Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Cervical Cancer: A Review of Epidemiology, Treatments and Anticancer Drugs

Author(s): Elmira Babakanrad, Taher Mohammadian*, Davoud Esmaeili* and Payam Behzadi

Volume 19, Issue 3, 2023

Published on: 16 March, 2023

Page: [198 - 212] Pages: 15

DOI: 10.2174/1573394719666230207101655

Price: $65

Abstract

Background: Cancer is the second leading cause of death among men and women and a highly prevalent cause of mortality among women. Having sexual relations at a young age, having multiple sex partners, multiple pregnancies, long-term use of birth control pills, receiving a kidney transplant, and sexually transmitted diseases (STDs) are the major risk factors of cervical cancer. Although the risk of cervical cancer has recently increased, its mortality rate has declined. This study aimed to review cervical cancer, its epidemiology, etiology, treatment methods, and various chemical plant- and microorganism-derived drugs.

Material and Methods: Complete information collection was performed by reading most of the available articles.

Results: Human papillomavirus (HPV) infection is the main cause of cervical cancer, and the best way to prevent it is vaccination between the ages of 9 and 11 years, screening women and, more importantly, educating girls. One of the easiest methods to screen for this disease is Pap tests and HPV genotyping (high-risk strains 16 and 18). Cervical cancer is asymptomatic in the early stages, but after spreading to other parts of the body, it causes symptoms, such as bleeding, pelvic pain, and dyspareunia. Cervical cancer treatment is based on the stage of the disease and the involvement of other parts of the body. In general, however, surgery, chemotherapy, radiotherapy, and hysterectomy are among the common treatments for cervical cancer. Each of these methods has its side effects; for instance, chemotherapy destroys healthy as well as cancer cells.

Conclusion: Nowadays, with molecular knowledge, new drugs have been developed that are free from the side effects of cancer treatment methods and only affect cancer cells. All the results have been reviewed and compiled.

Graphical Abstract

[1]
Jahanshahi M, Maleki Dana P, Badehnoosh B, et al. Anti-tumor activities of probiotics in cervical cancer. J Ovarian Res 2020; 13(1): 68-79.
[http://dx.doi.org/10.1186/s13048-020-00668-x] [PMID: 32527332]
[2]
Riaz Rajoka MS, Shi J, Zhu J, et al. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol 2017; 101(1): 35-45.
[http://dx.doi.org/10.1007/s00253-016-8005-7] [PMID: 27888334]
[3]
Audirac-Chalifour A, Torres-Poveda K, Bahena-Romلn M, et al. Cervical microbiome and cytokine profile at various stages of cervical Cancer: A pilot study. PLoS One 2016; 11(4): e0153274.
[http://dx.doi.org/10.1371/journal.pone.0153274] [PMID: 27115350]
[4]
Kuku S, Fragkos C, McCormack M, Forbes A. Radiation-induced bowel injury: the impact of radiotherapy on survivorship after treatment for gynaecological cancers. Br J Cancer 2013; 109(6): 1504-12.
[http://dx.doi.org/10.1038/bjc.2013.491] [PMID: 24002603]
[5]
Chellapandian P, Myneni S, Ravikumar D, et al. Knowledge on cervical cancer and perceived barriers to the uptake of HPV vaccination among health professionals. BMC Womens Health 2021; 21(1): 65-73.
[http://dx.doi.org/10.1186/s12905-021-01205-8] [PMID: 33579263]
[6]
Chan CK, Aimagambetova G, Ukybassova T, Kongrtay K, Azizan A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination-review of current perspectives. J Oncol 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/3257939] [PMID: 31687023]
[7]
Yuan YG, Gurunathan S. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int J Nanomedicine 2017; 12: 6537-58.
[http://dx.doi.org/10.2147/IJN.S125281] [PMID: 28919753]
[8]
Li F, Zhao C, Wang L. Molecular-targeted agents combination therapy for cancer: Developments and potentials. Int J Cancer 2014; 134(6): 1257-69.
[http://dx.doi.org/10.1002/ijc.28261] [PMID: 23649791]
[9]
Rosen VM, Guerra I, McCormack M, et al. Systematic review and network meta-analysis of bevacizumab plus first-line topotecan-paclitaxel or cisplatin-paclitaxel versus non-bevacizumab-containing therapies in persistent, recurrent, or metastatic cervical cancer. Int J Gynecol Cancer 2017; 27(6): 1237-46.
[http://dx.doi.org/10.1097/IGC.0000000000001000] [PMID: 28448304]
[10]
Ramzy L, Nasr M, Metwally AA, Awad GAS. Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104: 273-92.
[http://dx.doi.org/10.1016/j.ejps.2017.04.005] [PMID: 28412485]
[11]
Yu H, Xu W, Gong F, Chi B, Chen J, Zhou L. MicroRNA 155 regulates the proliferation, cell cycle, apoptosis and migration of colon cancer cells and targets CBL. Exp Ther Med 2017; 14(5): 4053-60.
[http://dx.doi.org/10.3892/etm.2017.5085] [PMID: 29104623]
[12]
Pogoda CS, Roden RBS, Garcea RL. Immunizing against Anogenital Cancer: HPV vaccines. PLoS Pathog 2016; 12(5): e1005587.
[http://dx.doi.org/10.1371/journal.ppat.1005587] [PMID: 27196109]
[13]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[14]
Dembi Z. Antitumor drugs and their targets. Molecules 2020; 25: 5776-819.
[15]
Magalhaes LG, Ferreira LLG, Andricopulo AD. Recent advances and perspectives in cancer drug design. An Acad Bras Cienc 2018; 90(1 suppl 2)(Suppl. 2): 1233-50.
[http://dx.doi.org/10.1590/0001-3765201820170823] [PMID: 29768576]
[16]
Kinch MS. An analysis of FDA-approved drugs for oncology. Drug Discov Today 2014; 19(12): 1831-5.
[http://dx.doi.org/10.1016/j.drudis.2014.08.007] [PMID: 25172803]
[17]
American Cancer Society. Cervical Cancer. Available from: https://www.cancer.org/cancer/cervical-cancer/treating.html (Accessed May 23, 2016).
[18]
Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri. Int J Gynaecol Obstet 2018; 143 (Suppl. 2): 22-36.
[http://dx.doi.org/10.1002/ijgo.12611] [PMID: 30306584]
[19]
Zhang S, Xu H, Zhang L, Qiao Y. Cervical cancer: Epidemiology, risk factors and screening. Chin J Cancer Res 2020; 32(6): 720-8.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.06.05] [PMID: 33446995]
[20]
Garland SM, Giuliano A, Brotherton JML, et al. IPVS statement moving towards elimination of cervical cancer as a public health problem. Papillomavirus Res 2018; 5: 87-8.
[http://dx.doi.org/10.1016/j.pvr.2018.02.003] [PMID: 29499389]
[21]
World Health Organization. WHO Director-General calls for all countries to take action to help end the suffering caused by cervical cancer. Available from: https://www.who.int/news/item/18-05-2018-who-dg-calls-for-all-countries-to-take-action-to-help-end-thesuffering-caused-by-cervical-cancer (Accessed on: May 18, 2018).
[22]
Herrero R. Elimination of cervical cancer in Latin America. Salud Publica Mex 2018; 60(6): 621-3.
[http://dx.doi.org/10.21149/10170] [PMID: 30699266]
[23]
Pan American Health Organization. Cervical cancer-free future: First-ever global commitment to eliminate a cancer. Available from: https://www.paho.org/en/news/17-11-2020-cervical-cancer-free-future-first-ever-global-commitment-eliminate-cancer (Accessed on: Nov 17, 2020).
[24]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[25]
Prabhu M, Eckert LO. Development of World Health Organization (WHO) recommendations for appropriate clinical trial endpoints for next-generation Human Papillomavirus (HPV) vaccines. Papillomavirus Res 2016; 2: 185-9.
[http://dx.doi.org/10.1016/j.pvr.2016.10.002] [PMID: 29074180]
[26]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[27]
Olorunfemi G, Ndlovu N, Masukume G, Chikandiwa A, Pisa PT, Singh E. Temporal trends in the epidemiology of cervical cancer in South Africa (1994-2012). Int J Cancer 2018; 143(9): 2238-49.
[http://dx.doi.org/10.1002/ijc.31610] [PMID: 29786136]
[28]
Small W Jr, Bacon MA, Bajaj A, et al. Cervical cancer: A global health crisis. Cancer 2017; 123(13): 2404-12.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[29]
Bermudez A, Bhatla N, Leung E. Cancer of the cervix uteri. Int J Gynaecol Obstet 2015; 131 (Suppl. 2): S88-95.
[http://dx.doi.org/10.1016/j.ijgo.2015.06.004] [PMID: 26433680]
[30]
Jamilian M, Farhat P, Foroozanfard F, et al. Comparison of myo-inositol and metformin on clinical, metabolic and genetic parameters in polycystic ovary syndrome: A randomized controlled clinical trial. Clin Endocrinol (Oxf) 2017; 87(2): 194-200.
[http://dx.doi.org/10.1111/cen.13366] [PMID: 28485095]
[31]
Foroozanfard F, Talebi M, Samimi M, et al. Effect of two different doses of vitamin D supplementation on metabolic profiles of insulin-resistant patients with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Horm Metab Res 2017; 49(8): 612-7.
[http://dx.doi.org/10.1055/s-0043-112346] [PMID: 28679142]
[32]
Drolet M, Bénard É, Pérez N, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet 2019; 394(10197): 497-509.
[http://dx.doi.org/10.1016/S0140-6736(19)30298-3] [PMID: 31255301]
[33]
Brotherton JML, Budd A, Rompotis C, et al. Is one dose of human papillomavirus vaccine as effective as three?: A national cohort analysis. Papillomavirus Res 2019; 8: 100177.
[http://dx.doi.org/10.1016/j.pvr.2019.100177] [PMID: 31319173]
[34]
Stanley M, Dull P. HPV single-dose vaccination: Impact potential, evidence base and further evaluation. Vaccine 2018; 36(32): 4759-60.
[http://dx.doi.org/10.1016/j.vaccine.2018.02.076] [PMID: 29754700]
[35]
World Health Organization. Global strategy to accelerate the elimination of cervical cancer as a public health problem. Available from: https://www.who.int/publications-detail-redirect/9789240014107 (Accessed on: Nov 17, 2020).
[36]
Human papillomavirus vaccines: WHO position paper, May 2017. Week. Epidemiol Rev 2017; 92: 241-68.
[37]
Wang Z, Wang J, Fan J, et al. Risk factors for cervical intraepithelial neoplasia and cervical cancer in Chinese women: large study in Jiexiu, Shanxi Province, China. J Cancer 2017; 8(6): 924-32.
[http://dx.doi.org/10.7150/jca.17416] [PMID: 28529603]
[38]
Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet 2019; 393(10167): 169-82.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[39]
Yuan Y, Cai X, Shen F, Ma F. HPV post-infection microenvironment and cervical cancer. Cancer Lett 2021; 497: 243-54.
[http://dx.doi.org/10.1016/j.canlet.2020.10.034] [PMID: 33122098]
[40]
Ghebre RG, Grover S, Xu MJ, Chuang LT, Simonds H. Cervical cancer control in HIV-infected women: Past, present and future. Gynecol Oncol Rep 2017; 21: 101-8.
[http://dx.doi.org/10.1016/j.gore.2017.07.009] [PMID: 28819634]
[41]
Roura E, Castellsagué X, Pawlita M, et al. Smoking as a major risk factor for cervical cancer and pre-cancer: Results from the EPIC cohort. Int J Cancer 2014; 135(2): 453-66.
[http://dx.doi.org/10.1002/ijc.28666] [PMID: 24338632]
[42]
C Kitchener H, Canfell K, Gilham C, et al. The clinical effectiveness and cost-effectiveness of primary human papillomavirus cervical screening in England: extended follow-up of the ARTISTIC randomised trial cohort through three screening rounds. Health Technol Assess 2014; 18(23): 1-196.
[http://dx.doi.org/10.3310/hta18230] [PMID: 24762804]
[43]
Centre for Health Protection. Cancer Expert Working Group on Cancer Prevention and Screening (CEWG) recommendations on prevention and screening for cervical cancer for health professionals. Available from: https://www.chp.gov.hk/en/static/100854.html (Accessed on: Nov 17, 2015).
[44]
Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet 2013; 382(9895): 889-99.
[http://dx.doi.org/10.1016/S0140-6736(13)60022-7] [PMID: 23618600]
[45]
Mittal S, Banks L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat Res Rev Mutat Res 2017; 772: 23-35.
[http://dx.doi.org/10.1016/j.mrrev.2016.08.001] [PMID: 28528687]
[46]
Stelzle D, Tanaka LF, Lee KK, et al. Estimates of the global burden of cervical cancer associated with HIV. Lancet Glob Health 2021; 9(2): e161-9.
[http://dx.doi.org/10.1016/S2214-109X(20)30459-9] [PMID: 33212031]
[47]
Adler DH, Wallace M, Bennie T, et al. Cervical dysplasia and high-risk human papillomavirus infections among HIV-infected and HIV-uninfected adolescent females in South Africa. Infect Dis Obstet Gynecol 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/498048] [PMID: 25389377]
[48]
Remschmidt C, Kaufmann AM, Hagemann I, Vartazarova E, Wichmann O, Deleré Y. Risk factors for cervical human papillomavirus infection and high-grade intraepithelial lesion in women aged 20 to 31 years in Germany. Int J Gynecol Cancer 2013; 23(3): 519-26.
[http://dx.doi.org/10.1097/IGC.0b013e318285a4b2] [PMID: 23360813]
[49]
Liu ZC, Liu WD, Liu YH, Ye XH, Chen SD. Multiple sexual partners as a potential independent risk factor for cervical cancer: a meta-analysis of epidemiological studies. Asian Pac J Cancer Prev 2015; 16(9): 3893-900.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3893] [PMID: 25987056]
[50]
Asthana S, Busa V, Labani S. Oral contraceptives use and risk of cervical cancer—A systematic review & meta-analysis. Eur J Obstet Gynecol Reprod Biol 2020; 247: 163-75.
[http://dx.doi.org/10.1016/j.ejogrb.2020.02.014] [PMID: 32114321]
[51]
Li H, Wu X, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol 2016; 27(4): e43-63.
[http://dx.doi.org/10.3802/jgo.2016.27.e43] [PMID: 27171673]
[52]
Lim AW, Ramirez AJ, Hamilton W, Sasieni P, Patnick J, Forbes LJL. Delays in diagnosis of young females with symptomatic cervical cancer in England: an interview-based study. Br J Gen Pract 2014; 64(627): e602-10.
[http://dx.doi.org/10.3399/bjgp14X681757] [PMID: 25267045]
[53]
Stapley S, Hamilton W. Gynaecological symptoms reported by young women: examining the potential for earlier diagnosis of cervical cancer. Fam Pract 2011; 28(6): 592-8.
[http://dx.doi.org/10.1093/fampra/cmr033] [PMID: 21632969]
[54]
Fontham E, Wolf A, Church TR, Etzioni R, Flowers C, Guerra C, et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA A Canc J Clinic 2020; 70: 321-46.
[http://dx.doi.org/10.3322/caac.21628] [PMID: 32729638]
[55]
Harari A, Chen Z, Burk RD. Human papillomavirus genomics: past, present and future. Curr Probl Dermatol 2014; 45: 1-18.
[http://dx.doi.org/10.1159/000355952] [PMID: 24643174]
[56]
Conway C, Chalkley R, High A, et al. Next-generation sequencing for simultaneous determination of human papillomavirus load, subtype, and associated genomic copy number changes in tumors. J Mol Diagn 2012; 14(2): 104-11.
[http://dx.doi.org/10.1016/j.jmoldx.2011.10.003] [PMID: 22240447]
[57]
Arbyn M, Verdoodt F, Snijders PJF, et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol 2014; 15(2): 172-83.
[http://dx.doi.org/10.1016/S1470-2045(13)70570-9] [PMID: 24433684]
[58]
Kerr DA, Sweeney B, Arpin RN III, et al. Automated extraction of formalin-fixed, paraffin-embedded tissue for high-risk human papillomavirus testing of head and neck squamous cell carcinomas using the Roche Cobas 4800 System. Arch Pathol Lab Med 2016; 140(8): 844-8.
[http://dx.doi.org/10.5858/arpa.2015-0272-OA] [PMID: 27031775]
[59]
Poljak M, Oštrbenk Valenčak A, Gimpelj Domjanič G, Xu L, Arbyn M. Commercially available molecular tests for human papillomaviruses: a global overview. Clin Microbiol Infect 2020; 26(9): 1144-50.
[http://dx.doi.org/10.1016/j.cmi.2020.03.033] [PMID: 32247892]
[60]
Bao H, Sun X, Zhang Y, et al. The artificial intelligence‐assisted cytology diagnostic system in large‐scale cervical cancer screening: A population‐based cohort study of 0.7 million women. Cancer Med 2020; 9(18): 6896-906.
[http://dx.doi.org/10.1002/cam4.3296] [PMID: 32697872]
[61]
Bao H, Bi H, Zhang X, et al. Artificial intelligence-assisted cytology for detection of cervical intraepithelial neoplasia or invasive cancer: A multicenter, clinical-based, observational study. Gynecol Oncol 2020; 159(1): 171-8.
[http://dx.doi.org/10.1016/j.ygyno.2020.07.099] [PMID: 32814641]
[62]
Eifel P, Klopp AH, Berek JS, Konstantinopoulos A. Chapter 74: Cancer of the cervix, vagina, and vulva. In: DeVita VT, Lawrence TS, Rosenberg SA, Eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology. (11th Ed..). Philadelphia, Pa: Lippincott Williams & Wilkins 2019; pp. 1172-210.
[63]
Jhungran A, Russell AH, Seiden MV, et al. Chapter 84: Cancers of the cervix, vulva, and vagina. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, Eds. Abeloff’s Clinical Oncology. (6th ed.). Philadelphia, Pa: Elsevier 2020; pp. 1468-507.
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00084-0]
[64]
American Cancer Society. Cervical cancer early detection, diagnosis, and staging. Available from: https://www.cancer.org/cancer/ce rvical-cancer/detection-diagnosis-staging.html (Accessed on: Nov 17, 2020).
[65]
Hoffman MS, Mann WJ. Cervical intraepithelial neoplasia: Procedures for cervical conization. Available from: https://www.uptodate.com/contents/cervicalintraepithelial-neoplasia-procedures-forcervical-conization (Accessed Sep 05, 2019).
[66]
National Cancer Institute. Physician Data Query (PDQ). Cervical cancer treatment - health professional version. Available from: https://www.cancer.gov/types/cervical/hp/cervical-treatment-pdq (Accessed Sep 05, 2019).
[67]
National Comprehensive Cancer Network (NCCN). Clinical Practice Guidelines in Oncology: Cervical Cancer. Available from: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf (Accessed Dec 12, 2019).
[68]
Park DA, Yun JE, Kim SW, Lee SH. Surgical and clinical safety and effectiveness of robot-assisted laparoscopic hysterectomy compared to conventional laparoscopy and laparotomy for cervical cancer: A systematic review and meta-analysis. Eur J Surg Oncol 2017; 43(6): 994-1002.
[http://dx.doi.org/10.1016/j.ejso.2016.07.017] [PMID: 27546015]
[69]
Shepherd JH, Spencer C, Herod J, Ind TEJ. Radical vaginal trachelectomy as a fertility-sparing procedure in women with early-stage cervical cancer-cumulative pregnancy rate in a series of 123 women. BJOG 2006; 113(6): 719-24.
[http://dx.doi.org/10.1111/j.1471-0528.2006.00936.x] [PMID: 16709216]
[70]
Willows K, Lennox G, Covens A. Fertility-sparing management in cervical cancer: balancing oncologic outcomes with reproductive success. Gynecol Oncol Res Pract 2016; 3(1): 9.
[http://dx.doi.org/10.1186/s40661-016-0030-9] [PMID: 27795832]
[71]
Gainor JF, Dardaei L, Yoda S, et al. Molecular mechanisms of resistance to firstand second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 2016; 6(10): 1118-33.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0596] [PMID: 27432227]
[72]
Cocco E, Schram AM, Kulick A, et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat Med 2019; 25(9): 1422-7.
[http://dx.doi.org/10.1038/s41591-019-0542-z] [PMID: 31406350]
[73]
National Cancer Institute. Drugs approved for cervical cancer. Available from: https://www.cancer.gov/about-cancer/treatment/dr ugs/cervical (Accessed Apr 26, 2022).
[74]
Zhu X, Zhu H, Luo H, Zhang W, Shen Z, Hu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther 2016; 10: 1885-95.
[http://dx.doi.org/10.2147/DDDT.S106412] [PMID: 27354763]
[75]
Liu L, Wang M, Li X, Yin S, Wang B. An overview of novel agents for cervical cancer treatment by inducing apoptosis: Emerging drugs ongoing clinical trials and preclinical studies. Front Med (Lausanne) 2021; 8: 682366.
[http://dx.doi.org/10.3389/fmed.2021.682366] [PMID: 34395473]
[76]
Momtazi-Borojeni AA, Ghasemi F, Hesari A, Majeed M, Caraglia M, Sahebkar A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr Pharm Des 2018; 24(19): 2121-8.
[http://dx.doi.org/10.2174/1381612824666180522105202] [PMID: 29788875]
[77]
Nasreen S, Safeer S, Dar KK, et al. Etiology of hepatocellular carcinoma and treatment through medicinal plants: a comprehensive review. Orient Pharm Exp Med 2018; 18(3): 187-97.
[http://dx.doi.org/10.1007/s13596-018-0330-1]
[78]
Park SH, Kim M, Lee S, Jung W, Kim B. Therapeutic potential of natural products in treatment of cervical cancer: A review. Nutrients 2021; 13(1): 154-83.
[http://dx.doi.org/10.3390/nu13010154] [PMID: 33466408]
[79]
Broutet N, Eckert L, Ullrich A, Bloem P. Comprehensive Cervical Cancer Control: A Guide to Essential Practice. (2nd ed.), Switzerland: World Health Organization 2014.
[80]
Lee J, Jeong MI, Kim HR, Park H, Moon WK, Kim B. Plant extracts as possible agents for sequela of cancer therapies and cachexia. Antioxidants 2020; 9(9): 836-74.
[http://dx.doi.org/10.3390/antiox9090836] [PMID: 32906727]
[81]
Federico C, Sun J, Muz B, et al. Localized delivery of cisplatin to cervical cancer improves its therapeutic efficacy and minimizes its side effect profile. Int J Radiat Oncol Biol Phys 2021; 109(5): 1483-94.
[http://dx.doi.org/10.1016/j.ijrobp.2020.11.052] [PMID: 33253820]
[82]
Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 2012; 64(3): 706-21.
[http://dx.doi.org/10.1124/pr.111.005637] [PMID: 22659329]
[83]
Hong B, Li J, Huang C, Huang T, Zhang M, Huang L. miR-300/FA2H affects gastric cancer cell proliferation and apoptosis. Open Med (Wars) 2020; 15(1): 882-9.
[http://dx.doi.org/10.1515/med-2020-0188] [PMID: 33344772]
[84]
Escuin D, López-Vilaró L, Bell O, et al. MicroRNA-1291 is associated with locoregional metastases in patients with early-stage breast cancer. Front Genet 2020; 11: 562114.
[http://dx.doi.org/10.3389/fgene.2020.562114] [PMID: 33343622]
[85]
Kim C, Song HS, Park H, Kim B. Activation of ER stress-dependent mir-216b has a critical role in Salvia miltiorrhiza ethanol-extract-induced apoptosis in U266 and U937 Cells. Int J Mol Sci 2018; 19(4): 1240.
[http://dx.doi.org/10.3390/ijms19041240] [PMID: 29671785]
[86]
Lim H, Park M, Kim C, et al. MiR-657/ATF2 signaling pathway has a critical role in Spatholobus suberectus dunn extract-induced apoptosis in U266 and U937 cells. Cancers (Basel) 2019; 11(2): 150.
[http://dx.doi.org/10.3390/cancers11020150] [PMID: 30696076]
[87]
Phuah NH, Azmi MN, Awang K, Nagoor NH. Down-regulation of MicroRNA-210 confers sensitivity towards 1‘s-1’-acetoxychavicol acetate (ACA) in cervical cancer cells by targeting SMAD4. Mol Cells 2017; 40(4): 291-8.
[http://dx.doi.org/10.14348/molcells.2017.2285] [PMID: 28401751]
[88]
Noh S, Choi E, Hwang C-H, Jung JH, Kim S-H, Kim B. Dietary compounds for targeting prostate cancer. Nutrients 2019; 11(10): 2401.
[http://dx.doi.org/10.3390/nu11102401] [PMID: 31597327]
[89]
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20(3): 175-93.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[90]
Derakhshan A, Chen Z, Van Waes C. Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res 2017; 23(6): 1379-87.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2172] [PMID: 28039268]
[91]
Piboonprai K, Khumkhrong P, Khongkow M, et al. Anticancer activity of arborinine from Glycosmis parva leaf extract in human cervical cancer cells. Biochem Biophys Res Commun 2018; 500(4): 866-72.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.175] [PMID: 29705700]
[92]
Wang L, Zhao Y, Wu Q, Guan Y, Wu X. Therapeutic effects of β-elemene via attenuation of the Wnt/β-catenin signaling pathway in cervical cancer cells Mol Med Rep 2018; 17(3): 4299-306.
[http://dx.doi.org/10.3892/mmr.2018.8455] [PMID: 29363722]
[93]
Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother 2017; 89: 1067-77.
[http://dx.doi.org/10.1016/j.biopha.2017.02.101] [PMID: 28292015]
[94]
Yang J, Fa J, Li B. Apoptosis induction of epifriedelinol on human cervical cancer cell line. Afr J Tradit Complement Altern Med 2017; 14(4): 80-6.
[http://dx.doi.org/10.21010/ajtcam.v14i4.10] [PMID: 28638870]
[95]
Li FY, Wang X, Duan WG, Lin GS. Synthesis and in vitro anticancer activity of novel dehydroabietic acid-based acylhydrazones. Molecules 2017; 22(7): 1087.
[http://dx.doi.org/10.3390/molecules22071087] [PMID: 28661452]
[96]
Al-Otaibi WA, Alkhatib MH, Wali AN. Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations. Biomed Pharmacother 2018; 106: 946-55.
[http://dx.doi.org/10.1016/j.biopha.2018.07.041] [PMID: 30119267]
[97]
Vishnu VR, Renjith RS, Mukherjee A, Anil SR, Sreekumar J, Jyothi AN. Comparative study on the chemical structure and in vitro antiproliferative activity of anthocyanins in purple root tubers and leaves of sweet potato (Ipomoea batatas). J Agric Food Chem 2019; 67(9): 2467-75.
[http://dx.doi.org/10.1021/acs.jafc.8b05473] [PMID: 30741542]
[98]
Arumai Selvan D, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J Photochem Photobiol B 2018; 180: 243-52.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.014] [PMID: 29476965]
[99]
Lee KM, Lee K, Choi YK, Choi YJ, Seo HS, Ko SG. SH003-induced G1 phase cell cycle arrest induces apoptosis in HeLa cervical cancer cells. Mol Med Rep 2017; 16(6): 8237-44.
[http://dx.doi.org/10.3892/mmr.2017.7597] [PMID: 28944910]
[100]
Santos KM, Gomes INF, Silva-Oliveira RJ, et al. Bauhinia variegata candida fraction induces tumor cell death by activation of caspase-3, RIP, and TNF-R1 and inhibits cell migration and invasion in vitro. BioMed Res Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/4702481] [PMID: 29770331]
[101]
Moreira TF, Sorbo JM, Souza FO, et al. Emodin, physcion, and crude extract of Rhamnus sphaerosperma var. pubescens induce mixed cell death, increase in oxidative stress, DNA damage, and inhibition of AKT in cervical and oral squamous carcinoma cell lines. Oxid Med Cell Longev 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/2390234] [PMID: 30057674]
[102]
Suh SS, Kim SM, Kim JE, et al. Anticancer activities of ethanol extract from the Antarctic freshwater microalga, Botryidiopsidaceae sp. BMC Complement Altern Med 2017; 17(1): 509.
[http://dx.doi.org/10.1186/s12906-017-1991-x] [PMID: 29191192]
[103]
Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods. Biomed Pharmacother 2017; 91: 366-77.
[http://dx.doi.org/10.1016/j.biopha.2017.04.112] [PMID: 28463800]
[104]
Kuriakose GC, Lakshmanan MD, Bp A, et al. Extract of Penicillium sclerotiorum an endophytic fungus isolated from Cassia fistula L. induces cell cycle arrest leading to apoptosis through mitochondrial membrane depolarization in human cervical cancer cells. Biomed Pharmacother 2018; 105: 1062-71.
[http://dx.doi.org/10.1016/j.biopha.2018.06.094] [PMID: 30021342]
[105]
Rajabi M, Mousa S. The role of angiogenesis in cancer treatment. Biomedicines 2017; 5(4): 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[106]
Tomao S, Tomao F, Rossi L, et al. Angiogenesis and antiangiogenic agents in cervical cancer. OncoTargets Ther 2014; 7: 2237-48.
[http://dx.doi.org/10.2147/OTT.S68286] [PMID: 25506227]
[107]
Chakkere Shivamadhu M, Srinivas BK, Jayarama S, Angatahalli Chandrashekaraiah S. Anti-cancer and anti-angiogenic effects of partially purified lectin from Praecitrullus fistulosus fruit on in vitro and in vivo model. Biomed Pharmacother 2017; 96: 1299-309.
[http://dx.doi.org/10.1016/j.biopha.2017.11.082] [PMID: 29174033]
[108]
Ezzat SM, Shouman SA, Elkhoely A, et al. Anticancer potentiality of lignan rich fraction of six Flaxseed cultivars. Sci Rep 2018; 8(1): 544.
[http://dx.doi.org/10.1038/s41598-017-18944-0] [PMID: 29323210]
[109]
Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H. Cytotoxic effects and anti-angiogenesis potential of pistachio (Pistacia vera L.) Hulls against MCF-7 human breast cancer cells. Molecules 2018; 23(1): 110.
[http://dx.doi.org/10.3390/molecules23010110] [PMID: 29303970]
[110]
Zhang L, Zhou J, Qin X, Huang H, Nie C. Astragaloside IV inhibits the invasion and metastasis of SiHa cervical cancer cells via the TGF β1 mediated PI3K and MAPK pathways Oncol Rep 2019; 41(5): 2975-86.
[http://dx.doi.org/10.3892/or.2019.7062] [PMID: 30896841]
[111]
Wang YQ, Lu JL, Liang YR, Li QS. Suppressive effects of EGCG on cervical cancer. Molecules 2018; 23(9): 2334.
[http://dx.doi.org/10.3390/molecules23092334] [PMID: 30213130]
[112]
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575(7782): 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[113]
Faustino C, Neto Í, Fonte P, Macedo A. Cytotoxicity and chemotherapeutic potential of natural rosin abietane diterpenoids and their synthetic derivatives. Curr Pharm Des 2019; 24(36): 4362-75.
[http://dx.doi.org/10.2174/1381612825666190112162817] [PMID: 30648502]
[114]
Levrier C, Rockstroh A, Gabrielli B, et al. Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle 2018; 17(5): 652-68.
[http://dx.doi.org/10.1080/15384101.2017.1356512] [PMID: 28749250]
[115]
Huang H, Zhang M, Yao S, et al. Immune modulation of a lipid-soluble extract of Pinellia pedatisecta Schott in the tumor microenvironment of an HPV + tumor-burdened mouse model. J Ethnopharmacol 2018; 225: 103-15.
[http://dx.doi.org/10.1016/j.jep.2018.04.037] [PMID: 29783020]
[116]
Ho CS, Yap SH, Phuah NH. In LLA, Hasima N. MicroRNAs associated with tumour migration, invasion and angiogenic properties in A549 and SK-Lu1 human lung adenocarcinoma cells. Lung Cancer 2014; 83(2): 154-62.
[http://dx.doi.org/10.1016/j.lungcan.2013.11.024] [PMID: 24360396]
[117]
Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev 2013; 23(1): 3-11.
[http://dx.doi.org/10.1016/j.gde.2013.01.004] [PMID: 23465882]
[118]
Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int 2015; 15(1): 38.
[http://dx.doi.org/10.1186/s12935-015-0185-1] [PMID: 25960691]
[119]
Jiang H, Gomez-Manzano C, Rivera-Molina Y, Lang FF, Conrad CA, Fueyo J. Oncolytic adenovirus research evolution: From cell-cycle checkpoints to immune checkpoints. Curr Opin Virol 2015; 13: 33-9.
[http://dx.doi.org/10.1016/j.coviro.2015.03.009] [PMID: 25863716]
[120]
Poole RM. Pembrolizumab: first global approval. Drugs 2014; 74(16): 1973-81.
[http://dx.doi.org/10.1007/s40265-014-0314-5] [PMID: 25331768]
[121]
Hong DS, Concin N, Vergote I, et al. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin Cancer Res 2020; 26(6): 1220-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2962] [PMID: 31796521]
[122]
Song F, Hu B, Cheng JW, et al. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma. Cell Death Dis 2020; 11(7): 573.
[http://dx.doi.org/10.1038/s41419-020-02749-7] [PMID: 32709873]
[123]
Lan C, Shen J, Wang Y, et al. Camrelizumab plus apatinib in patients with advanced cervical cancer (CLAP): a multicenter, open-label, single-arm, phase II trial. J Clin Oncol 2020; 38(34): 4095-106.
[http://dx.doi.org/10.1200/JCO.20.01920] [PMID: 33052760]
[124]
Hu L, Wang Y, Chen Z, et al. Hsp90 inhibitor SNX-2112 enhances TRAIL-induced apoptosis of human cervical cancer cells via the ROS-mediated JNK-p53-autophagy-DR5 pathway. Oxid Med Cell Longev 2019; 2019: 1-26.
[http://dx.doi.org/10.1155/2019/9675450] [PMID: 31019655]
[125]
Putri JF, Bhargava P, Dhanjal JK, et al. Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers. J Exp Clin Cancer Res 2019; 38(1): 499.
[http://dx.doi.org/10.1186/s13046-019-1500-9] [PMID: 31856867]
[126]
Hitz F, Kraus M, Pabst T, et al. Nelfinavir and lenalidomide/dexamethasone in patients with lenalidomide-refractory multiple myeloma. A phase I/II Trial (SAKK 39/10). Blood Cancer J 2019; 9(9): 70.
[http://dx.doi.org/10.1038/s41408-019-0228-2] [PMID: 31455773]
[127]
Liu JJ, Ho JY, Lee HW, et al. Inhibition of phosphatidylinositol 3-kinase (PI3K) signaling synergistically potentiates antitumor efficacy of paclitaxel and overcomes paclitaxel-mediated resistance in cervical cancer. Int J Mol Sci 2019; 20(14): 3383.
[http://dx.doi.org/10.3390/ijms20143383] [PMID: 31295843]
[128]
Skrzypczyk-Ostaszewicz A, Rubach M. Gynaecological cancers coexisting with pregnancy – a literature review. Contemp Oncol (Pozn) 2016; 3(3): 193-8.
[http://dx.doi.org/10.5114/wo.2016.61559] [PMID: 27647981]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy