Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Natural Metabolite Ursolic Acid as an Inhibitor of Dormancy Regulator DosR of Mycobacterium tuberculosis: Evidence from Molecular Docking, Molecular Dynamics Simulation and Free Energy Analysis

Author(s): Babban Jee*, Prem Prakash Sharma, Vijay Kumar Goel, Sanjay Kumar, Yogesh Singh and Brijesh Rathi

Volume 19, Issue 6, 2023

Published on: 24 February, 2023

Page: [425 - 437] Pages: 13

DOI: 10.2174/1573409919666230201100543

Price: $65

Abstract

Background: DosR is a transcriptional regulator of Mycobacterium tuberculosis (MTB), governing the expression of a set of nearly 50 genes that is often referred to as ‘dormancy regulon’. The inhibition of DosR expression by an appropriate inhibitor may be a crucial step against MTB.

Objective: We targeted the DosR with natural metabolites, ursolic acid (UA) and carvacrol (CV), using in silico approaches.

Methods: The molecular docking, molecular dynamics (MD) simulation for 200 ns, calculation of binding energies by MM-GBSA method, and ADMET calculation were performed to evaluate the inhibitory potential of natural metabolites ursolic acid (UA) and carvacrol (CV) against DosR of MTB.

Results: Our study demonstrated that UA displayed significant compatibility with DosR during the 200 ns timeframe of MD simulation. The thermodynamic binding energies by MM-GBSA also suggested UA conformational stability within the binding pocket. The SwissADME, pkCSM, and OSIRIS DataWarrior showed a drug-likeness profile of UA, where Lipinski profile was satisfied with one violation (MogP > 4.15) with no toxicities, no mutagenicity, no reproductive effect, and no irritant nature.

Conclusion: The present study suggests that UA has the potency to inhibit the DosR expression and warrants further investigation on harnessing its clinical potential.

Graphical Abstract

[1]
World Health Organization. In: Global Tuberculosis Report 2021; WHO: Geneva, 2021.
[2]
Connolly, L.E.; Edelstein, P.H.; Ramakrishnan, L. Why is long-term therapy required to cure tuberculosis? PLoS Med., 2007, 4(3)e120
[http://dx.doi.org/10.1371/journal.pmed.0040120] [PMID: 17388672]
[3]
Bretl, D.J.; Demetriadou, C.; Zahrt, T.C. Adaptation to environmental stimuli within the host: Two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol. Mol. Biol. Rev., 2011, 75(4), 566-582.
[http://dx.doi.org/10.1128/MMBR.05004-11] [PMID: 22126994]
[4]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[5]
Tekaia, F.; Gordon, S.V.; Garnier, T.; Brosch, R.; Barrell, B.G.; Cole, S.T. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber. Lung Dis., 1999, 79(6), 329-342.
[http://dx.doi.org/10.1054/tuld.1999.0220] [PMID: 10694977]
[6]
Dasgupta, N.; Kapur, V.; Singh, K.K.; Das, T.K.; Sachdeva, S.; Jyothisri, K.; Tyagi, J.S. Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber. Lung Dis., 2000, 80(3), 141-159.
[http://dx.doi.org/10.1054/tuld.2000.0240] [PMID: 10970762]
[7]
Saini, D.K.; Malhotra, V.; Dey, D.; Pant, N.; Das, T.K.; Tyagi, J.S. DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology, 2004, 150(4), 865-875.
[http://dx.doi.org/10.1099/mic.0.26218-0] [PMID: 15073296]
[8]
Jee, B.; Singh, Y.; Yadav, R.; Lang, F. Small heat shock protein16.3 of Mycobacterium tuberculosis: After two decades of functional characterization. Cell. Physiol. Biochem., 2018, 49(1), 368-380.
[http://dx.doi.org/10.1159/000492887] [PMID: 30138912]
[9]
Boon, C.; Dick, T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J. Bacteriol., 2002, 184(24), 6760-6767.
[http://dx.doi.org/10.1128/JB.184.24.6760-6767.2002] [PMID: 12446625]
[10]
Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol., 2002, 43(3), 717-731.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02779.x] [PMID: 11929527]
[11]
Park, H.D.; Guinn, K.M.; Harrell, M.I.; Liao, R.; Voskuil, M.I.; Tompa, M.; Schoolnik, G.K.; Sherman, D.R. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol., 2003, 48(3), 833-843.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03474.x] [PMID: 12694625]
[12]
Yuan, Y.; Crane, D.D.; Barry, C.E. III Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J. Bacteriol., 1996, 178(15), 4484-4492.
[http://dx.doi.org/10.1128/jb.178.15.4484-4492.1996] [PMID: 8755875]
[13]
Yuan, Y.; Crane, D.D.; Simpson, R.M.; Zhu, Y.; Hickey, M.J.; Sherman, D.R.; Barry, C.E., III The 16-kDa α-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9578-9583.
[http://dx.doi.org/10.1073/pnas.95.16.9578] [PMID: 9689123]
[14]
Gengenbacher, M.; Kaufmann, S.H.E. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev., 2012, 36(3), 514-532.
[http://dx.doi.org/10.1111/j.1574-6976.2012.00331.x] [PMID: 22320122]
[15]
Wayne, L.G.; Sohaskey, C.D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol., 2001, 55(1), 139-163.
[http://dx.doi.org/10.1146/annurev.micro.55.1.139] [PMID: 11544352]
[16]
Jee, B.; Katoch, V.M.; Awasthi, S.K. Dissection of relationship between small heat shock proteins and mycobacterial diseases. Indian J. Lepr., 2008, 80(3), 231-245.
[PMID: 19432354]
[17]
Boon, C.; Dick, T. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later. Future Microbiol., 2012, 7(4), 513-518.
[http://dx.doi.org/10.2217/fmb.12.14] [PMID: 22439727]
[18]
Voskuil, M.I.; Schnappinger, D.; Visconti, K.C.; Harrell, M.I.; Dolganov, G.M.; Sherman, D.R.; Schoolnik, G.K. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med., 2003, 198(5), 705-713.
[http://dx.doi.org/10.1084/jem.20030205] [PMID: 12953092]
[19]
Kumar, A.; Toledo, J.C.; Patel, R.P.; Lancaster, J.R., Jr; Steyn, A.J.C. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA, 2007, 104(28), 11568-11573.
[http://dx.doi.org/10.1073/pnas.0705054104] [PMID: 17609369]
[20]
Shiloh, M.U.; Manzanillo, P.; Cox, J.S. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe, 2008, 3(5), 323-330.
[http://dx.doi.org/10.1016/j.chom.2008.03.007] [PMID: 18474359]
[21]
Taneja, N.K.; Dhingra, S.; Mittal, A.; Naresh, M.; Tyagi, J.S. Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One, 2010, 5(5), e10860.
[http://dx.doi.org/10.1371/journal.pone.0010860] [PMID: 20523728]
[22]
Gomez, J.E.; McKinney, J.D.M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb.), 2004, 84(1-2), 29-44.
[http://dx.doi.org/10.1016/j.tube.2003.08.003] [PMID: 14670344]
[23]
Dartois, V. A.; Rubin, E. J. Nat. Rev. Microbiol. Anti-tuberculosis treatment strategies and drug development: challenges and priorities., 2022, 20(11), 685-701.
[http://dx.doi.org/10.1038/s41579-022-00731-y] [PMID: 35478222]
[24]
Gupta, R.K.; Thakur, T.S.; Desiraju, G.R.; Tyagi, J.S. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(20), 6324-6334.
[http://dx.doi.org/10.1021/jm900358q] [PMID: 19827833]
[25]
Ahmad, I.; Aqil, F.; Owais, M. Modern phytomedicine: Turning medicinal plants into drugs; Wiley: Germany, 2006.
[http://dx.doi.org/10.1002/9783527609987]
[26]
Saklani, A.; Kutty, S. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13(3-4), 161-171.
[http://dx.doi.org/10.1016/j.drudis.2007.10.010] [PMID: 18275914]
[27]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002] [PMID: 14522049]
[28]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[29]
Verma, S.; Prabhakar, Y. Target based drug design - a reality in virtual sphere. Curr. Med. Chem., 2015, 22(13), 1603-1630.
[http://dx.doi.org/10.2174/0929867322666150209151209] [PMID: 25666805]
[30]
Hudson, A.; Imamura, T.; Gutteridge, W.; Kanyok, T.; Nunn, P. The current anti-TB drug research and development pipeline. Special Programme for Research and Training in Tropical Research (TDR); , 2003. Available from: [https://apps.who.int/iris/handle/10665/68355
[31]
Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol., 2015, 4(3), 165-183.
[http://dx.doi.org/10.1016/j.ijmyco.2015.05.004] [PMID: 27649863]
[32]
Borsari, C.; Ferrari, S.; Venturelli, A.; Costi, M.P. Target-based approaches for the discovery of new antimycobacterial drugs. Drug Discov. Today, 2017, 22(3), 576-584.
[http://dx.doi.org/10.1016/j.drudis.2016.11.014] [PMID: 27890671]
[33]
Woźniak, Ł Skąpska, S.; Marszałek, K. Ursolic Acid-A pentacyclictriterpenoid with a wide spectrum of pharmacological activities. Molecules, 2015, 20(11), 20614-20641.
[http://dx.doi.org/10.3390/molecules201119721] [PMID: 26610440]
[34]
Checker, R.; Sandur, S.K.; Sharma, D.; Patwardhan, R.S.; Jayakumar, S.; Kohli, V.; Sethi, G.; Aggarwal, B.B.; Sainis, K.B. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PLoS One, 2012, 7(2)e31318
[http://dx.doi.org/10.1371/journal.pone.0031318] [PMID: 22363615]
[35]
Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: an update. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/620472] [PMID: 25793002]
[36]
Zerin, T.; Lee, M.; Jang, W.S.; Nam, K.W.; Song, H.Y. Anti-inflammatory potential of ursolic acid in Mycobacterium tuberculosis-sensitized and concanavalin A-stimulated cells. Mol. Med. Rep., 2016, 13(3), 2736-2744.
[http://dx.doi.org/10.3892/mmr.2016.4840] [PMID: 26847129]
[37]
Fadipe, V.O.; Mongalo, N.I.; Opoku, A.R.; Dikhoba, P.M.; Makhafola, T.J. Isolation of anti-mycobacterial compounds from Curtisia dentata (Burm. f.) C. A. Sm (Curtisiaceae). BMC Complement. Altern. Med., 2017, 17(1), 306.
[http://dx.doi.org/10.1186/s12906-017-1818-9] [PMID: 28606081]
[38]
Jyoti, M.A.; Nam, K.W.; Jang, W.S.; Kim, Y.H.; Kim, S.K.; Lee, B.E.; Song, H.Y. Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against Mycobacterium tuberculosis. J. Infect. Chemother., 2016, 22(4), 200-208.
[http://dx.doi.org/10.1016/j.jiac.2015.11.014] [PMID: 26867795]
[39]
Jiménez-Arellanes, A.; Luna-Herrera, J.; Cornejo-Garrido, J.; López-García, S.; Castro-Mussot, M.E.; Meckes-Fischer, M.; Mata-Espinosa, D.; Marquina, B.; Torres, J.; Hernández-Pando, R. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complement. Altern. Med., 2013, 13(1), 258.
[http://dx.doi.org/10.1186/1472-6882-13-258] [PMID: 24098949]
[40]
Podder, B.; Jang, W.S.; Nam, K.W.; Lee, B.E.; Song, H.Y. Ursolic acid activates intracellular killing effect of macrophages during Mycobacterium tuberculosis infection. J. Microbiol. Biotechnol., 2015, 25(5), 738-744.
[http://dx.doi.org/10.4014/jmb.1407.07020] [PMID: 25406534]
[41]
Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15(1), 332.
[http://dx.doi.org/10.1186/s12906-015-0858-2] [PMID: 26400221]
[42]
Alokam, R.; Jeankumar, V.U.; Sridevi, J.P.; Matikonda, S.S.; Peddi, S.; Alvala, M.; Yogeeswari, P.; Sriram, D. Identification and structure-activity relationship study of carvacrol derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors. J. Enzyme Inhib. Med. Chem., 2014, 29(4), 547-554.
[http://dx.doi.org/10.3109/14756366.2013.823958] [PMID: 24090423]
[43]
Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol., 2012, 3, 12.
[http://dx.doi.org/10.3389/fmicb.2012.00012] [PMID: 22291693]
[44]
European Parliament and Council. Regulation (EC) No 2232/96 the European Parliament, and of the Council on 28 October 1996, Commission Decision of 23 February 1999 adopting a register of flavouring substances used in or on food stuffs. Off J European Commun,, 1999, L84, 1-37.
[45]
U. S. Food and Drug Administration. Everything Added to Food in the United States: A Food Additive Database; Centre for Food Safety and Applied Nutrition: Washington, DC, 2006.
[46]
Jee, B.; Kumar, S.; Yadav, R.; Singh, Y.; Kumar, A.; Sharma, N. Ursolic acid and carvacrol may be potential inhibitors of dormancy protein small heat shock protein16.3 of Mycobacterium tuberculosis. J. Biomol. Struct. Dyn., 2018, 36(13), 3434-3443.
[http://dx.doi.org/10.1080/07391102.2017.1389305] [PMID: 28984500]
[47]
Wisedchaisri, G.; Wu, M.; Sherman, D.R.; Hol, W.G.J. Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J. Mol. Biol., 2008, 378(1), 227-242.
[http://dx.doi.org/10.1016/j.jmb.2008.02.029] [PMID: 18353359]
[48]
Schrödinger Release2020-1: Glide; Schrödinger, LLC: New York, 2020.
[49]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[50]
Schrödinger Release 2020-1: LigPrep, Schrödinger, LLC, New York 2020.
[51]
Schrödinger Release 2020-1: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York, 2020.
[52]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[53]
Schrödinger Release2020-1: Prime; Schrödinger, LLC: New York, 2020.
[54]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[55]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[56]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[57]
Kumar, S.; Sharma, P.P.; Shankar, U.; Kumar, D.; Joshi, S.K.; Pena, L.; Durvasula, R.; Kumar, A.; Kempaiah, P. Poonam; Rathi, B. Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure-activity relationship studies. J. Chem. Inf. Model., 2020, 60(12), 5754-5770.
[http://dx.doi.org/10.1021/acs.jcim.0c00326] [PMID: 32551639]
[58]
Hingley-Wilson, S.M.; Lougheed, K.E.A.; Ferguson, K.; Leiva, S.; Williams, H.D. Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. Tuberculosis (Edinb.), 2010, 90(4), 236-244.
[http://dx.doi.org/10.1016/j.tube.2010.03.013] [PMID: 20541977]
[59]
Domenech, P.; Honoré, N.; Heym, B.; Cole, S.T. Role of OxyS of Mycobacterium tuberculosis in oxidative stress: Overexpression confers increased sensitivity to organic hydroperoxides. Microbes Infect., 2001, 3(9), 713-721.
[http://dx.doi.org/10.1016/S1286-4579(01)01422-8] [PMID: 11489419]
[60]
Master, S.S.; Springer, B.; Sander, P.; Boettger, E.C.; Deretic, V.; Timmins, G.S. Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology, 2002, 148(10), 3139-3144.
[http://dx.doi.org/10.1099/00221287-148-10-3139] [PMID: 12368447]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy