]
Wang, C.; Du, J.; Wang, H.; Zou, C.; Jiang, F.; Yang, P.; Du, Y. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2014, 204, 302-309.
[http://dx.doi.org/10.1016/j.snb.2014.07.077]
[41]
Manjunatha, J.G. Poly (Nigrosine) modified electrochemical sensor for the determination of dopamine and uric acid: a cyclic voltammetric study. Int. J. Chemtech Res., 2016, 6, 136-146.
[42]
Manjunatha, J.G.; Kumara Swamy, B.E.; Mamatha, G.P.; Shankar, S.S.; Gilbert, O.; Chandrashekar, B.N.; Sherigara, B.S. Electrochemical response of dopamine at phthalic acid and Triton X-100 modified carbon paste electrode: A cyclic voltammetry study. Int. J. Electrochem. Sci., 2009, 4, 1469-1478.
[43]
Manjunatha, J.G.; Deraman, M.; Basri, N.H. Electrocatalytic detection of dopamine and uric acid at poly (basic blue b) modified carbon nanotube paste electrode. Asian J. Pharm. Clin. Res., 2015, 8(5), 48-53.
[44]
Manjunatha, J.G.; Kumara Swamy, B.E.; Shreenivas, M.T.; Mamatha, G.P. Selective determination of dopamine in the presence of ascorbic acid using a poly (nicotinic acid) modified carbon paste electrode. Anal. Bioanal. Electrochem., 2012, 4, 225-237.
[45]
Li, H.; Zhou, K.; Cao, J.; Wei, Q.; Lin, C-T.; Pei, S.E.; Ma, L.; Hu, N.; Guo, Y.; Deng, Z.; Yu, Z.; Zeng, S.; Yang, W.; Meng, L. A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum. Carbon, 2021, 171, 16-28.
[http://dx.doi.org/10.1016/j.carbon.2020.08.019]
[46]
Kumar, M.; Chandra, U.; Swamy, B.E.K.; Gebisa, A.W. Co3O4/CuO composite nanopowder/sodium dodecyl sulphate modified carbon paste electrode based voltammetric sensors for detection of dopamine. Int. J. Nanotechnol., 2017, 14(9-11), 930-944.
[47]
Reza Ganjali, M.; Beitollahi, H.; Zaimbashi, R.; Tajik, S.; Rezapour, M.; Larijani, B. Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci., 2018, 13, 2519-2529.
[http://dx.doi.org/10.20964/2018.03.11]
[48]
Huang, X.; Shi, W.; Bao, N.; Yu, C.; Gu, H. Electrochemically reduced graphene oxide and gold nanoparticles on an indium tin oxide electrode for voltammetric sensing of dopamine. Mikrochim. Acta, 2019, 186(5), 310.
[http://dx.doi.org/10.1007/s00604-019-3408-7] [PMID: 31037355]
[49]
Raril, C.; Manjunatha, J.G. Carbon nanotube paste electrode for the determination of some neurotransmitters: A cyclic voltammetric study. Mod. Chem. Appl., 2018, 6(3), 263.
[http://dx.doi.org/10.4172/2329-6798.1000263]
[50]
Prinith, N.S.; Manjunatha, J.G.; Raril, C. Electrocatalytic analysis of dopamine, uric acid and ascorbic acid at Poly(Adenine) modified carbon nanotube paste electrode: A cyclic voltammetric study. Anal. Bioanal. Electrochem., 2019, 11, 742-756.
[51]
Hareesha, N.; Manjunatha, J.G. Fast and enhanced electrochemical sensing of dopamine at cost-effective poly(DL-phenylalanine) based graphite electrode. J. Electroanal. Chem. (Lausanne), 2020, 878, 114533.
[http://dx.doi.org/10.1016/j.jelechem.2020.114533]
[52]
Manjunatha, J.G.; Deraman, M. Graphene paste electrode modified with sodium dodecyl sulfate surfactant for the determination of dopamine, ascorbic acid and uric acid. Anal. Bioanal. Electrochem., 2017, 9, 198-213.
[53]
Liu, H.; Xiong, R.; Zhong, P.; Li, G.; Liu, J.; Wu, J.; Liu, Y.; He, Q. Nanohybrids of shuttle-like α-Fe2O3 nanoparticles and nitrogen-doped graphene for simultaneous voltammetric detection of dopamine and uric acid. New J. Chem., 2020, 44(47), 20797-20805.
[http://dx.doi.org/10.1039/D0NJ04629A]
[54]
Cheng, J.; Wang, X.; Nie, T.; Yin, L.; Wang, S.; Zhao, Y.; Wu, H.; Mei, H. A novel electrochemical sensing platform for detection of dopamine based on gold nanobipyramid/multi-walled carbon nanotube hybrids. Anal. Bioanal. Chem., 2020, 412(11), 2433-2441.
[http://dx.doi.org/10.1007/s00216-020-02455-5] [PMID: 32062832]
[55]
Nayak, S.P.; Ramamurthy, S.S.; Kiran Kumar, J.K. Green synthesis of silver nanoparticles decorated reduced graphene oxide nanocomposite as an electrocatalytic platform for the simultaneous detection of dopamine and uric acid. Mater. Chem. Phys., 2020, 252, 123302.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123302]
[56]
Huang, Q.; Liu, Y.; Zhang, C.; Zhang, Z.; Liu, F.; Peng, J. Au Quantum Dot/Nickel tetraminophthalocyanaine–graphene oxide-based photoelectrochemical microsensor for ultrasensitive epinephrine detection. ACS Omega, 2020, 5(15), 8423-8431.
[http://dx.doi.org/10.1021/acsomega.9b02998] [PMID: 32337404]
[57]
Stoyanova, A.; Ivanov, S.; Tsakova, V.; Bund, A. Au nanoparticle–polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochim. Acta, 2011, 56(10), 3693-3699.
[http://dx.doi.org/10.1016/j.electacta.2010.09.054]
[58]
Willemsen, J.J.; Ross, H.A.; Jacobs, M.C.; Lenders, J.W.; Thien, T.; Swinkels, L.M.; Benraad, T.J. Highly sensitive and specific HPLC with fluorometric detection for determination of plasma epinephrine and norepinephrine applied to kinetic studies in humans. Clin. Chem., 1995, 41(10), 1455-1460.
[http://dx.doi.org/10.1093/clinchem/41.10.1455] [PMID: 7586517]
[59]
Micheal, J.; Michael, J.R.; Guerci, A.D.; Koehler, R.C. Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circ. J., 1984, 69(4), 822-835.
[http://dx.doi.org/10.1161/01.cir.69.4.822]
[60]
Charithra, M.M.; Manjunatha, J.G.; Sreeharsha, N.; Asdaq, S.M.B.; Anwer, M.K. Polymerized carbon nanotube paste electrode as a sensing material for the detection of adrenaline with folic acid. Monatsh. Chem., 2021, 152(4), 411-420.
[http://dx.doi.org/10.1007/s00706-021-02756-0]
[61]
Zheng, R.; Zhao, C.; Zhong, J.; Qiu, Z.; Hu, Z. Determination of epinephrine using a novel sensitive electrochemiluminescence sensor based on ZnO nanoparticles modified pencil graphite electrode. Int. J. Electrochem. Sci., 2019, 14, 9380-9390.
[http://dx.doi.org/10.20964/2019.09.51]
[62]
Dorraji, P.S.; Jalali, F. Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs–chitosan and gold nanoparticles attached to thioglycolic acid. Sens. Actuators B Chem., 2014, 200, 251-258.
[http://dx.doi.org/10.1016/j.snb.2014.04.036]
[63]
Atta, N.F.; Galal, A.; El-Ads, E.H. A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate. Analyst (Lond.), 2012, 137(11), 2658-2668.
[http://dx.doi.org/10.1039/c2an16210e] [PMID: 22531152]
[64]
Dong, W.; Ren, Y.; Bai, Z.; Jiao, J.; Chen, Y.; Han, B.; Chen, Q. Synthesis of tetrahexahedral Au-Pd core–shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine. J. Colloid Interface Sci., 2018, 512, 812-818.
[http://dx.doi.org/10.1016/j.jcis.2017.10.071] [PMID: 29121608]
[65]
Kang, H.; Jin, Y.; Han, Q. Electrochemical detection of epinephrine using an L-Glutamic Acid functionalized graphene modified electrode. Anal. Lett., 2014, 47(9), 1552-1563.
[http://dx.doi.org/10.1080/00032719.2013.876541]
[66]
Safaei, M.; Beitollahi, H.; Shishehbore, M.R. Simultaneous determination of epinephrine and folic acid using the Fe3O4@SiO2/GR nanocomposite modified graphite. Russ. J. Electrochem., 2018, 54(11), 851-859.
[http://dx.doi.org/10.1134/S1023193518130402]
[67]
Wu, C.; Li, J.; Liu, X.; Zhang, H.; Li, R.; Wang, G.; Wang, Z.; Li, Q.; Shangguan, E. Simultaneous voltammetric determination of epinephrine and acetaminophen using a highly sensitive CoAl-OOH/reduced graphene oxide sensor in pharmaceutical samples and biological fluids. Mater. Sci. Eng. C, 2021, 119, 111557.
[http://dx.doi.org/10.1016/j.msec.2020.111557] [PMID: 33321621]
[68]
Wang, Q.; Si, H.; Zhang, L.; Li, L.; Wang, X.; Wang, S. A fast and facile electrochemical method for the simultaneous detection of epinephrine, uric acid and folic acid based on ZrO2/ZnO nanocomposites as sensing material. Anal. Chim. Acta, 2020, 1104, 69-77.
[http://dx.doi.org/10.1016/j.aca.2020.01.012] [PMID: 32106959]
[69]
Yola, M.L.; Atar, N. Development of molecular imprinted sensor including graphitic carbon nitride/N-doped carbon dots composite for novel recognition of epinephrine. Compos., Part B Eng., 2019, 175, 107113.
[http://dx.doi.org/10.1016/j.compositesb.2019.107113]
[70]
Tomé, L.I.N.; Brett, C.M.A. Polymer/iron oxide nanoparticle modified glassy carbon electrodes for the enhanced detection of epinephrine. Electroanalysis, 2019, 31(4), 704-710.
[http://dx.doi.org/10.1002/elan.201800816]
[71]
Liu, F.; Kan, X. Conductive imprinted electrochemical sensor for epinephrine sensitive detection and double recognition. J. Electroanal. Chem. (Lausanne), 2019, 836, 182-189.
[http://dx.doi.org/10.1016/j.jelechem.2019.01.050]
[72]
Arani, N.H.; Ghoreishi, S.M.; Khoobi, A. Increasing the electrochemical system performance using a magnetic nanostructured sensor for simultaneous determination of L -tyrosine and epinephrine. Anal. Methods, 2019, 11(9), 1192-1198.
[http://dx.doi.org/10.1039/C8AY02701C]
[73]
Mekassa, B.; Tessema, M.; Chandravanshi, B.S.; Baker, P.G.L.; Muya, F.N. Sensitive electrochemical determination of epinephrine at poly(L-aspartic acid)/electro-chemically reduced graphene oxide modified electrode by square wave voltammetry in pharmaceutics. J. Electroanal. Chem. (Lausanne), 2017, 807, 145-153.
[http://dx.doi.org/10.1016/j.jelechem.2017.11.045]
[74]
Huang, J.; Xu, W.; Gong, Y.; Weng, S.; Lin, X. Selective and reliable electrochemical sensor based on polythionine/AuNPs composites for epinephrine detection in serum. Int. J. Electrochem. Sci., 2016, 11, 8193-8203.
[http://dx.doi.org/10.20964/2016.10.56]
[75]
Charithra, M.M.; Manjunatha, J.G. Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode. Mater. Chem. Phys., 2021, 262, 124293.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124293]
[76]
Khoshnevisan, K.; Honarvarfard, E.; Torabi, F.; Maleki, H.; Baharifar, H.; Faridbod, F.; Larijani, B.; Khorramizadeh, M.R. Electrochemical detection of serotonin: A new approach. Clin. Chim. Acta, 2020, 501, 112-119.
[http://dx.doi.org/10.1016/j.cca.2019.10.028] [PMID: 31715139]
[77]
Yadav, V.; Raj, M.; Goyal, R.N. Comparison of different unmodified and nano-material modified sensors for the ultrasensitive determination of serotonin. J. Electrochem. Soc., 2020, 167(2), 027539.
[http://dx.doi.org/10.1149/1945-7111/ab6dd3]
[78]
Sharma, S.; Singh, N.; Tomar, V.; Chandra, R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens. Bioelectron., 2018, 107, 76-93.
[http://dx.doi.org/10.1016/j.bios.2018.02.013] [PMID: 29448224]
[79]
Dăscălescu, D.; Apetrei, C. Nanomaterials based electrochemical sensors for serotonin detection: A review. Chemosensors, 2021, 9, 14.
[http://dx.doi.org/10.3390/chemosensors9010014]
[80]
Monassier, L.; Maroteaux, L.; Pilowsky, P.M.B.T-S. Eds.; Serotonin and Cardiovascular Diseases; Academic Press: Boston, 2019, pp. 203-238.
[http://dx.doi.org/10.1016/B978-0-12-800050-2.00012-7]
[81]
Sa, M.; Ying, L.; Tang, A.G.; Xiao, L.D.; Ren, Y.P. Simultaneous determination of tyrosine, tryptophan and 5-hydroxytryptamine in serum of MDD patients by high performance liquid chromatography with fluorescence detection. Clin. Chim. Acta, 2012, 413(11-12), 973-977.
[http://dx.doi.org/10.1016/j.cca.2012.02.019] [PMID: 22402312]
[82]
Hou, C.; Jia, F.; Liu, Y.; Li, L. CSF serotonin, 5-hydroxyind-olacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res., 2006, 1095(1), 154-158.
[http://dx.doi.org/10.1016/j.brainres.2006.04.026] [PMID: 16713589]
[83]
Bullapura Matt, S.; Shivanna, M.; Manjunath, S.; Siddalinganahalli, M.; Siddalingappa, D.M. Electrochemical detection of serotonin Using t-ZrO2 nanoparticles modified carbon paste electrode. J. Electrochem. Soc., 2020, 167(15), 155512.
[http://dx.doi.org/10.1149/1945-7111/abb835]
[84]
Pinchot, S.N.; Holen, K.; Sippel, R.S.; Chen, H. Carcinoid tumors. Oncologist, 2008, 13(12), 1255-1269.
[http://dx.doi.org/10.1634/theoncologist.2008-0207] [PMID: 19091780]
[85]
Nehru, L.; Chinnathambi, S.; Fazio, E.; Neri, F.; Leonardi, S.G.; Bonavita, A.; Neri, G. Electrochemical sensing of serotonin by a modified MnO2-graphene electrode. Biosensors (Basel), 2020, 10(4), 33.
[http://dx.doi.org/10.3390/bios10040033] [PMID: 32252484]
[86]
Ramos, M.M.V.; Carvalho, J.H.S.; de Oliveira, P.R.; Janegitz, B.C. Determination of serotonin by using a thin film containing graphite, nanodiamonds and gold nanoparticles anchored in casein. Measurement, 2020, 149, 106979.
[http://dx.doi.org/10.1016/j.measurement.2019.106979]
[87]
Ghanbari, K.; Bonyadi, S. An electrochemical sensor based on Pt nanoparticles decorated over-oxidized polypyrrole/reduced graphene oxide nanocomposite for simultaneous determination of two neurotransmitters dopamine and 5-Hydroxy tryptamine in the presence of ascorbic acid. IJPAC Int. J. Polym. Anal. Charact., 2020, 25, 1-21.
[http://dx.doi.org/10.1080/1023666X.2020.1766785]
[88]
Liu, Z.; Jin, M.; Cao, J.; Niu, R.; Li, P.; Zhou, G.; Yu, Y.; van den Berg, A.; Shui, L. Electrochemical sensor integrated microfluidic device for sensitive and simultaneous quantification of dopamine and 5-hydroxytryptamine. Sens. Actuators B Chem., 2018, 273, 873-883.
[http://dx.doi.org/10.1016/j.snb.2018.06.123]
[89]
Panneer Selvam, S.; Yun, K. A self-assembled silver chalcogenide electrochemical sensor based on rGO-Ag2Se for highly selective detection of serotonin. Sens. Actuators B Chem., 2020, 302, 127161.
[http://dx.doi.org/10.1016/j.snb.2019.127161]
[90]
Ran, G.; Chen, C.; Gu, C. Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate). Mikrochim. Acta, 2015, 182(7-8), 1323-1328.
[http://dx.doi.org/10.1007/s00604-015-1454-3]
[91]
Wang, Y.; Wang, S.; Tao, L.; Min, Q.; Xiang, J.; Wang, Q.; Xie, J.; Yue, Y.; Wu, S.; Li, X.; Ding, H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens. Bioelectron., 2015, 65, 31-38.
[http://dx.doi.org/10.1016/j.bios.2014.09.099] [PMID: 25461135]
[92]
Yola, M.L.; Atar, N. A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer. Appl. Surf. Sci., 2018, 458, 648-655.
[http://dx.doi.org/10.1016/j.apsusc.2018.07.142]
[93]
Mahato, K.; Purohit, B.; Bhardwaj, K.; Jaiswal, A.; Chandra, P. Novel electrochemical biosensor for serotonin detection based on gold nanorattles decorated reduced graphene oxide in biological fluids and in vitro model. Biosens. Bioelectron., 2019, 142, 111502.
[http://dx.doi.org/10.1016/j.bios.2019.111502] [PMID: 31326860]
[94]
Yang, Y.; Zeng, Y.; Tang, C.; Zhu, X.; Lu, X.; Liu, L.; Chen, Z.; Li, L. Voltammetric determination of 5-hydroxytryptamine based on the use of platinum nanoparticles coated with molecularly imprinted silica. Mikrochim. Acta, 2018, 185(4), 219.
[http://dx.doi.org/10.1007/s00604-018-2755-0] [PMID: 29594696]
[95]
Li, Y.; Ji, Y.; Ren, B.; Jia, L.; Ma, G.; Liu, X. Carboxyl-functionalized mesoporous molecular sieve/colloidal gold modified nano-carbon ionic liquid paste electrode for electrochemical determination of serotonin. Mater. Res. Bull., 2019, 109, 240-245.
[http://dx.doi.org/10.1016/j.materresbull.2018.10.002]
[96]
Peng, L.; Jiang, T.; Rong, Z.; Liu, T.; Wang, H.; Shao, B.; Ma, J.; Yang, L.; Kang, L.; Shen, Y.; Li, H.; Qi, H.; Chen, H. Surrogate based accurate quantification of endogenous acetylcholine in murine brain by hydrophilic interaction liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(32), 3927-3931.
[http://dx.doi.org/10.1016/j.jchromb.2011.09.020] [PMID: 22088352]
[97]
Wang, Y.; Wang, T.; Shi, X.; Wan, D.; Zhang, P.; He, X.; Gao, P.; Yang, S.; Gu, J.; Xu, G. Analysis of acetylcholine, choline and butyrobetaine in human liver tissues by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2008, 47(4-5), 870-875.
[http://dx.doi.org/10.1016/j.jpba.2008.02.022] [PMID: 18407448]
[98]
Anithaa, A.C.; Asokan, K.; Sekar, C. Low energy nitrogen ion beam implanted tungsten trioxide thin films modified indium tin oxide electrode based acetylcholine sensor. J. Taiwan Inst. Chem. Eng., 2018, 84, 11-18.
[http://dx.doi.org/10.1016/j.jtice.2018.01.001]
[99]
Asri, R.; O’Neill, B.; Patel, J.C.; Siletti, K.A.; Rice, M.E. Detection of evoked acetylcholine release in mouse brain slices. Analyst (Lond.), 2016, 141(23), 6416-6421.
[http://dx.doi.org/10.1039/C6AN01758D] [PMID: 27722568]
[100]
Welle, T.M.; Alanis, K.; Colombo, M.L.; Sweedler, J.V.; Shen, M. A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes. Chem. Sci. (Camb.), 2018, 9(22), 4937-4941.
[http://dx.doi.org/10.1039/C8SC01131A] [PMID: 29938020]
[101]
Çevik, S.; Timur, S.; Anik, Ü. Biocentri-voltammetric biosensor for acetylcholine and choline. Mikrochim. Acta, 2012, 179(3-4), 299-305.
[http://dx.doi.org/10.1007/s00604-012-0895-1]
[102]
Bolat, E.Ö. Tığ, G.A.; Pekyardımcı, Ş. Fabrication of an amperometric acetylcholine esterase-choline oxidase biosensor based on MWCNTs-Fe3O4 NPs-CS nanocomposite for determination of acetylcholine. J. Electroanal. Chem. (Lausanne), 2017, 785, 241-248.
[http://dx.doi.org/10.1016/j.jelechem.2016.12.041]
[103]
Wang, C.I.; Periasamy, A.P.; Chang, H.T. Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine. Anal. Chem., 2013, 85(6), 3263-3270.
[http://dx.doi.org/10.1021/ac303613d] [PMID: 23398232]
[104]
Bodur, O.C.; Dinç, S.; Özmen, M.; Arslan, F. A sensitive amperometric detection of neurotransmitter acetylcholine using carbon dot-modified carbon paste electrode. Biotechnol. Appl. Biochem., 2020, 68(1), 1-11.
[http://dx.doi.org/10.1002/bab.1886] [PMID: 31943379]
[105]
Malin, S.G.; Shavva, V.S.; Tarnawski, L.; Olofsson, P.S. Functions of acetylcholine-producing lymphocytes in immunobiology. Curr. Opin. Neurobiol., 2020, 62, 115-121.
[http://dx.doi.org/10.1016/j.conb.2020.01.017] [PMID: 32126362]
[106]
Balasubramanian, P.; Balamurugan, T.S.T.; Chen, S.M.; Chen, T.W. Facile synthesis of spinel-type copper cobaltite nanoplates for enhanced electrocatalytic detection of acetylcholine. ACS Sustain. Chem.& Eng., 2019, 7(8), 7642-7651.
[http://dx.doi.org/10.1021/acssuschemeng.8b06021]
[107]
Mohammadi, S.Z.; Beitollahi, H.; Tajik, S. Nonenzymatic coated screen-printed electrode for electrochemical determination of acetylcholine. Micro and Nano Systems Letters, 2018, 6(1), 9.
[http://dx.doi.org/10.1186/s40486-018-0070-5]
[108]
Musarraf Hussain, M.; Asiri, A.M.; Rahman, M.M. Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO•CuO nanoleaves: Real sample analysis. Microchem. J., 2020, 159, 105534.
[http://dx.doi.org/10.1016/j.microc.2020.105534]
[109]
Chauhan, N.; Balayan, S.; Jain, U. Sensitive biosensing of neurotransmitter: 2D material wrapped nanotubes and MnO2 composites for the detection of acetylcholine. Synth. Met., 2020, 263, 116354.
[http://dx.doi.org/10.1016/j.synthmet.2020.116354]
[110]
Chauhan, N.; Chawla, S.; Pundir, C.S.; Jain, U. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode. Biosens. Bioelectron., 2017, 89(Pt 1), 377-383.
[http://dx.doi.org/10.1016/j.bios.2016.06.047] [PMID: 27342368]
[111]
Kaur, B.; Srivastava, R. A polyaniline–zeolite nanocomposite material based acetylcholinesterase biosensor for the sensitive detection of acetylcholine and organophosphates. New J. Chem., 2015, 39(9), 6899-6906.
[http://dx.doi.org/10.1039/C5NJ01049G]
[112]
Tyagi, C.; Chauhan, N.; Tripathi, A.; Jain, U.; Avasthi, D.K. Voltammetric measurements of neurotransmitter-acetylcholine through metallic nanoparticles embedded 2-D material. Int. J. Biol. Macromol., 2019, 140, 415-422.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.102] [PMID: 31421177]
[113]
Ju, J.; Bai, J.; Bo, X.; Guo, L. Non-enzymatic acetylcholine sensor based on Ni–Al layered double hydroxides/ordered mesoporous carbon. Electrochim. Acta, 2012, 78, 569-575.
[http://dx.doi.org/10.1016/j.electacta.2012.06.051]
[114]
Wang, L.; Chen, X.; Liu, C.; Yang, W. Non-enzymatic acetylcholine electrochemical biosensor based on flower-like NiAl layered double hydroxides decorated with carbon dots. Sens. Actuators B Chem., 2016, 233, 199-205.
[http://dx.doi.org/10.1016/j.snb.2016.04.062]
[115]
Heli, H.; Hajjizadeh, M.; Jabbari, A.; Moosavi-Movahedi, A.A. Copper nanoparticles-modified carbon paste transducer as a biosensor for determination of acetylcholine. Biosens. Bioelectron., 2009, 24(8), 2328-2333.
[http://dx.doi.org/10.1016/j.bios.2008.10.036] [PMID: 19237275]
[116]
Anand, S.K.; Mathew, M.R.; Radecki, J.; Radecka, H.; Kumar, K.G. Individual and simultaneous voltammetric sensing of norepinephrine and tyramine based on poly(L-arginine)/reduced graphene oxide composite film modified glassy carbon electrode. J. Electroanal. Chem. (Lausanne), 2020, 878, 114531.
[http://dx.doi.org/10.1016/j.jelechem.2020.114531]
[117]
Menon, S.; Jose, A.R.; Jesny, S.; Kumar, K.G. A colorimetric and fluorometric sensor for the determination of norepinephrine. Anal. Methods, 2016, 8(29), 5801-5805.
[http://dx.doi.org/10.1039/C6AY01539E]
[118]
Glowinski, J.; Baldessarini, R.J. Metabolism of norepinephrine in the central nervous system. Pharmacol. Rev., 1966, 18(4), 1201-1238.
[PMID: 4959625]
[119]
Park, J.; Bhimani, R.V.; Bass, C.E. Review-In vivo electrochemical measurements of norepinephrine in the brain: current status and remaining challenges. J. Electrochem. Soc., 2018, 165(12), G3051-G3056.
[http://dx.doi.org/10.1149/2.0091812jes]
[120]
Fox, M.E.; Wightman, R.M. Contrasting regulation of catecholamine neurotransmission in the behaving brain: Pharmacological insights from an electrochemical perspective. Pharmacol. Rev., 2017, 69(1), 12-32.
[http://dx.doi.org/10.1124/pr.116.012948] [PMID: 28267676]
[121]
Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35(1), 217-238.
[http://dx.doi.org/10.1038/npp.2009.110] [PMID: 19710631]
[122]
Del Tredici, K.; Braak, H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson’s disease-related dementia. J. Neurol. Neurosurg. Psychiatry, 2013, 84(7), 774-783.
[http://dx.doi.org/10.1136/jnnp-2011-301817] [PMID: 23064099]
[123]
Feng, J.; Zhang, C.; Lischinsky, J.E.; Jing, M.; Zhou, J.; Wang, H.; Zhang, Y.; Dong, A.; Wu, Z.; Wu, H.; Chen, W.; Zhang, P.; Zou, J.; Hires, S.A.; Zhu, J.J.; Cui, G.; Lin, D.; Du, J.; Li, Y. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron, 2019, 102(4), 745-761.e8.
[http://dx.doi.org/10.1016/j.neuron.2019.02.037] [PMID: 30922875]
[124]
Safaei, M.; Beitollahi, H.; Shishehbore, M.R. Synthesis and characterization of NiFe2O4 nanoparticles using the hydrothermal method as magnetic catalysts for electrochemical detection of norepinephrine in the presence of folic acid. J. Chin. Chem. Soc. (Taipei), 2019, 66(12), 1597-1603.
[http://dx.doi.org/10.1002/jccs.201900073]
[125]
Wang, Z.; Wang, K.; Zhao, L.; Chai, S.; Zhang, J.; Zhang, X.; Zou, Q. A novel sensor made of antimony doped tin oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine. Mater. Sci. Eng. C, 2017, 80, 180-186.
[http://dx.doi.org/10.1016/j.msec.2017.03.227] [PMID: 28866155]
[126]
Zhao, H.; Zhang, Y.; Yuan, Z. Poly(isonicotinic acid) modified glassy carbon electrode for electrochemical detection of norepinephrine. Anal. Chim. Acta, 2002, 454(1), 75-81.
[http://dx.doi.org/10.1016/S0003-2670(01)01543-4]
[127]
Gao, L.L.; Fang, J.J.; Yang, N.N.; Bu, R.; Yin, X.M.; Zhou, L.J.; Sun, W.J.; Gao, E.Q. Synergetic effects between a bipyridyl-functionalized metal-organic framework and graphene for sensitive electrochemical detection of norepinephrine. J. Electrochem. Soc., 2019, 166(6), B328-B335.
[http://dx.doi.org/10.1149/2.0271906jes]
[128]
Chen, J.; Huang, H.; Zeng, Y.; Tang, H.; Li, L. A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine. Biosens. Bioelectron., 2015, 65, 366-374.
[http://dx.doi.org/10.1016/j.bios.2014.10.011] [PMID: 25461183]
[129]
Mukdasai, S.; Langsi, V.; Pravda, M.; Srijaranai, S.; Glennon, J.D. A highly sensitive electrochemical determination of norepinephrine using l-cysteine self-assembled monolayers over gold nanoparticles/multi-walled carbon nanotubes electrode in the presence of sodium dodecyl sulfate. Sens. Actuators B Chem., 2016, 236, 126-135.
[http://dx.doi.org/10.1016/j.snb.2016.05.086]
[130]
Fajardo, A.; Tapia, D.; Pizarro, J.; Segura, R.; Jara, P. Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry. J. Appl. Electrochem., 2019, 49(4), 423-432.
[http://dx.doi.org/10.1007/s10800-019-01288-0]
[131]
Kanchana, P.; Navaneethan, M.; Sekar, C. Fabrication of Ce doped hydroxyapatite nanoparticles based non-enzymatic electrochemical sensor for the simultaneous determination of norepinephrine, uric acid and tyrosine. Mater. Sci. Eng. B, 2017, 226, 132-140.
[http://dx.doi.org/10.1016/j.mseb.2017.09.015]
[132]
Lee, E.J.; Choi, J.H.; Um, S.H.; Oh, B.K. Electrochemical sensor for selective detection of norepinephrine using graphene sheets-gold nanoparticle complex modified electrode. Korean J. Chem. Eng., 2017, 34(4), 1129-1132.
[http://dx.doi.org/10.1007/s11814-016-0363-4]
[133]
Samdani, K.J.; Samdani, J.S.; Kim, N.H.; Lee, J.H. FeMoO4 based, enzyme-free electrochemical biosensor for ultrasensitive detection of norepinephrine. Biosens. Bioelectron., 2016, 81, 445-453.
[http://dx.doi.org/10.1016/j.bios.2016.03.029] [PMID: 27015147]
[134]
Ma, J.; Xiong, Y.; Wang, Y.; Hong, D.; Zhao, M. Fabrication of NiO/MWNTs modified Screen Printed Electrodes for the determination of norepinephrine in the biological fluids. Int. J. Electrochem. Sci., 2020, 15, 9325-9334.
[http://dx.doi.org/10.20964/2020.09.42]
[135]
Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Abdollahi-Alibeik, M. Fabrication of an electrochemical sensor based on nanostructured polyaniline doped with tungstophosphoric acid for simultaneous determination of low concentrations of norepinephrine, acetaminophen and folic acid. J. Mol. Liq., 2013, 178, 63-69.
[http://dx.doi.org/10.1016/j.molliq.2012.11.008]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy