Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

General Research Article

Neurodevelopmental Outcome at 3 Years of Age in Very Low Birth Weight Infants According to Brain Development and Lesions

Author(s): Mariya Malova, Alessandro Parodi, Mariasavina Severino, Domenico Tortora, Maria Grazia Calevo, Cristina Traggiai, Paolo Massirio, Diego Minghetti, Sara Uccella, Deborah Preiti, Lino Nobili, Andrea Rossi and Luca Antonio Ramenghi*

Volume 20, Issue 1, 2024

Published on: 10 March, 2023

Page: [94 - 105] Pages: 12

DOI: 10.2174/1573396319666230208092416

Price: $65

Abstract

Background: During the last decades, severe brain lesions affecting very low birth weight (<1500 gr, VLBW) infants were gradually substituted by milder lesions with debatable prognoses.

Objective: The objective of this study is to define type, frequency and 3 years of neurodevelopmental outcome of prematurity-related brain lesions in a modern cohort of VLBW infants.

Methods: VLBW infants admitted to our NICU in 5 years period with brain MRI at term-equivalent age were included. MRI scans were reviewed to identify and grade white matter lesions (WML), intraventricular hemorrhage (IVH), and cerebellar hemorrhage (CBH). Linear measurements of brain size, biparietal width (BPW) and trans-cerebellar diameter (TCD) were carried out. Total maturation score (TMS) was calculated. Developmental Coefficients (DQ) on Griffiths Scale at 3 years of age were compared between patients with different types and grades of lesions and patients without lesions; possible correlations between linear brain measurements, brain maturation and outcome were explored.

Results: Study included 407 patients. Of them, 187 (46%) had at least one brain lesion on MRI, while 37 (9%) had severe lesions. The most frequent lesion was IVH (28%), followed by WML (21%) and CBH (17%). Mild and severe IVH, moderate and severe WML and all grades of CBH were related to worst outcome at 3 years. In patients without lesions, small BPW and small TCD were associated with worse outcomes. No correlations were observed between TMS and outcome.

Conclusion: We have observed that even mild brain lesions have a negative influence on neurological outcome at 3 years of age.

Graphical Abstract

[1]
Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012; 379(9832): 2162-72.
[http://dx.doi.org/10.1016/S0140-6736(12)60820-4] [PMID: 22682464]
[2]
Twilhaar ES, Wade RM, de Kieviet JF, van Goudoever JB, van Elburg RM, Oosterlaan J. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors. JAMA Pediatr 2018; 172(4): 361-7.
[http://dx.doi.org/10.1001/jamapediatrics.2017.5323] [PMID: 29459939]
[3]
Volpe JJ. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009; 8(1): 110-24.
[http://dx.doi.org/10.1016/S1474-4422(08)70294-1] [PMID: 19081519]
[4]
Ramenghi LA, Mosca F, Counsell S, Rutherford MA. Magnetic resonance imaging of the brain in preterm infants. In: Tortori-Donati P, Ed. Pediatric Neuroradiology. (1st ed.). Springer 2005; Vol. 1: pp. 199-234.
[http://dx.doi.org/10.1007/3-540-26398-5_5]
[5]
Parodi A, Morana G, Severino MS, et al. Low-grade intraventricular hemorrhage: Is ultrasound good enough? J Matern Fetal Neonatal Med 2015; 28 (Suppl. 1): 2261-4.
[http://dx.doi.org/10.3109/14767058.2013.796162] [PMID: 23968243]
[6]
Parodi A, Rossi A, Severino M, et al. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 2015; 100(4): F289-92.
[http://dx.doi.org/10.1136/archdischild-2014-307176] [PMID: 25637005]
[7]
Cornette LG, Tanner SF, Ramenghi LA, et al. Magnetic resonance imaging of the infant brain: Anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal Ed 2002; 86(3): 171F-7.
[http://dx.doi.org/10.1136/fn.86.3.F171] [PMID: 11978747]
[8]
Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol 2013; 34(11): 2208-14.
[http://dx.doi.org/10.3174/ajnr.A3521] [PMID: 23620070]
[9]
Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE. Brain injury and altered brain growth in preterm infants: Predictors and prognosis. Pediatrics 2014; 134(2): e444-53.
[http://dx.doi.org/10.1542/peds.2013-2336] [PMID: 25070300]
[10]
Childs AM, Ramenghi LA, Cornette L, et al. Cerebral maturation in premature infants: quantitative assessment using MR imaging. AJNR Am J Neuroradiol 2001; 22(8): 1577-82.
[PMID: 11559510]
[11]
Ramenghi LA, Fumagalli M, Righini A, et al. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 2007; 49(2): 161-7.
[http://dx.doi.org/10.1007/s00234-006-0176-y] [PMID: 17119946]
[12]
Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J Pediatr 1978; 92(4): 529-34.
[http://dx.doi.org/10.1016/S0022-3476(78)80282-0] [PMID: 305471]
[13]
Al-Mouqdad M, Al-Abdi S, Scott J, et al. A new IVH scoring system based on laterality enhances prediction of neurodevelopmental outcomes at 3 years age in premature infants. Am J Perinatol 2016; 34(1): 44-50.
[http://dx.doi.org/10.1055/s-0036-1584138] [PMID: 27182991]
[14]
Arulkumaran S, Tusor N, Chew A, et al. MRI findings at term-corrected age and neurodevelopmental outcomes in a large cohort of very preterm infants. AJNR Am J Neuroradiol 2020; 41(8): 1509-16.
[http://dx.doi.org/10.3174/ajnr.A6666] [PMID: 32796100]
[15]
Pinto-Martin JA, Whitaker AH, Feldman JF, Van Rossem R, Paneth N. Relation of cranial ultrasound abnormalities in low-birthweight infants to motor or cognitive performance at ages 2, 6, and 9 years. Dev Med Child Neurol 1999; 41(12): 826-33.
[http://dx.doi.org/10.1017/S0012162299001644] [PMID: 10619281]
[16]
Ross G, Tesman J, Auld PA, Nass R, Nass R. Effects of subependymal and mild intraventricular lesions on visual attention and memory in premature infants. Dev Psychol 1992; 28(6): 1067-74.
[http://dx.doi.org/10.1037/0012-1649.28.6.1067]
[17]
Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M. Grades I-II intraventricular hemorrhage in extremely low birth weight infants: Effects on neurodevelopment. J Pediatr 2006; 149(2): 169-73.
[http://dx.doi.org/10.1016/j.jpeds.2006.04.002] [PMID: 16887428]
[18]
Klebermass-Schrehof K, Czaba C, Olischar M, et al. Impact of low-grade intraventricular hemorrhage on long-term neurodevelopmental outcome in preterm infants. Childs Nerv Syst 2012; 28(12): 2085-92.
[http://dx.doi.org/10.1007/s00381-012-1897-3] [PMID: 22914924]
[19]
Limperopoulos C, Bassan H, Gauvreau K, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 2007; 120(3): 584-93.
[http://dx.doi.org/10.1542/peds.2007-1041] [PMID: 17766532]
[20]
Zayek MM, Benjamin JT, Maertens P, Trimm RF, Lal CV, Eyal FG. Cerebellar hemorrhage: A major morbidity in extremely preterm infants. J Perinatol 2012; 32(9): 699-704.
[http://dx.doi.org/10.1038/jp.2011.185] [PMID: 22173133]
[21]
Tam EWY, Rosenbluth G, Rogers EE, et al. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr 2011; 158(2): 245-50.
[http://dx.doi.org/10.1016/j.jpeds.2010.07.049] [PMID: 20833401]
[22]
Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT, van der Grond J, Walther FJ, van Wezel-Meijler G. Cerebellar injury in preterm infants: Incidence and findings on US and MR images. Radiology 2009; 252(1): 190-9.
[http://dx.doi.org/10.1148/radiol.2521081525] [PMID: 19420320]
[23]
Boswinkel V, Steggerda SJ, Fumagalli M, et al. The CHOPIn study: A multicenter study on cerebellar hemorrhage and outcome in preterm infants. Cerebellum 2019; 18(6): 989-98.
[http://dx.doi.org/10.1007/s12311-019-01053-1] [PMID: 31250213]
[24]
Hamrick SEG, Miller SP, Leonard C, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: The role of cystic periventricular leukomalacia. J Pediatr 2004; 145(5): 593-9.
[http://dx.doi.org/10.1016/j.jpeds.2004.05.042] [PMID: 15520756]
[25]
de Bruïne FT, van den Berg-Huysmans AA, Leijser LM, et al. Clinical implications of MR imaging findings in the white matter in very preterm infants: A 2-year follow-up study. Radiology 2011; 261(3): 899-906.
[http://dx.doi.org/10.1148/radiol.11110797] [PMID: 22031710]
[26]
Kersbergen KJ, Benders MJNL, Groenendaal F, et al. Different patterns of punctate white matter lesions in serially scanned preterm infants. PLoS One 2014; 9(10): e108904.
[http://dx.doi.org/10.1371/journal.pone.0108904] [PMID: 25279755]
[27]
Tusor N, Benders MJ, Counsell SJ, et al. Punctate white matter lesions associated with altered brain development and adverse motor outcome in preterm infants. Sci Rep 2017; 7(1): 13250.
[http://dx.doi.org/10.1038/s41598-017-13753-x] [PMID: 29038505]
[28]
Guo T, Duerden EG, Adams E, et al. Quantitative assessment of white matter injury in preterm neonates. Neurology 2017; 88(7): 614-22.
[http://dx.doi.org/10.1212/WNL.0000000000003606] [PMID: 28100727]
[29]
Cayam-Rand D, Guo T, Grunau RE, et al. Predicting developmental outcomes in preterm infants. Neurology 2019; 93(13): e1231-40.
[http://dx.doi.org/10.1212/WNL.0000000000008172] [PMID: 31467250]
[30]
Rutherford MA, Supramaniam V, Ederies A, et al. Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 2010; 52(6): 505-21.
[http://dx.doi.org/10.1007/s00234-010-0700-y] [PMID: 20422407]
[31]
Niwa T, de Vries LS, Benders MJNL, Takahara T, Nikkels PGJ, Groenendaal F. Punctate white matter lesions in infants: New insights using susceptibility-weighted imaging. Neuroradiology 2011; 53(9): 669-79.
[http://dx.doi.org/10.1007/s00234-011-0872-0] [PMID: 21553013]
[32]
Parodi A, Malova M, Cardiello V, et al. Punctate white matter lesions of preterm infants: Risk factor analysis. Eur J Paediatr Neurol 2019; 23(5): 733-9.
[http://dx.doi.org/10.1016/j.ejpn.2019.06.003] [PMID: 31307922]
[33]
Malova M, Morelli E, Cardiello V, et al. Nosological differences in the nature of punctate white matter lesions in preterm infants. Front Neurol 2021; 12: 657461.
[http://dx.doi.org/10.3389/fneur.2021.657461] [PMID: 33995255]
[34]
Ibrahim T, Few K, Greenwood R, et al. ‘Feed and wrap’ or sedate and immobilise for neonatal brain MRI? Arch Dis Child Fetal Neonatal Ed 2015; 100(5): F465.2-6.
[http://dx.doi.org/10.1136/archdischild-2015-308847] [PMID: 26126844]
[35]
Griffith R. GMDS-Griffiths Mental Developmental Scales. Hogrefe Ltd 2006.
[36]
Neubauer V, Djurdjevic T, Griesmaier E, Biermayr M, Gizewski ER, Kiechl-Kohlendorfer U. Routine magnetic resonance imaging at term-equivalent age detects brain injury in 25% of a contemporary cohort of very preterm infants. PLoS One 2017; 12(1): e0169442.
[http://dx.doi.org/10.1371/journal.pone.0169442] [PMID: 28046071]
[37]
Sherlock RL, Anderson PJ, Doyle LW. Neurodevelopmental sequelae of intraventricular haemorrhage at 8 years of age in a regional cohort of ELBW/very preterm infants. Early Hum Dev 2005; 81(11): 909-16.
[http://dx.doi.org/10.1016/j.earlhumdev.2005.07.007] [PMID: 16126353]
[38]
Steggerda SJ, De Bruïne FT, van den Berg-Huysmans AA, et al. Small cerebellar hemorrhage in preterm infants: Perinatal and postnatal factors and outcome. Cerebellum 2013; 12(6): 794-801.
[http://dx.doi.org/10.1007/s12311-013-0487-6] [PMID: 23653170]
[39]
Gressens P, Richelme C, Kadhim HJ, Gadisseux JF, Evrard P. The germinative zone produces the most cortical astrocytes after neuronal migration in the developing mammalian brain. Neonatology 1992; 61(1): 4-24.
[http://dx.doi.org/10.1159/000243526] [PMID: 1373658]
[40]
Vasileiadis GT, Gelman N, Han VKM, et al. Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 2004; 114(3): e367-72.
[http://dx.doi.org/10.1542/peds.2004-0500] [PMID: 15342899]
[41]
Juliet PAR, Frost EE, Balasubramaniam J, Del Bigio MR. Toxic effect of blood components on perinatal rat subventricular zone cells and oligodendrocyte precursor cell proliferation, differentiation and migration in culture. J Neurochem 2009; 109(5): 1285-99.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06060.x] [PMID: 19476544]
[42]
Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M. Microglia activation in the extremely preterm human brain. Pediatr Res 2013; 73(3): 301-9.
[http://dx.doi.org/10.1038/pr.2012.186] [PMID: 23364172]
[43]
Tortora D, Martinetti C, Severino M, et al. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: A DTI study. Eur Radiol 2018; 28(3): 1157-66.
[http://dx.doi.org/10.1007/s00330-017-5060-0] [PMID: 28956133]
[44]
Verhagen EA, ter Horst HJ, Keating P, Martijn A, Van Braeckel KNJA, Bos AF. Cerebral oxygenation in preterm infants with germinal matrix-intraventricular hemorrhages. Stroke 2010; 41(12): 2901-7.
[http://dx.doi.org/10.1161/STROKEAHA.110.597229] [PMID: 20966409]
[45]
Lin PY, Hagan K, Fenoglio A, Grant PE, Franceschini MA. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage. Sci Rep 2016; 6(1): 25903.
[http://dx.doi.org/10.1038/srep25903] [PMID: 27181339]
[46]
Tortora D, Lo Russo FM, Severino M, et al. Regional impairment of cortical and deep gray matter perfusion in preterm neonates with low-grade germinal matrix-intraventricular hemorrhage: An ASL study. Neuroradiology 2020; 62(12): 1689-99.
[http://dx.doi.org/10.1007/s00234-020-02514-9] [PMID: 32778914]
[47]
Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009; 24(9): 1085-104.
[http://dx.doi.org/10.1177/0883073809338067] [PMID: 19745085]
[48]
Dewan MV, Herrmann R, Schweiger B, et al. Are simple magnetic resonance imaging biomarkers predictive of neurodevelopmental outcome at two years in very preterm infants? Neonatology 2019; 116(4): 331-40.
[http://dx.doi.org/10.1159/000501799] [PMID: 31454812]
[49]
Hammerl M, Zagler M, Griesmaier E, et al. Reduced cerebellar size at term-equivalent age is related to a 17% lower mental developmental index in very preterm infants without brain injury. Neonatology 2020; 117(1): 57-64.
[http://dx.doi.org/10.1159/000502491] [PMID: 31480070]
[50]
Hammerl M, Zagler M, Zimmermann M, et al. Supratentorial brain metrics predict neurodevelopmental outcome in very preterm infants without brain injury at age 2 years. Neonatology 2020; 117(3): 287-93.
[http://dx.doi.org/10.1159/000506836] [PMID: 32396898]
[51]
Childs AM, Cornette L, Ramenghi LA, et al. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 2001; 56(8): 647-55.
[http://dx.doi.org/10.1053/crad.2001.0754] [PMID: 11467866]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy