Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

A Friendly Strategy for an Organic Life by Considering Syrian Bean Caper (Zygophyllum fabago L.), and Parsnip (Pastinaca sativa L.)

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 19, Issue 9, 2023

Published on: 10 March, 2023

Page: [870 - 874] Pages: 5

DOI: 10.2174/1573401319666230207093757

Price: $65

Abstract

Background: Medicinal plants have become the focus of intense researches through the identification and determination of their pharmacological benefits with their different chemical constituents.

Objective: The aim of this mini-review is to highlight the most important health benefits of Syrian bean caper and parsnip.

Methods: The manuscript consists of review articles, randomized control experiments, and analytical studies, which have been gathered from different sources such as Scopus, Google Scholar, Science Direct, and PubMed. A review of the literature was carried out using keywords such as health benefits, pharmaceutical properties, Syrian bean caper (Zygophyllum fabago L.), and Parsnip (Pastinaca sativa L.).

Results: Syrian bean caper is good for diabetes, lower cholesterol, is appropriate for people aiming for weight loss, is a good source of vitamin K for healthy bones, protects skin from harmful ultraviolet rays, prevents cancer and skin ailments, protects from allergies, helps in digestion, increases immunity, treats anemia, moistens skin, helps in relieving congestion. Syrian bean caper is also anexcellent source of minerals such as calcium, copper, iron, and sodium which gives stronger teeth, is a source of anti-ageing, good for the eyes, and reduces skin disorders, it consists of a good amount of iron and vitamin B which makes it a good candidate to have healthy hair, and relieves constipation. Parsnips are a type of root vegetable, closely related to parsley roots and carrots. Parsnips are an excellent source of various nutrients, minerals, and vitamins such as folate, vitamins C and K, they are rich in antioxidants, a great source of soluble and insoluble fiber, a great source of a healthy weight loss diet, and support immune function.

Conclusion: According to phytochemical advantages and pharmacological benefits, Syrian bean caper (Zygophyllum fabago L.) and Parsnip (Pastinaca sativa) show their importance as medicinal plants in both traditional and modern medicine.

Graphical Abstract

[1]
Wenli S, Mohamad HS, Qi C. The insight and survey on medicinal properties and nutritive components of Shallot. J Med Plants Res 2019; 13(18): 452-7.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[2]
Sun W, Shahrajabian MH, Cheng Q. Therapeutic roles of goji berry and ginseng in traditional Chinese. J Nutrit Food Secur 2019; 4(4): 293-305.
[http://dx.doi.org/10.18502/jnfs.v4i4.1727]
[3]
Sun W, Shahrajabian MH, Cheng Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol 2019; 5(1): 1673688.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[4]
Shahrajabian MH, Sun W, Cheng Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet Resour Crop Evol 2021; 68(5): 1709-30.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[5]
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021; 11(5): 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[6]
Shahrajabian MH, Sun W, Khoshkharam M, Cheng Q. Caraway, Chinese chives and cassia as functional foods with considering nutrients and health benefits. Carpath J Food Sci Technol 2021; 13(1): 101-19.
[7]
Shahrajabian MH, Sun W, Cheng Q. Spanish chamomile (Anacyclus pyrethrum) and pyrethrum (Tanacetum cineraiifolium): organic and natural pesticides and treasure of medicinal herbs. Not Sci Biol 2021; 13(1): 10816.
[http://dx.doi.org/10.15835/nsb13110816]
[8]
Shahrajabian MH, Sun W, Cheng Q. Asafoetida, a natural medicine for a future. Curr Nutr Food Sci 2021; 17(9): 922-6.
[http://dx.doi.org/10.2174/1573401317666210222161609]
[9]
Shahrajabian MH, Sun W, Cheng Q. Improving health benefits with considering traditional and modern health benefits of Peganum harmala. Clin Phytosci 2021; 7(1): 18.
[http://dx.doi.org/10.1186/s40816-021-00255-7]
[10]
Shahrajabian MH, Sun W, Marmitt DJ, Cheng Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. Clin Phytosci 2021; 7(1): 50.
[http://dx.doi.org/10.1186/s40816-021-00288-y]
[11]
Sun W, Shahrajabian MH, Cheng Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr J Plant Sci 2021; 68(1-2): 61-71.
[http://dx.doi.org/10.1163/22238980-bja10019]
[12]
Sun W, Shahrajabian MH, Cheng Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev Med Chem 2021; 21(6): 724-30.
[http://dx.doi.org/10.2174/18755607MTEx4OTAn5] [PMID: 33245271]
[13]
Sun W, Shahrajabian MH, Cheng Q. Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and western modern medicine. Avicenna J Phytomed 2021; 11(2): 109-19.
[PMID: 33907670]
[14]
Sun W, Shahrajabian MH, Shen H, Cheng Q. Lychee (Litchi chinensis Sonn.), the king of fruits, with both traditional and modern pharmacological health benefits. Pharmacogn Commun 2021; 11(1): 22-5.
[http://dx.doi.org/10.5530/pc.2021.1.5]
[15]
Shahrajabian MH, Sun W, Soleymani A, Cheng Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res 2020; 2020(1): 1-11.
[PMID: 33350538]
[16]
Shahrajabian MH, Sun W, Cheng Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not Bot Horti Agrobot Cluj-Napoca 2020; 48(4): 1719-41.
[http://dx.doi.org/10.15835/nbha48412002]
[17]
Shahrajabian MH, Sun W, Cheng Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. Int J Food Prop 2020; 23(1): 1961-70.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[18]
Shahrajabian MH, Sun W, Cheng Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat Prod Commun 2020; 15(8): 1934578X2095143.
[http://dx.doi.org/10.1177/1934578X20951431]
[19]
Shahrajabian MH, Sun W, Cheng Q. Product of natural evolution (SARS-MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccines Immunother 2020; 17(1): 62-83.
[http://dx.doi.org/10.1080/21645515.2020.1797369]
[20]
Shahrajabian MH, Sun W, Shen H, Cheng Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric Scand B Soil Plant Sci 2020; 70(5): 437-43.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[21]
Shahrajabian MH, Sun W, Cheng Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl Ecol Environ Res 2019; 17(6): 13371-82.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[22]
Shahrajabian MH, Sun W, Cheng Q. Pharmacological uses and health benefits of ginger (Zingiber officinale) in traditional Asian and ancient Chinese medicine, and modern practice. Not Sci Biol 2019; 11(3): 309-19.
[http://dx.doi.org/10.15835/nsb11310419]
[23]
Shahrajabian MH, Sun W, Cheng Q. A review of ginseng species in different regions as a multipurpose herb in traditional Chinese medicine, modern herbology and pharmacological science. J Med Plants Res 2019; 13(10): 213-26.
[24]
Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci 2019; 69(6): 546-56.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[25]
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35(9): 4703-26.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[26]
Marmitt DJ, Shahrajabian MH, Goettert MI, Rempel C. Clinical trials with plants in diabetes mellitus therapy: a systematic review. Expert Rev Clin Pharmacol 2021; 14(6): 735-47.
[http://dx.doi.org/10.1080/17512433.2021.1917380] [PMID: 33884948]
[27]
Kabas S, Arocena JM, Acosta JA, et al. Syrian bean-caper (Zygophyllum fabago L.) improves organic matter and other properties of mine wastes deposits. Int J Phytoremediation 2014; 16(4): 366-78.
[http://dx.doi.org/10.1080/15226514.2013.783552] [PMID: 24912237]
[28]
Párraga-Aguado I, González-Alcaraz MN, López-Orenes A, Ferrer-Ayala MA, Conesa HM. Evaluation of the environmental plasticity in the xerohalophyte Zygophyllum fabago L. for the phytomanagement of mine tailings in semiarid areas. Chemosphere 2016; 161: 259-65.
[http://dx.doi.org/10.1016/j.chemosphere.2016.07.024] [PMID: 27434256]
[29]
Amini-Chermahini F, Ebrahimi M, Farajpour M. Karyological studies in Zygophyllum fabago L. (Syrian bean caper) in Iran. Caryologia 2017; 70(3): 289-94.
[http://dx.doi.org/10.1080/00087114.2017.1349259]
[30]
Khan SS, Khan A, Khan A, et al. A new ursane type sulfated saponin from Zygophyllum fabago Linn. Rec Nat Prod 2014; 8(4): 354-9.
[31]
López-Orenes A, Alba JM, Kant MR, Calderón AA, Ferrer MA. OPDA and ABA accumulation in Pb-stressed Zygophyllum fabago can be primed by salicylic acid and coincides with organ-specific differences in accumulation of phenolics. Plant Physiol Biochem 2020; 154: 612-21.
[http://dx.doi.org/10.1016/j.plaphy.2020.06.028] [PMID: 32912492]
[32]
Naghiloo S, Claßen-Bockhoff R. A combination of dichogamy and herkogamy mediates reproductive success in the desert shrub Zygophyllum fabago. J Arid Environ 2020; 182: 104279.
[http://dx.doi.org/10.1016/j.jaridenv.2020.104279]
[33]
Castells T, Arcalís E, Moreno-Grau S, et al. Immunocytochemical localization of allergenic proteins from mature to activated Zygophyllum fabago L. (Zygophyllaceae) pollen grains. Eur J Cell Biol 2002; 81(2): 107-15.
[http://dx.doi.org/10.1078/0171-9335-00223] [PMID: 11893081]
[34]
Ferrer MA, Cimini S, López-Orenes A, Calderón AA, De Gara L. Differential Pb tolerance in metallicolous and non-metallicolous Zygophyllum fabago populations involves the strengthening of the antioxidative pathways. Environ Exp Bot 2018; 150: 141-51.
[http://dx.doi.org/10.1016/j.envexpbot.2018.03.010]
[35]
López-Orenes A, Martínez-Pérez A, Calderón AA, Ferrer MA. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. Plant Physiol Biochem 2014; 84: 57-66.
[http://dx.doi.org/10.1016/j.plaphy.2014.09.003] [PMID: 25240264]
[36]
Lefèvre I, Corréal E, Lutts S. Cadmium tolerance and accumulation in the noxious weed Zygophyllum fabago. Can J Bot 2005; 83(12): 1655-62.
[http://dx.doi.org/10.1139/b05-130]
[37]
Kenari HM, Kordafshari G, Moghimi M, Eghbalian F. TaherKhani D. TaherKhani, D. Review of pharmacological properties and chemical constituents of Pastinaca sativa. J Pharmacopuncture 2021; 24(1): 14-23.
[http://dx.doi.org/10.3831/KPI.2021.24.1.14] [PMID: 33833896]
[38]
Matejic JS, Dzamic AM, Mihajilov-Krstev T, Randelovic VN, Krivosej ZD, Marin PD. Antimicrobial potential of essential oil from Pastinaca sativa L. Biol Nyssana 2014; 5(1): 31-5.
[39]
Feng YL, Li HR, Xu LZ, Yang SL. 27-Nor-triterpenoid glycosides from the barks of Zygophyllum fabago L. J Asian Nat Prod Res 2007; 9(6): 505-10.
[http://dx.doi.org/10.1080/10286020600782157] [PMID: 17885836]
[40]
Feng YL, Xie B, Li HR, et al. A new sulfated triterpenoid from the bark of Zygophyllum fabago L. Chin Chem Lett 2010; 21(9): 1100-2.
[http://dx.doi.org/10.1016/j.cclet.2010.04.015]
[41]
He J, Lv X, Niu Y, et al. Four new compounds from Zygophyllum fabago L. Phytochem Lett 2016; 15: 116-20.
[http://dx.doi.org/10.1016/j.phytol.2015.12.004]
[42]
Abdel-Hamid RA, Abilov ZhA, Sultanova NA, Saitjanova ShB, Gemedzhieva NG. Preliminary phytochemical screening of Zygophyllum fabago. Int J Biol Chem 2013; 6(2): 60-4.
[43]
Yaripour S, Delnavazi MR, Asgharian P, Valiyari S, Tavakoli S, Nazemiyeh H. A survey on phytochemical composition and biological activity of Zygophyllum fabago from Iran. Adv Pharm Bull 2017; 7(1): 109-14.
[http://dx.doi.org/10.15171/apb.2017.014] [PMID: 28507944]
[44]
Smati D, Longeon A, Guyot M. 3β-(3,4-Dihydroxycinnamoyl)-erythrodiol, a cytotoxic constituent of Zygophyllum geslini collected in the Algerian Sahara. J Ethnopharmacol 2004; 95(2-3): 405-7.
[http://dx.doi.org/10.1016/j.jep.2004.08.011] [PMID: 15507367]
[45]
Ayad R, Rahai M, Azouzi S, et al. Phytochemical investigation of the endemic plant Zygophyllum cornutum. Chem Nat Compd 2012; 48(2): 313-4.
[http://dx.doi.org/10.1007/s10600-012-0233-1]
[46]
Barzegar R, Safaei HR, Masoumzadeh MS. Chemical composition and antibacterial activity of Zygophyllum qatarense Hadidi leaf extract. Adv Herb Med 2018; 4(4): 23-32.
[47]
Orhan I, Shener B, Choudhary MI, Khalid A. Presence of cholinomimentic and acetylcholinesterase inhibitory constituent in betelnut. J Ethnopharmacol 2004; 91: 57-60.
[http://dx.doi.org/10.1016/j.jep.2003.11.016] [PMID: 15036468]
[48]
Alhaddad H, Amer Fadhil A, Ismael SH. Estimation of LD50 and acute toxicity of Zygophyllum fabago in mice. Pharmacol Sci 2015; 4: 94-7.
[49]
Dana ED, García De Lomas J, Sánchez J. Effects of the aqueous extracts of Zygophyllum fabago on the growth of Fusarium oxyosporum f. sp. melonis and Pythium aphanidermatum. Weed Biol Manage 2010; 10(3): 170-5.
[http://dx.doi.org/10.1111/j.1445-6664.2010.00381.x]
[50]
Kramer M, Bufler G, Nothnagel T, Carle R, Kammerer DR. Effects of cultivation conditions and cold storage on the polyacetylene contents of carrot (Daucus carota L.) and parsnip (Pastinaca sativa L.). J Hortic Sci Biotechnol 2012; 87(2): 101-6.
[http://dx.doi.org/10.1080/14620316.2012.11512838]
[51]
Bufler G, Horneburg B. Changes in sugar and starch concentrations in parsnip (Pastinaca sativa L.) during root growth and development and in cold storage. J Hortic Sci Biotechnol 2013; 88(6): 756-61.
[http://dx.doi.org/10.1080/14620316.2013.11513035]
[52]
Kalloo G. Parsnip Gene Improve Veg Crop 1993; 1993: 485-6.
[http://dx.doi.org/10.1016/B978-0-08-040826-2.50038-2]
[53]
Castro A, Bergenståhl B, Tornberg E. Parsnip (Pastinaca sativa L.): Dietary fibre composition and physicochemical characterization of its homogenized suspensions. Food Res Int 2012; 48(2): 598-608.
[http://dx.doi.org/10.1016/j.foodres.2012.05.023]
[54]
Stannard J. Medicinal plants and folk remedies in Pliny, Historia naturalis. Hist Philos Life Sci 1982; 4(1): 3-23.
[PMID: 6764004]
[55]
Averill KM, DiTommaso A. Wild parsnip: a troublesome species of increasing concern. Weed Technol 2007; 21(1): 279-87.
[http://dx.doi.org/10.1614/WT-05-186.1]
[56]
Berenbaum MR, Zangerl AR, Nitao JK. Furanocoumarins in seeds of wild and cultivated parsnip. Phytochemistry 1984; 23(8): 1809-10.
[http://dx.doi.org/10.1016/S0031-9422(00)83503-7]
[57]
Berenbaum MR, Zangerl AR. Variation in seed furanocoumarin content within the wild parsnip (Pastinaca sativa). Phytochemistry 1986; 25(3): 659-61.
[http://dx.doi.org/10.1016/0031-9422(86)88019-0]
[58]
Waksmundzka-Hajnos M, Petruczynik A, Dragan A, Wianowska D, Dawidowicz AL, Sowa I. Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 800(1-2): 181-7.
[http://dx.doi.org/10.1016/j.jchromb.2003.07.006] [PMID: 14698253]
[59]
Brown SA. Biosynthesis of furanocoumarins in parsnips. Phytochemistry 1970; 9(12): 2471-5.
[http://dx.doi.org/10.1016/S0031-9422(00)85765-9]
[60]
Stegelmeier BL, Colegate SM, Knoppel EL, Rood KA, Collett MG. Wild parsnip (Pastinaca sativa)-induced photosensitization. Toxicon 2019; 167: 60-6.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.007] [PMID: 31173794]
[61]
Kuzniestova VY, Shimorova YE, Boyko NN, Pisarev DI, Zhilyakova ET, Novikov OO. HPLC analysis of hydro-ethanolic extracts from Pastinaca sativa L. fruits. Res J Pharm Biol Chem Sci 2017; 8(6): 705-12.
[62]
Tosun B, Karadoğan T, Şanli A. Determination of essential oil content and composition, total phenolic content and antioxidant activities of Pastinaca sativa L. subsp urens (Req. Ex Gordon). Curr Perspect Med Aromatic Plants (CUPMAP) 2019; 2(2): 125-32.
[http://dx.doi.org/10.38093/cupmap.655415]
[63]
Christensen LP, Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. J Pharm Biomed Anal 2006; 41(3): 683-93.
[http://dx.doi.org/10.1016/j.jpba.2006.01.057] [PMID: 16520011]
[64]
Bogucka-Kocka A, Smolarz HD, Kocki J. Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines. Fitoterapia 2008; 79(7-8): 487-97.
[http://dx.doi.org/10.1016/j.fitote.2008.07.002] [PMID: 18672039]
[65]
Kurkcuoglu M, Baser KHC, Vural M. Composition of the essential oil of Pastinaca sativa L. subsp. urens (Req. ex Godron) Celak. Chem Nat Compd 2006; 42(1): 114-5.
[http://dx.doi.org/10.1007/s10600-006-0053-2]
[66]
Kviesis J, Kļimenkovs I, Arbidans L, Podjava A, Kļaviņš M, Liepiņš E. Evaluation of furanocoumarins from seeds of the wild parsnip (Pastinaca sativa L. s.l.). J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105: 54-66.
[http://dx.doi.org/10.1016/j.jchromb.2018.12.012] [PMID: 30562630]
[67]
Feng YL, Wu B, Li HR, et al. Triterpenoidal saponins from the barks of Zygophyllum fabago L. Chem Pharm Bull 2008; 56(6): 858-60.
[http://dx.doi.org/10.1248/cpb.56.858] [PMID: 18520096]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy