Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Impact of COVID-19 on Anxiety and Depression - Biopsychosocial Factors

Author(s): Amanda Gollo Bertollo, Agatha Carina Leite Galvan, Maiqueli Eduarda Dama Mingoti, Claudia Dallagnol and Zuleide Maria Ignácio*

Volume 23, Issue 1, 2024

Published on: 14 March, 2023

Page: [122 - 133] Pages: 12

DOI: 10.2174/1871527322666230210100048

Price: $65

Abstract

Anxiety and depression are prevalent mental disorders around the world. The etiology of both diseases is multifactorial, involving biological and psychological issues. The COVID-19 pandemic settled in 2020 and culminated in several changes in the routine of individuals around the world, affecting mental health. People infected with COVID-19 are at greater risk of developing anxiety and depression, and individuals previously affected by these disorders have worsened the condition. In addition, individuals diagnosed with anxiety or depression before being affected by COVID-19 developed the severe illness at higher rates than individuals without mental disorders. This harmful cycle involves several mechanisms, including systemic hyper-inflammation and neuroinflammation. Furthermore, the context of the pandemic and some previous psychosocial factors can aggravate or trigger anxiety and depression. Disorders are also risks for a more severe picture of COVID-19. This review discusses research on a scientific basis, which brings evidence on biopsychosocial factors from COVID-19 and the context of the pandemic involved in anxiety and depression disorders.

Graphical Abstract

[1]
Ferrarese C, Silani V, Priori A, et al. An Italian multicenter retrospective-prospective observational study on neurological manifestations of COVID-19 (NEUROCOVID). Neurol Sci 2020; 41(6): 1355-9.
[http://dx.doi.org/10.1007/s10072-020-04450-1] [PMID: 32430621]
[2]
Espíndola OM, Gomes YCP, Brandão CO, et al. Inflammatory cytokine patterns associated with neurological diseases in coronavirus disease 2019. Ann Neurol 2021; 89(5): 1041-5.
[http://dx.doi.org/10.1002/ana.26041] [PMID: 33547819]
[3]
Wei N, Huang B, Lu S, et al. Efficacy of internet-based integrated intervention on depression and anxiety symptoms in patients with COVID-19. J Zhejiang Univ Sci B 2020; 21(5): 400-4.
[http://dx.doi.org/10.1631/jzus.B2010013] [PMID: 32425006]
[4]
World Health Organization. Depression and other common mental disorders: global health estimates Geneva: World Health Organization 2017. Available from: https://apps.who.int/iris/handle/10665/254610https://apps.who.int/iris/handle/10665/254610 (Accessed on: 16th April 2022).
[5]
Mei Q, Wang F, Bryant A, Wei L, Yuan X, Li J. Mental health problems among COVID ‐19 survivors in Wuhan, China. World Psychiatry 2021; 20(1): 139-40.
[http://dx.doi.org/10.1002/wps.20829] [PMID: 33432745]
[6]
Rossi Ferrario S, Panzeri A, Cerutti P, Sacco D. The psychological experience and intervention in post-acute covid-19 inpatients. Neuropsychiatr Dis Treat 2021; 17: 413-22.
[http://dx.doi.org/10.2147/NDT.S283558] [PMID: 33603379]
[7]
B.C. UB, Pokharel S, Munikar S, Wagle CN, Adhikary P, Shahi BB, et al. Anxiety and depression among people living in quarantine centers during COVID-19 pandemic: A mixed method study from western Nepal. PLoS One 2021; 16(7): e0254126.
[http://dx.doi.org/10.1371/journal.pone.0254126]
[8]
Hernández VS, Zetter MA, Guerra EC, et al. ACE2 expression in rat brain: Implications for COVID-19 associated neurological manifestations. Exp Neurol 2021; 345: 113837.
[http://dx.doi.org/10.1016/j.expneurol.2021.113837] [PMID: 34400158]
[9]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[10]
Conde Cardona G, Quintana Pájaro LD, Quintero Marzola ID, Ramos Villegas Y, Moscote Salazar LR. Neurotropism of SARS-CoV 2: Mechanisms and manifestations. J Neurol Sci 2020; 412: 116824.
[http://dx.doi.org/10.1016/j.jns.2020.116824] [PMID: 32299010]
[11]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, china. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[12]
Liguori C, Pierantozzi M, Spanetta M, et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav Immun 2020; 88: 11-6.
[http://dx.doi.org/10.1016/j.bbi.2020.05.037] [PMID: 32416289]
[13]
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268-70.
[http://dx.doi.org/10.1056/NEJMc2008597] [PMID: 32294339]
[14]
Cacciatore M, Raggi A, Pilotto A, et al. Neurological and mental health symptoms associated with post-covid-19 disability in a sample of patients discharged from a COVID-19 Ward: A secondary analysis. Int J Environ Res Public Health 2022; 19(7): 4242.
[http://dx.doi.org/10.3390/ijerph19074242] [PMID: 35409924]
[15]
Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 2004; 10(2): 342-4.
[http://dx.doi.org/10.3201/eid1002.030638] [PMID: 15030709]
[16]
Hung ECW, Chim SSC, Chan PKS, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem 2003; 49(12): 2108-9.
[http://dx.doi.org/10.1373/clinchem.2003.025437] [PMID: 14633896]
[17]
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. The involvement of the central nervous system in patients with COVID-19. Rev Neurosci 2020; 31(4): 453-6.
[http://dx.doi.org/10.1515/revneuro-2020-0026] [PMID: 32463395]
[18]
Yang AC, Kern F, Losada PM, et al. Publisher Correction: Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021; 598(7882): E4-4.
[http://dx.doi.org/10.1038/s41586-021-04080-3] [PMID: 34625744]
[19]
Prakash A, Singh H, Sarma P, et al. nCoV-2019 infection induced neurological outcome and manifestation, linking its historical ancestor SARS-CoV and MERS-CoV: a systematic review and meta-analysis. Sci Rep 2021; 11(1): 12888.
[http://dx.doi.org/10.1038/s41598-021-92188-x] [PMID: 34145351]
[20]
Ferrari MFR, Raizada MK, Fior-Chadi DR. Nicotine modulates the renin-angiotensin system of cultured neurons and glial cells from cardiovascular brain areas of Wistar Kyoto and spontaneously hypertensive rats. J Mol Neurosci 2007; 33(3): 284-93.
[http://dx.doi.org/10.1007/s12031-007-9006-x] [PMID: 17952638]
[21]
Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem 2008; 107(6): 1482-94.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05723.x] [PMID: 19014390]
[22]
Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. J Neurochem 2016; 138(1): 74-85.
[http://dx.doi.org/10.1111/jnc.13641] [PMID: 27085714]
[23]
Chan PKS, To KF, Lo AWI, et al. Persistent infection of SARS coronavirus in colonic cells in vitro. J Med Virol 2004; 74(1): 1-7.
[http://dx.doi.org/10.1002/jmv.20138] [PMID: 15258961]
[24]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[25]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[26]
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011; 85(2): 873-82.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[27]
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010; 84(24): 12658-64.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[28]
Glowacka I, Bertram S, Müller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011; 85(9): 4122-34.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[29]
Bullen CK, Hogberg HT, Bahadirli-Talbott A, et al. Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2. Altern Anim Exp 2020; 37(4): 665-71.
[http://dx.doi.org/10.14573/altex.2006111] [PMID: 32591839]
[30]
Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): Encephalopathy. Cureus 2020; 12(3): e7352.
[http://dx.doi.org/10.7759/cureus.7352]
[31]
Najjar S, Najjar A, Chong DJ, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation 2020; 17(1): 231.
[http://dx.doi.org/10.1186/s12974-020-01896-0] [PMID: 32758257]
[32]
Brison E, Jacomy H, Desforges M, Talbot PJ. Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011; 85(23): 12464-73.
[http://dx.doi.org/10.1128/JVI.05576-11] [PMID: 21957311]
[33]
Battagello DS, Dragunas G, Klein MO, Ayub ALP, Velloso FJ, Correa RG. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci 2020; 134(16): 2137-60.
[http://dx.doi.org/10.1042/CS20200904] [PMID: 32820801]
[34]
Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Monit 2020; 26: e928996.
[http://dx.doi.org/10.12659/MSM.928996] [PMID: 33177481]
[35]
Kempuraj D, Selvakumar GP, Ahmed ME, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 2020; 26(5-6): 402-14.
[http://dx.doi.org/10.1177/1073858420941476] [PMID: 32684080]
[36]
Raony Í, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-neuroendocrine-immune interactions in covid-19: Potential impacts on mental health. Front Immunol 2020; 11: 1170.
[http://dx.doi.org/10.3389/fimmu.2020.01170] [PMID: 32574266]
[37]
Borsche M, Reichel D, Fellbrich A, et al. Persistent cognitive impairment associated with cerebrospinal fluid anti-SARS-CoV-2 antibodies six months after mild COVID-19. Neurol Res Pract 2021; 3(1): 34.
[http://dx.doi.org/10.1186/s42466-021-00135-y] [PMID: 34148546]
[38]
Kamel WA, Ismail II, Ibrahim M, Al-Hashel JY. Unexplained worsening of parkinsonian symptoms in a patient with advanced Parkinson’s disease as the sole initial presentation of COVID-19 infection: a case report. Egypt J Neurol Psychiat Neurosurg 2021; 57(1): 60.
[http://dx.doi.org/10.1186/s41983-021-00314-3] [PMID: 34025113]
[39]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[40]
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135: 111200.
[http://dx.doi.org/10.1016/j.biopha.2020.111200] [PMID: 33421734]
[41]
Zhang J jin, Dong X, Cao Y yuan, Yuan Y dong, Yang Y bin, Yan Y qin, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy 2020; 75(7): 1730-41.
[http://dx.doi.org/10.1111/all.14238]
[42]
Strafella C, Caputo V, Termine A, et al. Investigation of genetic variations of IL6 and IL6R as potential prognostic and pharmacogenetics biomarkers: implications for covid-19 and neuroinflammatory disorders. Life 2020; 10(12): 351.
[http://dx.doi.org/10.3390/life10120351] [PMID: 33339153]
[43]
Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: Role of interleukin-6. ACS Chem Neurosci 2020; 11(17): 2774-81.
[http://dx.doi.org/10.1021/acschemneuro.0c00447] [PMID: 32786309]
[44]
Tana C, Bentivegna E, Cho SJ, et al. Long COVID headache. J Headache Pain 2022; 23(1): 93.
[http://dx.doi.org/10.1186/s10194-022-01450-8] [PMID: 35915417]
[45]
Martelletti P, Bentivegna E, Spuntarelli V, Luciani M. Long-COVID headache. SN Compr Clin Med 2021; 3(8): 1704-6.
[http://dx.doi.org/10.1007/s42399-021-00964-7] [PMID: 34036244]
[46]
Tahery N, Khodadost M, Jahani Sherafat S, et al. C-reactive protein as a possible marker for severity and mortality of COVID-19 infection. Gastroenterol Hepatol Bed Bench 2021; 14(S1): S118-22.
[PMID: 35154611]
[47]
Tremblay ME, Madore C, Bordeleau M, Tian L, Verkhratsky A. Neuropathobiology of COVID-19: The role for glia. Front Cell Neurosci 2020; 14: 592214.
[http://dx.doi.org/10.3389/fncel.2020.592214] [PMID: 33304243]
[48]
Pellegrini L, Albecka A, Mallery DL, et al. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell 2020; 27(6): 951-961.e5.
[http://dx.doi.org/10.1016/j.stem.2020.10.001] [PMID: 33113348]
[49]
Jacobs LG, Gourna Paleoudis E. Lesky-Di et al. ersistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS One 2020; 15(12): e0243882.
[http://dx.doi.org/10.1371/journal.pone.0243882]
[50]
Mazza MG, De Lorenzo R, Conte C, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 2020; 89: 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[51]
Korman M, Tkachev V, Reis C, et al. COVID-19-mandated social restrictions unveil the impact of social time pressure on sleep and body clock. Sci Rep 2020; 10(1): 22225.
[http://dx.doi.org/10.1038/s41598-020-79299-7] [PMID: 33335241]
[52]
Vai B, Cazzetta S, Ghiglino D, et al. Risk perception and media in shaping protective behaviors: Insights from the early phase of COVID-19 Italian outbreak. Front Psychol 2020; 11: 563426.
[http://dx.doi.org/10.3389/fpsyg.2020.563426] [PMID: 33250809]
[53]
Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun 2020; 87: 34-9.
[http://dx.doi.org/10.1016/j.bbi.2020.04.027] [PMID: 32298803]
[54]
Carvalho PMM, Moreira MM, de Oliveira MNA, Landim JMM, Neto MLR. The psychiatric impact of the novel coronavirus outbreak. Psychiatry Res 2020; 286: 112902.
[http://dx.doi.org/10.1016/j.psychres.2020.112902] [PMID: 32146248]
[55]
Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology 2016; 233(9): 1637-50.
[http://dx.doi.org/10.1007/s00213-016-4218-9] [PMID: 26847047]
[56]
Danese A, Moffitt TE, Harrington H, et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med 2009; 163(12): 1135-43.
[http://dx.doi.org/10.1001/archpediatrics.2009.214] [PMID: 19996051]
[57]
Mak IWC, Chu CM, Pan PC, Yiu MGC, Chan VL. Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiatry 2009; 31(4): 318-26.
[http://dx.doi.org/10.1016/j.genhosppsych.2009.03.001] [PMID: 19555791]
[58]
Liu K, Chen Y, Wu D, Lin R, Wang Z, Pan L. Effects of progressive muscle relaxation on anxiety and sleep quality in patients with COVID-19. Complement Ther Clin Pract 2020; 39: 101132.
[http://dx.doi.org/10.1016/j.ctcp.2020.101132] [PMID: 32379667]
[59]
Santabárbara J, Lasheras I, Lipnicki DM, et al. Prevalence of anxiety in the COVID-19 pandemic: An updated meta-analysis of community-based studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109: 110207.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110207] [PMID: 33338558]
[60]
Zhu S, Gao Q, Yang L, et al. Prevalence and risk factors of disability and anxiety in a retrospective cohort of 432 survivors of Coronavirus disease-2019 (COVID-19) from China. PLoS One 2020; 15(12): e0243883.
[http://dx.doi.org/10.1371/journal.pone.0243883] [PMID: 33332386]
[61]
Dai LL, Wang X, Jiang TC, Li PF, Wang Y, Wu SJ, et al. Anxiety and depressive symptoms among COVID-19 patients in Jianghan Fangcang Shelter Hospital in Wuhan, China. PLoS One 15(8): e0238416.
[http://dx.doi.org/10.1371/journal.pone.0238416]
[62]
Xu Z, Zhang D, Xu D, Li X, Xie YJ, Sun W, et al. Loneliness, depression, anxiety, and post-traumatic stress disorder among Chinese adults during COVID-19: A cross-sectional online survey. PLoS One 2021; 16(10): e0259012.
[http://dx.doi.org/10.1371/journal.pone.0259012]
[63]
dos Santos AC, Tenorio PJ, Barbosa EAS, Souza GF de A, Souza GA, Praciano G de AF, et al. The testing for COVID-19 in symptomatic patients as a protective factor against stress, anxiety, and depression. Rev Bras Saúde Mater Infant 2021; 21(s1): 133-43.
[64]
Magdy R, Elmazny A, Soliman SH, et al. Post-COVID-19 neuropsychiatric manifestations among COVID-19 survivors suffering from migraine: a case–control study. J Headache Pain 2022; 23(1): 101.
[http://dx.doi.org/10.1186/s10194-022-01468-y] [PMID: 35962348]
[65]
Liu Z, Qiao D, Xu Y, et al. The efficacy of computerized cognitive behavioral therapy for depressive and anxiety symptoms in patients with COVID-19: Randomized controlled trial. J Med Internet Res 2021; 23(5): e26883.
[http://dx.doi.org/10.2196/26883] [PMID: 33900931]
[66]
Guimarães TT, Santos HMB, Sanctos RTM. Physical inactivity, chronic diseases, immunity and COVID-19. Rev Bras Med Esporte 2020; 26(5): 378-81.
[http://dx.doi.org/10.1590/1517-8692202026052019_0040]
[67]
Dong F, Liu H, Dai N, Yang M, Liu J. A living systematic review of the psychological problems in people suffering from COVID-19. J Affect Disord 2021; 292: 172-88.
[http://dx.doi.org/10.1016/j.jad.2021.05.060] [PMID: 34126309]
[68]
Spellman T, Liston C. Toward circuit mechanisms of pathophysiology in depression. Am J Psychiatry 2020; 177(5): 381-90.
[http://dx.doi.org/10.1176/appi.ajp.2020.20030280] [PMID: 32354265]
[69]
Bonadiman CSC, Passos VMA, Mooney M, Naghavi M, Melo APS. A carga dos transtornos mentais e decorrentes do uso de substâncias psicoativas no Brasil: Estudo de Carga Global de Doença, 1990 e 2015. Rev Bras Epidemiol 2017; 20(20 S1): 191-204.
[http://dx.doi.org/10.1590/1980-5497201700050016] [PMID: 28658383]
[70]
Almeida DB, Mota SCB, Mesquita DDS, Honório Júnior JER. A relação entre marcadores inflamatórios e depressão: uma revisão da literatura. Scire Salutis 2020; 11(1): 84-97.
[http://dx.doi.org/10.6008/CBPC2236-9600.2021.001.0010]
[71]
Grolli RE, Mingoti MED, Bertollo AG, et al. Impact of COVID-19 in the mental health in elderly: psychological and biological updates. Mol Neurobiol 2021; 58(5): 1905-16.
[http://dx.doi.org/10.1007/s12035-020-02249-x] [PMID: 33404981]
[72]
de Figueiredo CS, Sandre PC, Portugal LCL, et al. COVID-19 pandemic impact on children and adolescents’ mental health: Biological, environmental, and social factors. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106: 110171.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110171] [PMID: 33186638]
[73]
Bignardi G, Dalmaijer ES, Anwyl-Irvine AL, et al. Longitudinal increases in childhood depression symptoms during the COVID-19 lockdown. Arch Dis Child 2021; 106(8): 791-7.
[http://dx.doi.org/10.1136/archdischild-2020-320372] [PMID: 33298552]
[74]
Ma YF, Li W, Deng HB, et al. Prevalence of depression and its association with quality of life in clinically stable patients with COVID-19. J Affect Disord 2020; 275: 145-8.
[http://dx.doi.org/10.1016/j.jad.2020.06.033] [PMID: 32658818]
[75]
Cai X, Hu X, Ekumi IO, et al. Psychological distress and its correlates among COVID-19 survivors during early convalescence across age groups. Am J Geriatr Psychiatry 2020; 28(10): 1030-9.
[http://dx.doi.org/10.1016/j.jagp.2020.07.003] [PMID: 32753338]
[76]
Xu F, Wang X, Yang Y, et al. Depression and insomnia in COVID-19 survivors: a cross-sectional survey from Chinese rehabilitation centers in Anhui province. Sleep Med 2022; 91: 161-5.
[http://dx.doi.org/10.1016/j.sleep.2021.02.002] [PMID: 33627300]
[77]
Mazza MG, Palladini M, De Lorenzo R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun 2021; 94: 138-47.
[http://dx.doi.org/10.1016/j.bbi.2021.02.021] [PMID: 33639239]
[78]
Gloster AT, Lamnisos D, Lubenko J, et al. Impact of COVID-19 pandemic on mental health: An international study. PLoS One 2020; 15(12): e0244809.
[http://dx.doi.org/10.1371/journal.pone.0244809]
[79]
Mulla MS, Darwazeh HA. Activity and longevity of insect growth regulators against mosquitoes. J Econ Entomol 1975; 68(6): 791-4.
[http://dx.doi.org/10.1093/jee/68.6.791] [PMID: 432]
[80]
Jia R, Ayling K, Chalder T, et al. Young people, mental health and COVID-19 infection: the canaries we put in the coal mine. Public Health 2020; 189: 158-61.
[http://dx.doi.org/10.1016/j.puhe.2020.10.018] [PMID: 33249392]
[81]
Hao F, Tan W, Jiang L, et al. Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain Behav Immun 2020; 87: 100-6.
[http://dx.doi.org/10.1016/j.bbi.2020.04.069] [PMID: 32353518]
[82]
Wu C, Hu X, Song J, et al. Mental health status and related influencing factors of COVID‐19 survivors in Wuhan, China. Clin Transl Med 2020; 10(2): e52.
[http://dx.doi.org/10.1002/ctm2.52] [PMID: 32508037]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy