Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking and Dynamics Study of Acetogenins Targeting Cyclin-dependent Kinase and In vitro Evaluation of Annona Muricata Fruit Extracts using MDA-MB-231 Breast Cancer Cell Line

Author(s): Swapna Birendra, Satvik Kotha, Harisha Ramappa, Raghavendra Rao M. and Ramachandra Setty Siddamsetty*

Volume 21, Issue 6, 2024

Published on: 01 March, 2023

Page: [1074 - 1094] Pages: 21

DOI: 10.2174/1570180820666230202115704

Price: $65

Abstract

Background: Overexpressed CDK1 and CDK2 are targeted as potential sites for cancer treatment. Annona muricata fruit has been reported to have more than 100 acetogenins showing cytotoxic activities against cancer cell lines. Hence the study aims to demonstrate the cytotoxicity of ethyl acetate fruit extract, its role in cell cycle progression, and apoptosis using the MDMBA-231 breast cancer cell line. Docking, dynamics, and ADME studies were also demonstrated to generate lead molecules of AM fruit responsible for cancer treatment.

Methods: Cell viability was quantified by the MTT assay. Cell cycle arrest and apoptotic cells were determined by flow cytometry and PI annexin V-FITC staining by flow cytometry, respectively. Molecular docking, molecular dynamics, and ADME properties of 11 acetogenins were studied using the schrödinger maestro suite 2018-1.

Results: The MTT assay revealed IC50 232.9μg/ml with a high degree of cytotoxicity. The extract effectively caused cell cycle arrest at the G2M and S phases; early and late apoptosis was induced at 160 μg/ml and 320 μg/ml. Docking scores of muricin L, J, and annomuricin A complexed with CDK2 and muricin J, K, and L with CDK1 binding energy ranging is mentioned as a molecular dynamic study envisaged muricin j against CDK2 stable hydrogen and hydrophobic interactions with critical residues like ASP-86, GLN-131, HIS-84, LYS-89, PHE80, PHE82, and PHE83 throughout 200 ns (hinge region). ADMET profiling also confirmed that all 11 ligands passed the rule of 5 and 3. The in vitro and in silico studies revealed that these acetogenins could be CDK1 and CDK2 inhibitors for cancer treatment.

Conclusion: The in vitro studies presume that the ethyl acetate fruit extract of AM is an excellent cytotoxic agent. In silico studies demonstrated that muricin j could lead molecules to target kinase proteins responsible for cell proliferation. ADME study enlightened us to take 11 acetogenins for the drug discovery process in managing cancer treatment.

Graphical Abstract

[1]
Yajid, A.I.; Ab Rahman, H.S.; Pak Kai, M.W.; Wan Zain, W.Z. Potential benefits of Annona muricata in combating cancer: A review. Malays. J. Med. Sci., 2018, 25(1), 5-15.
[http://dx.doi.org/10.21315/mjms2018.25.1.2] [PMID: 29599630]
[2]
Moghadamtousi, S.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.; Kadir, H. Annona muricata (annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci., 2015, 16(7), 15625-15658.
[http://dx.doi.org/10.3390/ijms160715625] [PMID: 26184167]
[3]
Swarnakar, A. Literary approach to Annona muricata and its role in cancer-A review. Int J Res Pharmacol Pharmacother., 2014, 3(4), 320-327.
[4]
Tavakkol-Afshari, J.; Brook, A.; Mousavi, S.H. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem. Toxicol., 2008, 46(11), 3443-3447.
[http://dx.doi.org/10.1016/j.fct.2008.08.018] [PMID: 18790714]
[5]
Gavamukulya, Y.; Abou-Elella, F.; Wamunyokoli, F. AEl-Shemy, H. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac. J. Trop. Med., 2014, 7(1), S355-S363.
[http://dx.doi.org/10.1016/S1995-7645(14)60258-3] [PMID: 25312150]
[6]
Dawood, H.M.; Ibrahim, R.S.; Shawky, E.; Hammoda, H.M.; Metwally, A.M. Integrated in silico-in vitro strategy for screening of some traditional Egyptian plants for human aromatase inhibitors. J. Ethnopharmacol., 2018, 224, 359-372.
[http://dx.doi.org/10.1016/j.jep.2018.06.009] [PMID: 29909120]
[7]
Dong, X.; Yan, J.; Du, Y.L. Pharmcophore identification, docking and “in silico” screening for novel CDK1 inhibitors. J. Mol. Graph. Model., 2012, 37, 77-86.
[http://dx.doi.org/10.1016/j.jmgm.2012.04.003] [PMID: 22622012]
[8]
Li, Y.; Zhang, J.; Gao, W.; Zhang, L.; Pan, Y.; Zhang, S.; Wang, Y. Insights on structural characteristics and ligand binding mechanisms of CDK2. Int. J. Mol. Sci., 2015, 16(12), 9314-9340.
[http://dx.doi.org/10.3390/ijms16059314] [PMID: 25918937]
[9]
Chen, J.; Pang, L.; Wang, W.; Wang, L.; Zhang, J.Z.H.; Zhu, T. Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. J. Biomol. Struct. Dyn., 2020, 38(4), 985-996.
[http://dx.doi.org/10.1080/07391102.2019.1591304] [PMID: 30843759]
[10]
Ahn, Y.M.; Vogeti, L.; Liu, C.J.; Santhapuram, H.K.R.; White, J.M.; Vasandani, V.; Mitscher, L.A.; Lushington, G.H.; Hanson, P.R.; Powell, D.R.; Himes, R.H.; Roby, K.F.; Ye, Q.; Georg, G.I. Design, synthesis, and antiproliferative and CDK2-cyclin a inhibitory activity of novel flavopiridol analogues. Bioorg. Med. Chem., 2007, 15(2), 702-713.
[http://dx.doi.org/10.1016/j.bmc.2006.10.063] [PMID: 17123821]
[11]
Mahajan, P.; Chashoo, G.; Gupta, M.; Kumar, A.; Singh, P.P.; Nargotra, A. fusion of structure and ligand based methods for identification of novel CDK2 inhibitors. J. Chem. Inf. Model., 2017, 57(8), 1957-1969.
[http://dx.doi.org/10.1021/acs.jcim.7b00293] [PMID: 28723151]
[12]
Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2013, 2(1), 353.
[http://dx.doi.org/10.1186/2193-1801-2-353] [PMID: 23961417]
[13]
NCBI. Madame curie biosciences database (Internet): Pridiction of drug-like propertie. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6404/
[14]
Crouch, S.P.M.; Kozlowski, R.; Slater, K.J.; Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods, 1993, 160(1), 81-88.
[http://dx.doi.org/10.1016/0022-1759(93)90011-U] [PMID: 7680699]
[15]
Gonzalez, R.J.; Tarloff, J.B. Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol. In Vitro, 2001, 15(3), 257-259.
[http://dx.doi.org/10.1016/S0887-2333(01)00014-5] [PMID: 11377098]
[16]
Hattori, N.; Sakakibara, T.; Kajiyama, N.; Igarashi, T.; Maeda, M.; Murakami, S. Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal. Biochem., 2003, 319(2), 287-295.
[http://dx.doi.org/10.1016/S0003-2697(03)00322-1] [PMID: 12871724]
[17]
Kangas, L.; Grönroos, M.; Nieminen, A.L. Bioluminescence of cellular ATP: A new method for evaluating cytotoxic agents in vitro. Med. Biol., 1984, 62(6), 338-343.
[PMID: 6543460]
[18]
Jackman, J.; O’Connor, P.M. Methods for synchronizing cells at specific stages of the cell cycle. Curr. Protoc. Cell Biol., 1998.
[http://dx.doi.org/10.1002/0471143030.cb0803s00] [PMID: 18228388]
[19]
Hossein, G.; Janzamin, E.; Azimian-Zavareh, V. Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells. Indian J. Pharmacol., 2012, 44(6), 714-721.
[http://dx.doi.org/10.4103/0253-7613.103265] [PMID: 23248400]
[20]
Thylur, R.P.; Senthivinayagam, S.; Campbell, E.M.; Rangasamy, V.; Thorenoor, N.; Sondarva, G.; Mehrotra, S.; Mishra, P.; Zook, E.; Le, P.T.; Rana, A.; Rana, B. Mixed lineage kinase 3 modulates β-catenin signaling in cancer cells. J. Biol. Chem., 2011, 286(43), 37470-37482.
[http://dx.doi.org/10.1074/jbc.M111.298943] [PMID: 21880738]
[21]
Kasibhatla, S.; Amarante-Mendes, G.P.; Finucane, D.; Brunner, T.; Bossy-Wetzel, E.; Green, D.R. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harb. Protoc., 2006, 2006(3), pdb.prot4493.
[http://dx.doi.org/10.1101/pdb.prot4493] [PMID: 22485874]
[22]
van Engeland, M.; Ramaekers, F.C.S.; Schutte, B.; Reutelingsperger, C.P.M. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry, 1996, 24(2), 131-139.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19960601)24:2<131:AID-CYTO5>3.0.CO;2-M] [PMID: 8725662]
[23]
Casciola-Rosen, L.; Rosen, A.; Petri, M.; Schlissel, M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA, 1996, 93(4), 1624-1629.
[http://dx.doi.org/10.1073/pnas.93.4.1624] [PMID: 8643681]
[24]
Andree, H.A.; Reutelingsperger, C.P.; Hauptmann, R.; Hemker, H.C.; Hermens, W.T.; Willems, G.M. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J. Biol. Chem., 1990, 265(9), 4923-4928.
[http://dx.doi.org/10.1016/S0021-9258(19)34062-1] [PMID: 2138622]
[25]
Wood, D.J.; Korolchuk, S.; Tatum, N.J.; Wang, L.Z.; Endicott, J.A.; Noble, M.E.M.; Martin, M.P. Differences in the conformational energy landscape of CDK1 CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chem. Biol., 2019, 26(1), 121-130.e5.
[http://dx.doi.org/10.1016/j.chembiol.2018.10.015] [PMID: 30472117]
[26]
Shi, X.N.; Li, H.; Yao, H.; Liu, X. Insilico indentification and invitro and invivo validation ofAnti-psychotic drug Fluspirilence as a potential CDK2 inhibitor and a candidate Anti cancer drug. PLoS One, 2015, 10(7), e0132072.
[http://dx.doi.org/10.1371/journal.pone.0132072] [PMID: 26147897]
[27]
Schrödinger, Release 2018-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC: New York, NY, 2018.
[28]
a)) Schrödinger release 2018-4: Desmond molecular dynamics system. D. E. Shaw Research, 2018, corrected Schrödinger Release 2018-2.Desmond Molecular Dynamics System, ; Schrödinger, New York, NY,, 2018. ;
b)) Maestro-Desmond Interoperability Tools. Schrödinger, 2018. corrected: Schrödinger Release 2023-1: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2021Maestro- Desmond Interoperability Tools; Schrödinger, New York, NY,, 2021.
[29]
Schrödinger Release 2018-4: QikProp.Schrödinger: New York, NY, 2018.
[30]
Vora, A.P.; Gugnani, K.S.; Rondon-ortiz, A.N.; Pino-figueroa, A. Annona muricata non-selectively suppress PC3 cells by inhibiting cell proliferation and inducing cell cycle arrest. Feder. Am. Societ. Experi. Boil., 2020, 34, 1-1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.04242]
[31]
Ece, A.; Sevin, F. The discovery of potential cyclin A/CDK2 inhibitors: A combination of 3D QSAR pharmacophore modeling, virtual screening, and molecular docking studies. Med. Chem. Res., 2013, 22(12), 5832-5843.
[http://dx.doi.org/10.1007/s00044-013-0571-y]
[32]
Schrödinger suite 2012 update 2 qikprop descriptors and properties. QikProp User manual, 2012. corrected: QikProp 3.5 User manual. Schrödinger Press: New York. Available from: http://gohom.win/ManualHom/Schrodinger/Schrodinger_2012_docs/qikprop/qikprop_user_manual.pdf

© 2025 Bentham Science Publishers | Privacy Policy