Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

DFT, FMO, ESP, Molecular Docking and Molecular Dynamics Simulations of Bis-2-(2-Phenethyl)Chromone as a Potential PPAR Agonist

Author(s): Yingqi Qiu, Wuji Lai, Yu Feng, Qinghua Zhu, Yuanmeng Wang, Lihe Jiang, Fuhou Lei, Liqun Shen and Aiqun Wu*

Volume 20, Issue 7, 2023

Published on: 22 February, 2023

Page: [678 - 687] Pages: 10

DOI: 10.2174/1570178620666230131143403

Price: $65

Abstract

Globally, chronic diseases are becoming the leading cause of death. Because of the large number of patients, high medical cost, long duration of illness and the great demand for services. Diabetes is one of them and the prevalence is still rising, causing a serious physical burden to patients; it also affects a great economic burden on society. Therefore, the development of more effective antidiabetic medication is of great importance. To screen the rare chromone dimer compounds and study their inhibitory effects on type 2 diabetes mellitus. The structure was geometrically optimized and its thermodynamic properties were analyzed by DFT B3LYP-D3(BJ)/6-31G(d,p); molecular docking and molecular dynamics simulation were used to investigate the interaction of PPARγ with their ligands. In addition, its ESP and FMO were analyzed. The bis-2-(2-phenethyl)chromone derivatives have high molecular docking fractions and stable molecular dynamics simulation results, indicating that the extracts from Agarwood species bi-2-(2-phenethyl)chromone derivatives have good interactions with PPARγ. This implies that bis- 2-(2-phenethyl)chromone derivatives have good interactions with PPARγ. It is suggested that BPEC may be a natural agonist of PPARγ, which is expected to exert a more efficient hypoglycemic effect and avoid more drug side effects, laying a foundation for the research and development of anti-type 2 diabetes drugs.

« Previous
Graphical Abstract

[1]
Yasmin, S.; Capone, F.; Laghezza, A.; Piaz, F.D.; Loiodice, F.; Vijayan, V.; Devadasan, V.; Mondal, S.K.; Atlı, O.; Baysal, M.; Pattnaik, A.K.; Jayaprakash, V.; Lavecchia, A. Sci. Rep., 2017, 7, 14453.
[http://dx.doi.org/10.1038/s41598-017-14776-0]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023]
[3]
Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D. J. Diabetes Res. Clin. Pract., 2022, 183, 109-118.
[http://dx.doi.org/10.1016/j.diabres.2021.109118]
[4]
Taygerly, J.P.; McGee, L.R.; Rubenstein, S.M.; Houze, J.B.; Cushing, T.D.; Li, Y.; Motani, A.; Chen, J.; Frankmoelle, W.; Ye, G.; Learned, M.R.; Jaen, J.; Miao, S.; Timmermans, P.B.; Thoolen, M.; Kearney, P.; Flygare, J.; Beckmann, H.; Weiszmann, J.; Lindstrom, M.; Walker, N.; Liu, J.; Biermann, D.; Wang, Z.; Hagiwara, A.; Iida, T.; Aramaki, H.; Kitao, Y.; Shinkai, H.; Furukawa, N.; Nishiu, J.; Nakamura, M. Bioorg. Med. Chem., 2013, 21(4), 979-992.
[http://dx.doi.org/10.1016/j.bmc.2012.11.058] [PMID: 23294830]
[5]
Zhang, Y-D.; Xie, J-Y.; Li, X-C.; Zhang, Z.J.; Li, Z. Xiandai Shengwu Yixue Jinzhan, 2019, 19(09), 1601-1607.
[http://dx.doi.org/10.13241/j.cnki.pmb.2019.09.001]
[6]
Shi, Y-H.; Yuan, X.; Dang, M.; Zhang, X-S.; Liu, J-P.; Wang, B. Chin. Tradit. Herbal Drugs, 2019, 50(18), 4378-4383.
[http://dx.doi.org/10.7501/j.issn.0253-2670.2019.18.017]
[7]
Heo, C. Choi, C. J. Clin. Med., 2019, 8(3), 393.
[http://dx.doi.org/10.3390/jcm8030393] [PMID: 30901912]
[8]
Christodoulou, M.; Tchoumtchoua, J.; Skaltsounis, A.; Scorilas, A. Halabalaki, M. Curr. Med. Chem., 2019, 26(32), 5982-6015.
[http://dx.doi.org/10.2174/0929867325666180430152618] [PMID: 29714135]
[9]
Mei, Q-X.; Li, H-N.; Lin, H-Z.; Wu, X-R.; Liang, L-Y.; Yang, H-L.; Lan, Z. Lishizhen Med. Materia Medica Res., 2013, 24(07), 1606-1607.
[10]
Moradi Marjaneh, R.; Paseban, M.; Sahebkar, A. Phytother. Res., 2019, 33(10), 2518-2530.
[http://dx.doi.org/10.1002/ptr.6421] [PMID: 31359514]
[11]
Matzinger, M.; Fischhuber, K.; Heiss, E.H. Biotechnol. Adv., 2017, 36(6), 1738-1767.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.015]
[12]
Li, W.; Yuan, G.; Pan, Y.; Wang, C.; Chen, H. Front. Pharmacol, 2017.https://doi.prg/10.3389/fphar.2017
[13]
Li, W.; Chen, H.; Wang, H.; Mei, W. Dai, H. Nat. Prod. Rep., 2021, 38(3), 528-565.
[http://dx.doi.org/10.1039/D0NP00042F] [PMID: 32990292]
[14]
Xiao, M-J.; Gao, Z-H.; Wang, C-H.; Wei, J-H. World Sci. Technol., 2021, 23(07), 2170-2180.
[15]
Yongyi, L.; Jinxuan, C.; Yue, F.; Jiaxin, L.; Xiaoqian, Z.; Xia, W.; Bingxin, L.; Cuixian, Z. Acta Sci. Natur. Univ. Sunyatseni, 2022, 61(04), 70-78.
[http://dx.doi.org/10.13471/j.cnki.acta.snus.2020c015]
[16]
Yang, Y.; Mei, W.; Kong, F.; Chen, H.; Li, W.; Chen, Z. Four new bi-2-(2-phenylethyl)chromone derivatives of agarwood from Aquilaria crassna. Fitoterapia, 2017, 119, 20-25.
[http://dx.doi.org/10.1016/j.fitote.2017.03.008]
[17]
Shibata, S.; Sugiyama, T.; Uekusa, Y.; Masui, R.; Narukawa, Y.; Kiuchi, F. J. Nat. Med., 2020, 74(3), 561-570.
[http://dx.doi.org/10.1007/s11418-020-01410-z] [PMID: 32335822]
[18]
Tian,, C-P. Analysis Of Chemical Contituen And Biological Activities Of Guangxi Agarwood., MA thesis, Guangxi Minzu University, Nanning, China 2020.
[19]
Feng, X-Y. Design and Synthesis of Novel PPARα/γ Dual Targeted Agonists, MA thesis, Tianjin Medical University, Tianjin, China 2020.
[20]
Guo, S-J.; Li, J-B.; Zeng, Z-P.; Jiao, H-J. Zhongguo Yiyuan Yaoxue Zazhi, 2021, 41(2), 139-143.
[21]
Kroker, A.J.; Bruning, B.J. PPAR Res., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/816856]
[22]
Ishii, I.; Department, O.H.C. Foreword. Biol. Pharm. Bull., 2021, 44(9), 1184.
[http://dx.doi.org/10.1248/bpb.b21-ctf4409] [PMID: 34471045]
[23]
Kouskoumvekaki, I.; Petersen, R.K.; Fratev, F.; Taboureau, O.; Nielsen, T.E.; Oprea, T.I.; Sonne, S.B.; Flindt, E.N.; Jónsdóttir, S.Ó.; Kristiansen, K. J. Chem. Inf. Model., 2013, 53(4), 923-937.
[http://dx.doi.org/10.1021/ci3006148] [PMID: 23432662]
[24]
Al Sharif, M.; Alov, P.; Diukendjieva, A.; Vitcheva, V.; Simeonova, R.; Krasteva, I.; Shkondrov, A.; Tsakovska, I.; Pajeva, I. Food Chem. Toxicol., 2018, 112, 47-59.
[http://dx.doi.org/10.1016/j.fct.2017.12.009] [PMID: 29247773]
[25]
Mazumder, M.; Ponnan, P.; Das, U.; Gourinath, S.; Khan, H.A.; Yang, J.; Sakharkar, M.K. PPAR Res., 2017, 20176397836
[http://dx.doi.org/10.1155/2017/6397836]
[26]
Paulechka, E.; Kazakov, A. J. Phys. Chem. A, 2017, 121(22), 4379-4387.
[http://dx.doi.org/10.1021/acs.jpca.7b03195] [PMID: 28514153]
[27]
Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Int. J. Mol. Sci., 2019, 20(18), 4574.
[http://dx.doi.org/10.3390/ijms20184574] [PMID: 31540192]
[28]
Berenger, F.; Kumar, A.; Zhang, K.Y.J.; Yamanishi, Y. J. Chem. Inf. Model., 2021, 61(5), 2341-2352.
[http://dx.doi.org/10.1021/acs.jcim.0c01452] [PMID: 33861591]
[29]
Qiao, Y-Y.; Guo, S. Computers and Applied Chemistry, 2005, 22(2), 157-160.
[http://dx.doi.org/10.16866/j.com.app.chem2005.02.018]
[30]
Ghahremanian, S.; Rashidi, M.M.; Raeisi, K.; Toghraie, D. J. Mol. Liq., 2022, 354118901
[http://dx.doi.org/10.1016/j.molliq.2022.118901] [PMID: 35309259]
[31]
Zhang, J.; Lu, T. Phys. Chem. Chem. Phys., 2021, 23(36), 20323-20328.
[http://dx.doi.org/10.1039/D1CP02805G] [PMID: 34486612]
[32]
Manzetti, S.; Lu, T. J. Phys. Org. Chem., 2013, 26(6), 473-483.
[http://dx.doi.org/10.1002/poc.3111]
[33]
Lu, T.; Manzetti, S. Struct. Chem., 2014, 25(5), 1521-1533.
[http://dx.doi.org/10.1007/s11224-014-0430-6]
[34]
Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G. Eur. J. Med. Chem., 2021, 224(224)113705
[http://dx.doi.org/10.1016/j.ejmech.2021.113705] [PMID: 34303871]
[35]
Yang, Yang.; Mei, Wen-L.; Kong, Fan-Dong.; Chen, Hui-Qin.; Li, Wei.; Chen, Zhi-Bao.; Dai, Hao-Fu. Fitoterapia, 2017, 119, 20-25.
[http://dx.doi.org/10.1016/j.fitote.2017.03.008]
[36]
Huo, H.; Zhu, Z.; Song, Y.; Shi, S.; Sun, J.; Sun, H.; Zhao, Y.; Zheng, J.; Ferreira, D.; Zjawiony, J.K.; Tu, P.; Li, J. J. Nat. Prod., 2018, 81(3), 543-553.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00919] [PMID: 29227647]
[37]
Xiang, P.; Dong, W.; Cai, C.; Li, W.; Zhou, L.; Dai, H.; Chen, H.; Mei, W. Nat. Prod. Res., 2021, 35(21), 3592-3598.
[http://dx.doi.org/10.1080/14786419.2020.1716345] [PMID: 31983227]
[38]
Kuang, T.; Chen, H.; Wang, H.; Kong, F.; Cai, C.; Dong, W.; Yuan, J.; Mei, W.; Dai, H. RSC Advances, 2019, 9(30), 17025-17034.
[http://dx.doi.org/10.1039/C9RA02597A] [PMID: 35519867]
[39]
Yuan, J.; Yang, Y.; Li, W.; Yang, L.; Dai, H.; Mándi, A.; Cai, C.; Chen, H.; Dong, W.; Kurtán, T.; Mei, W.; Wang, H. Molecules, 2022, 27(1), 198.
[http://dx.doi.org/10.3390/molecules27010198] [PMID: 35011431]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy