Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Metabolic-associated Fatty Liver Disease Regulation through Nutri Epigenetic Methylation

Author(s): Jesus Rivera-Aguirre, Guillermo Nahúm López-Sánchez, Norberto Carlos Chávez-Tapia, Misael Uribe and Natalia Nuño-Lámbarri*

Volume 23, Issue 17, 2023

Published on: 27 February, 2023

Page: [1680 - 1690] Pages: 11

DOI: 10.2174/1389557523666230130093512

Price: $65

Abstract

Metabolically associated fatty liver disease, formerly called nonalcoholic fatty liver disease, is the most common liver disease globally, representing the third cause of liver transplantation. Metabolically associated fatty liver disease is defined as having more than 5% lipid droplets in hepatocytes without other concomitant liver diseases. Various stimuli such as the secretion of inflammatory cytokines, mitochondrial and endoplasmic reticulum dysfunction due to oxidative stress, alteration of the intestine-liver axis, bacterial dysbiosis, as well as genetic and epigenetic factors can modify the progression of metabolically associated fatty liver disease to fibrosis, cirrhosis, and may reach hepatocellular carcinoma. Epigenetics is responsible for a highly sophisticated regulatory system that controls many cellular processes in response to multiple environmental factors as an adaptive mechanism unrelated to alterations in the primary deoxyribonucleic acid sequence, including gene expression, microRNAs, DNA methylation, modifications in histones, and DNA-protein interactions. Several studies have shown that epigenetic changes are associated with various diseases, including metabolically associated fatty liver disease. Nutri epigenomics is the interaction between nutrition and components at the transcriptional or post-transcriptional level. Methylation processes involve micronutrients that regulate epigenetic states in a physiological and pathological context. Micronutrients such as methionine, folate, and choline are the main components of one-carbon metabolism, functioning as methyl group donors, and their deficiency predisposes to various pathologies such as metabolically associated fatty liver disease. Understanding of epigenetic modifiers leads us to develop new therapeutic therapies for patients with metabolically associated fatty liver disease.

Graphical Abstract

[1]
Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; Kawaguchi, T.; Arrese, M.; Valenti, L.; Shiha, G.; Tiribelli, C.; Yki-Järvinen, H.; Fan, J.G.; Grønbæk, H.; Yilmaz, Y.; Cortez-Pinto, H.; Oliveira, C.P.; Bedossa, P.; Adams, L.A.; Zheng, M.H.; Fouad, Y.; Chan, W.K.; Mendez-Sanchez, N.; Ahn, S.H.; Castera, L.; Bugianesi, E.; Ratziu, V.; George, J. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol., 2020, 73(1), 202-209.
[http://dx.doi.org/10.1016/j.jhep.2020.03.039] [PMID: 32278004]
[2]
Valenti, L.; Pelusi, S. Redefining fatty liver disease classification in 2020. Liver Int., 2020, 40(5), 1016-1017.
[http://dx.doi.org/10.1111/liv.14430] [PMID: 32352234]
[3]
Kuchay, M.S.; Misra, A. From non-alcoholic fatty liver disease (NAFLD) to metabolic-associated fatty liver disease (MAFLD): A journey over 40 years. Diabetes Metab. Syndr., 2020, 14(4), 695-696.
[http://dx.doi.org/10.1016/j.dsx.2020.05.019] [PMID: 32442920]
[4]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[5]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[6]
Sinn, D.H.; Kang, D.; Chang, Y.; Ryu, S.; Gu, S.; Kim, H.; Seong, D.; Cho, S.J.; Yi, B.K.; Park, H.D.; Paik, S.W.; Song, Y.B.; Lazo, M.; Lima, J.A.C.; Guallar, E.; Cho, J.; Gwak, G.Y. Non-alcoholic fatty liver disease and progression of coronary artery calcium score: A retrospective cohort study. Gut, 2017, 66(2), 323-329.
[http://dx.doi.org/10.1136/gutjnl-2016-311854] [PMID: 27599521]
[7]
Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 2016, 65(8), 1038-1048.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[8]
Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 2018, 67(1), 328-357.
[http://dx.doi.org/10.1002/hep.29367] [PMID: 28714183]
[9]
Meffert, P.J.; Baumeister, S.E.; Lerch, M.M.; Mayerle, J.; Kratzer, W.; Völzke, H. Development, external validation, and comparative assessment of a new diagnostic score for hepatic steatosis. Am. J. Gastroenterol., 2014, 109(9), 1404-1414.
[http://dx.doi.org/10.1038/ajg.2014.155] [PMID: 24957156]
[10]
Meroni, M.; Longo, M.; Rustichelli, A.; Dongiovanni, P. Nutrition and genetics in NAFLD: The perfect binomium. Int. J. Mol. Sci., 2020, 21(8), 2986.
[http://dx.doi.org/10.3390/ijms21082986] [PMID: 32340286]
[11]
Zhang, L.; Lu, Q.; Chang, C. Epigenetics in health and disease. Adv. Exp. Med. Biol., 2020, 1253, 3-55.
[http://dx.doi.org/10.1007/978-981-15-3449-2_1] [PMID: 32445090]
[12]
Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[13]
Richard, M.A.; Huan, T.; Ligthart, S.; Gondalia, R.; Jhun, M.A.; Brody, J.A.; Irvin, M.R.; Marioni, R.; Shen, J.; Tsai, P.C.; Montasser, M.E.; Jia, Y.; Syme, C.; Salfati, E.L.; Boerwinkle, E.; Guan, W.; Mosley, T.H., Jr; Bressler, J.; Morrison, A.C.; Liu, C.; Mendelson, M.M.; Uitterlinden, A.G.; van Meurs, J.B.; Franco, O.H.; Zhang, G.; Li, Y.; Stewart, J.D.; Bis, J.C.; Psaty, B.M.; Chen, Y.D.I.; Kardia, S.L.R.; Zhao, W.; Turner, S.T.; Absher, D.; Aslibekyan, S.; Starr, J.M.; McRae, A.F.; Hou, L.; Just, A.C.; Schwartz, J.D.; Vokonas, P.S.; Menni, C.; Spector, T.D.; Shuldiner, A.; Damcott, C.M.; Rotter, J.I.; Palmas, W.; Liu, Y.; Paus, T.; Horvath, S.; O’Connell, J.R.; Guo, X.; Pausova, Z.; Assimes, T.L.; Sotoodehnia, N.; Smith, J.A.; Arnett, D.K.; Deary, I.J.; Baccarelli, A.A.; Bell, J.T.; Whitsel, E.; Dehghan, A.; Levy, D.; Fornage, M.; Heijmans, B.T. ’t Hoen, P.A.C.; van Meurs, J.; Isaacs, A.; Jansen, R.; Franke, L.; Boomsma, D.I.; Pool, R.; van Dongen, J.; Hottenga, J.J.; van Greevenbroek, M.M.J.; Stehouwer, C.D.A.; van der Kallen, C.J.H.; Schalkwijk, C.G.; Wijmenga, C.; Zhernakova, A.; Tigchelaar, E.F.; Slagboom, P.E.; Beekman, M.; Deelen, J.; van Heemst, D.; Veldink, J.H.; van den Berg, L.H.; van Duijn, C.M.; Hofman, A.; Uitterlinden, A.G.; Jhamai, P.M.; Verbiest, M.; Suchiman, H.E.D.; Verkerk, M.; van der Breggen, R.; van Rooij, J.; Lakenberg, N.; Mei, H.; van Iterson, M.; van Galen, M.; Bot, J.; van ’t Hof, P.; Deelen, P.; Nooren, I.; Moed, M.; Vermaat, M.; Zhernakova, D.V.; Luijk, R.; Bonder, M.J.; van Dijk, F.; Arindrarto, W.; Kielbasa, S.M.; Swertz, M.A.; van Zwet, E.W. dna methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet., 2017, 101(6), 888-902.
[http://dx.doi.org/10.1016/j.ajhg.2017.09.028] [PMID: 29198723]
[14]
Feng, J.; Chang, H.; Li, E.; Fan, G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res., 2005, 79(6), 734-746.
[http://dx.doi.org/10.1002/jnr.20404] [PMID: 15672446]
[15]
Hashimoto, H.; Liu, Y.; Upadhyay, A.K.; Chang, Y.; Howerton, S.B.; Vertino, P.M.; Zhang, X.; Cheng, X. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res., 2012, 40(11), 4841-4849.
[http://dx.doi.org/10.1093/nar/gks155] [PMID: 22362737]
[16]
de Mello, V.D.; Matte, A.; Perfilyev, A.; Männistö, V.; Rönn, T.; Nilsson, E.; Käkelä, P.; Ling, C.; Pihlajamäki, J. Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action. Epigenetics, 2017, 12(4), 287-295.
[http://dx.doi.org/10.1080/15592294.2017.1294305] [PMID: 28277977]
[17]
Pirola, C.J.; Gianotti, T.F.; Burgueño, A.L.; Rey-Funes, M.; Loidl, C.F.; Mallardi, P.; Martino, J.S.; Castaño, G.O.; Sookoian, S. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut, 2013, 62(9), 1356-1363.
[http://dx.doi.org/10.1136/gutjnl-2012-302962] [PMID: 22879518]
[18]
Kruse, S.E.; Watt, W.C.; Marcinek, D.J.; Kapur, R.P.; Schenkman, K.A.; Palmiter, R.D. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab., 2008, 7(4), 312-320.
[http://dx.doi.org/10.1016/j.cmet.2008.02.004] [PMID: 18396137]
[19]
Chen, G.; Broséus, J.; Hergalant, S.; Donnart, A.; Chevalier, C.; Bolaños-Jiménez, F.; Guéant, J.L.; Houlgatte, R. Identification of master genes involved in liver key functions through transcriptomics and epigenomics of methyl donor deficiency in rat: Relevance to nonalcoholic liver disease. Mol. Nutr. Food Res., 2015, 59(2), 293-302.
[http://dx.doi.org/10.1002/mnfr.201400483] [PMID: 25380481]
[20]
Zeybel, M.; Hardy, T.; Robinson, S.M.; Fox, C.; Anstee, Q.M.; Ness, T.; Masson, S.; Mathers, J.C.; French, J.; White, S.; Mann, J. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin. Epigenet., 2015, 7(1), 25.
[http://dx.doi.org/10.1186/s13148-015-0056-6] [PMID: 25859289]
[21]
Lee, Y.H.; Kim, M.S.; Jeong, H.; Hagiwara, A.; Lee, J.S. Genome-wide identification and transcriptional modulation of histone variants and modification related genes in the low pH-exposed marine rotifer Brachionus koreanus. Comp. Biochem. Physiol. Part D Genomics Proteom., 2020, 36, 100748.
[http://dx.doi.org/10.1016/j.cbd.2020.100748] [PMID: 33032078]
[22]
Moran-Salvador, E.; Mann, J. Epigenetics and liver fibrosis. Cell. Mol. Gastroenterol. Hepatol., 2017, 4(1), 125-134.
[http://dx.doi.org/10.1016/j.jcmgh.2017.04.007] [PMID: 28593184]
[23]
Pogribny, I.P.; Tryndyak, V.P.; Bagnyukova, T.V.; Melnyk, S.; Montgomery, B.; Ross, S.A.; Latendresse, J.R.; Rusyn, I.; Beland, F.A. Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J. Hepatol., 2009, 51(1), 176-186.
[http://dx.doi.org/10.1016/j.jhep.2009.03.021] [PMID: 19450891]
[24]
Rappa, F.; Greco, A.; Podrini, C.; Cappello, F.; Foti, M.; Bourgoin, L.; Peyrou, M.; Marino, A.; Scibetta, N.; Williams, R.; Mazzoccoli, G.; Federici, M.; Pazienza, V.; Vinciguerra, M. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. PLoS One, 2013, 8(1), e54458.
[http://dx.doi.org/10.1371/journal.pone.0054458] [PMID: 23372727]
[25]
Aravinthan, A.; Scarpini, C.; Tachtatzis, P.; Verma, S.; Penrhyn-Lowe, S.; Harvey, R.; Davies, S.E.; Allison, M.; Coleman, N.; Alexander, G. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol., 2013, 58(3), 549-556.
[http://dx.doi.org/10.1016/j.jhep.2012.10.031] [PMID: 23142622]
[26]
Vaquero, A.; Scher, M.; Lee, D.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell, 2004, 16(1), 93-105.
[http://dx.doi.org/10.1016/j.molcel.2004.08.031] [PMID: 15469825]
[27]
Feng, D.; Liu, T.; Sun, Z.; Bugge, A.; Mullican, S.E.; Alenghat, T.; Liu, X.S.; Lazar, M.A. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science, 2011, 331(6022), 1315-1319.
[http://dx.doi.org/10.1126/science.1198125] [PMID: 21393543]
[28]
Bricambert, J.; Miranda, J.; Benhamed, F.; Girard, J.; Postic, C.; Dentin, R. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest., 2010, 120(12), 4316-4331.
[http://dx.doi.org/10.1172/JCI41624] [PMID: 21084751]
[29]
Fan, Z.; Li, L.; Li, M.; Zhang, X.; Hao, C.; Yu, L.; Zeng, S.; Xu, H.; Fang, M.; Shen, A.; Jenuwein, T.; Xu, Y. The histone methyltransferase Suv39h2 contributes to nonalcoholic steatohepatitis in mice. Hepatology, 2017, 65(6), 1904-1919.
[http://dx.doi.org/10.1002/hep.29127] [PMID: 28244120]
[30]
Kim, J.H.; Jung, D.Y.; Kim, H.R.; Jung, M.H. Histone H3K9 demethylase JMJD2B plays a role in LXRα-dependent lipogenesis. Int. J. Mol. Sci., 2020, 21(21), 8313.
[31]
Kim, J.H.; Jung, D.Y.; Nagappan, A.; Jung, M.H. Histone H3K9 demethylase JMJD2B induces hepatic steatosis through upregulation of PPARγ2. Sci. Rep., 2018, 8(1), 13734.
[32]
Viscarra, J.A.; Wang, Y.; Nguyen, H.P.; Choi, Y.G. Sul, HS Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis. Nat. Commun., 2020, 11(1), 796.
[http://dx.doi.org/10.1038/s41467-020-14617-1]
[33]
Kim, D.H.; Kim, J.; Kwon, J.S.; Sandhu, J.; Tontonoz, P.; Lee, S.K.; Lee, S.; Lee, J.W. Critical roles of the histone methyltransferase MLL4/KMT2D In murine hepatic steatosis directed By ABL1 And Pparγ2. Cell Rep., 2016, 17(6), 1671-1682.
[http://dx.doi.org/10.1016/j.celrep.2016.10.023] [PMID: 27806304]
[34]
Moraes, F.; Góes, A. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge. Biochem. Mol. Biol. Educ., 2016, 44(3), 215-223.
[http://dx.doi.org/10.1002/bmb.20952] [PMID: 26952518]
[35]
Panni, S.; Lovering, R.C.; Porras, P.; Orchard, S. Non-coding RNA regulatory networks. Biochim. Biophys. Acta. Gene Regul. Mech., 2020, 1863(6), 194417.
[http://dx.doi.org/10.1016/j.bbagrm.2019.194417]
[36]
Yu, F.; Zheng, J.; Mao, Y.; Dong, P.; Li, G.; Lu, Z.; Guo, C.; Liu, Z.; Fan, X. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis. Biochem. Biophys. Res. Commun., 2015, 463(4), 679-685.
[http://dx.doi.org/10.1016/j.bbrc.2015.05.124] [PMID: 26043697]
[37]
Sun, C.; Liu, X.; Yi, Z.; Xiao, X.; Yang, M.; Hu, G.; Liu, H.; Liao, L.; Huang, F. Genome-wide analysis of long noncoding RNA expression profiles in patients with non-alcoholic fatty liver disease. IUBMB Life, 2015, 67(11), 847-852.
[http://dx.doi.org/10.1002/iub.1442] [PMID: 26472541]
[38]
Chen, X.; Xu, Y.; Zhao, D.; Chen, T.; Gu, C.; Yu, G.; Chen, K.; Zhong, Y.; He, J.; Liu, S.; Nie, Y.; Yang, H. lncrna-ak012226 is involved in fat accumulation in db/db mice fatty liver and non-alcoholic fatty liver disease cell model. Front. Pharmacol., 2018, 9(AUG), 888.
[http://dx.doi.org/10.3389/fphar.2018.00888] [PMID: 30135656]
[39]
Zhang, Q.; Wang, J.; Li, H.; Zhang, Y.; Chu, X.; Yang, J.; Li, Y. LncRNA Gm12664–001 ameliorates nonalcoholic fatty liver through modulating miR-295-5p and CAV1 expression. Nutr. Metab. (Lond.), 2020, 17(1), 13.
[http://dx.doi.org/10.1186/s12986-020-0430-z] [PMID: 32042299]
[40]
Atanasovska, B.; Rensen, S.S.; van der Sijde, M.R.; Marsman, G.; Kumar, V.; Jonkers, I.; Withoff, S.; Shiri-Sverdlov, R.; Greve, J.W.M.; Faber, K.N.; Moshage, H.; Wijmenga, C.; van de Sluis, B.; Hofker, M.H.; Fu, J. A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis. Hepatology, 2017, 66(3), 794-808.
[http://dx.doi.org/10.1002/hep.29034] [PMID: 28073183]
[41]
Leti, F.; Legendre, C.; Still, C.D.; Chu, X.; Petrick, A.; Gerhard, G.S.; DiStefano, J.K. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl. Res., 2017, 190, 25-39.e21.
[http://dx.doi.org/10.1016/j.trsl.2017.09.001] [PMID: 28993096]
[42]
Zhao, Q.; Liu, J.; Deng, H.; Ma, R.; Liao, J.Y.; Liang, H.; Hu, J.; Li, J.; Guo, Z.; Cai, J.; Xu, X.; Gao, Z.; Su, S. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. Cell, 2020, 183(1), 76-93.e22.
[http://dx.doi.org/10.1016/j.cell.2020.08.009] [PMID: 32931733]
[43]
Guo, X.Y.; Sun, F.; Chen, J.N.; Wang, Y.Q.; Pan, Q.; Fan, J.G. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J. Gastroenterol., 2018, 24(3), 323-337.
[http://dx.doi.org/10.3748/wjg.v24.i3.323] [PMID: 29391755]
[44]
Guo, J.; Zhou, Y.; Cheng, Y.; Fang, W.; Hu, G.; Wei, J.; Lin, Y.; Man, Y.; Guo, L.; Sun, M.; Cui, Q.; Li, J. Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice. Cell. Physiol. Biochem., 2018, 45(4), 1487-1505.
[http://dx.doi.org/10.1159/000487575] [PMID: 29466788]
[45]
Liu, C.H.; Ampuero, J.; Gil-Gómez, A.; Montero-Vallejo, R.; Rojas, Á.; Muñoz-Hernández, R.; Gallego-Durán, R.; Romero-Gómez, M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol., 2018, 69(6), 1335-1348.
[http://dx.doi.org/10.1016/j.jhep.2018.08.008] [PMID: 30142428]
[46]
López-Sánchez, G.N.; Montalvo-Javé, E.; Domínguez-Perez, M.; Antuna-Puente, B.; Beltrán-Anaya, F.O.; Hidalgo-Miranda, A.; Chávez-Tapia, N.C.; Uribe, M. Nuño- Lámbarri, N. Hepatic mir-122-3p, mir-140-5p and mir-148b-5p expressions are correlated with cytokeratin-18 serum levels in MAFLD. Ann. Hepatol., 2022, 27(6), 100756.
[http://dx.doi.org/10.1016/j.aohep.2022.100756] [PMID: 36096296]
[47]
Li, S.; Chen, X.; Zhang, H.; Liang, X.; Xiang, Y.; Yu, C.; Zen, K.; Li, Y.; Zhang, C.Y. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J. Lipid Res., 2009, 50(9), 1756-1765.
[http://dx.doi.org/10.1194/jlr.M800509-JLR200] [PMID: 19372595]
[48]
Botello-Manilla, A.E.; Chávez-Tapia, N.C.; Uribe, M.; Nuño-Lámbarri, N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol., 2020, 14(8), 733-748.
[http://dx.doi.org/10.1080/17474124.2020.1780915] [PMID: 32552211]
[49]
Cheray, M.; Etcheverry, A.; Jacques, C.; Pacaud, R.; Bougras-Cartron, G.; Aubry, M. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Molecular Cancer, 2020, 19(1), 36.
[http://dx.doi.org/10.1186/s12943-020-01155-z]
[50]
Konno, M.; Koseki, J.; Asai, A.; Yamagata, A.; Shimamura, T.; Motooka, D. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat. Commun., 2019, 10(1), 3888.
[http://dx.doi.org/10.1038/s41467-019-11826-1]
[51]
Amenyah, S.D.; Hughes, C.F.; Ward, M.; Rosborough, S.; Deane, J.; Thursby, S.J.; Walsh, C.P.; Kok, D.E.; Strain, J.J.; McNulty, H.; Lees-Murdock, D.J. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults-a systematic review and meta-analysis. Nutr. Rev., 2020, 78(8), 647-666.
[http://dx.doi.org/10.1093/nutrit/nuz094] [PMID: 31977026]
[52]
Radziejewska, A.; Muzsik, A.; Milagro, F.I.; Martínez, J.A.; Chmurzynska, A. One-carbon metabolism and nonalcoholic fatty liver disease: The crosstalk between nutrients, microbiota, and genetics. Lifestyle Genom., 2020, 13(2), 53-63.
[http://dx.doi.org/10.1159/000504602] [PMID: 31846961]
[53]
Cordero, P.; Campion, J.; Milagro, F.I.; Martinez, J.A. Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: Effect of dietary methyl donor supplementation. Mol. Genet. Metab., 2013, 110(3), 388-395.
[http://dx.doi.org/10.1016/j.ymgme.2013.08.022] [PMID: 24084163]
[54]
Dai, Y.; Zhu, J.; Meng, D.; Yu, C.; Li, Y. Association of homocysteine level with biopsy-proven non-alcoholic fatty liver disease: a meta-analysis. J. Clin. Biochem. Nutr., 2016, 58(1), 76-83.
[http://dx.doi.org/10.3164/jcbn.15-54] [PMID: 26798201]
[55]
Costa, D.S.; Guahnon, M.P.; Seganfredo, F.B.; Pinto, L.P.; Tovo, C.V.; Fernandes, S.A. Vitamin b12 and homocysteine levels in patients with nafld: A systematic review and metanalysis. Arq. Gastroenterol., 2021, 58(2), 234-239.
[http://dx.doi.org/10.1590/s0004-2803.202100000-42] [PMID: 34287533]
[56]
Pacana, T.; Cazanave, S.; Verdianelli, A.; Patel, V.; Min, H.K.; Mirshahi, F.; Quinlivan, E.; Sanyal, A.J. Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS One, 2015, 10(8), e0136822.
[http://dx.doi.org/10.1371/journal.pone.0136822] [PMID: 26322888]
[57]
Leach, N.V.; Dronca, E.; Craciun, E.C.; Crisan, D. High levels of serum homocysteine in non-alcoholic steatohepatitis. Eur. J. Intern. Med., 2016, 35, e38-e39.
[http://dx.doi.org/10.1016/j.ejim.2016.06.018] [PMID: 27353275]
[58]
Hariri, M.; Gholami, A.; Mirhafez, S.R.; Bidkhori, M.; Sahebkar, A. A pilot study of the effect of curcumin on epigenetic changes and DNA damage among patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled, clinical trial. Complement. Ther. Med., 2020, 51, 102447.
[http://dx.doi.org/10.1016/j.ctim.2020.102447] [PMID: 32507446]
[59]
Wang, L.; Ren, B.; Zhang, Q.; Chu, C.; Zhao, Z.; Wu, J.; Zhao, W.; Liu, Z.; Liu, X. Methionine restriction alleviates high-fat diet-induced obesity: Involvement of diurnal metabolism of lipids and bile acids. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(11), 165908.
[http://dx.doi.org/10.1016/j.bbadis.2020.165908] [PMID: 32745530]
[60]
Rafii, M.; Pencharz, P.B.; Ball, R.O.; Tomlinson, C.; Elango, R.; Courtney-Martin, G. Bioavailable methionine assessed using the indicator amino acid oxidation method is greater when cooked chickpeas and steamed rice are combined in healthy young Men. J. Nutr., 2020, 150(7), 1834-1844.
[http://dx.doi.org/10.1093/jn/nxaa086] [PMID: 32271919]
[61]
Aissa, A.F.; Tryndyak, V.; de Conti, A.; Melnyk, S.; Gomes, T.D.U.H.; Bianchi, M.L.P.; James, S.J.; Beland, F.A.; Antunes, L.M.G.; Pogribny, I.P. Effect of methionine‐deficient and methionine‐supplemented diets on the hepatic one‐carbon and lipid metabolism in mice. Mol. Nutr. Food Res., 2014, 58(7), 1502-1512.
[http://dx.doi.org/10.1002/mnfr.201300726] [PMID: 24827819]
[62]
Rizki, G.; Arnaboldi, L.; Gabrielli, B.; Yan, J.; Lee, G.S.; Ng, R.K.; Turner, S.M.; Badger, T.M.; Pitas, R.E.; Maher, J.J. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J. Lipid Res., 2006, 47(10), 2280-2290.
[http://dx.doi.org/10.1194/jlr.M600198-JLR200] [PMID: 16829692]
[63]
Tryndyak, V.P.; Han, T.; Muskhelishvili, L.; Fuscoe, J.C.; Ross, S.A.; Beland, F.A.; Pogribny, I.P. Coupling global methylation and gene expression profiles reveal key pathophysiological events in liver injury induced by a methyl-deficient diet. Mol. Nutr. Food Res., 2011, 55(3), 411-418.
[http://dx.doi.org/10.1002/mnfr.201000300] [PMID: 20938992]
[64]
Ganz, A.B.; Shields, K.; Fomin, V.G.; Lopez, Y.S.; Mohan, S.; Lovesky, J.; Chuang, J.C.; Ganti, A.; Carrier, B.; Yan, J.; Taeswuan, S.; Cohen, V.V.; Swersky, C.C.; Stover, J.A.; Vitiello, G.A.; Malysheva, O.V.; Mudrak, E.; Caudill, M.A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. FASEB J., 2016, 30(10), 3321-3333.
[http://dx.doi.org/10.1096/fj.201500138RR] [PMID: 27342765]
[65]
Ebara, S. Nutritional role of folate. Congenit. Anom. (Kyoto), 2017, 57(5), 138-141.
[http://dx.doi.org/10.1111/cga.12233] [PMID: 28603928]
[66]
Christensen, K.E.; Wu, Q.; Wang, X.; Deng, L.; Caudill, M.A.; Rozen, R. Steatosis in mice is associated with gender, folate intake, and expression of genes of one-carbon metabolism. J. Nutr., 2010, 140(10), 1736-1741.
[http://dx.doi.org/10.3945/jn.110.124917] [PMID: 20724492]
[67]
Porter, R.K.; Scott, J.M.; Brand, M.D. Choline transport into rat liver mitochondria. Characterization and kinetics of a specific transporter. J. Biol. Chem., 1992, 267(21), 14637-14646.
[http://dx.doi.org/10.1016/S0021-9258(18)42089-3] [PMID: 1634511]
[68]
Wong, E.R.; Thompson, W. Choline oxidation and labile methyl groups in normal and choline-deficient rat liver. Biochim. Biophys. Acta Lipids Lipid Metab., 1972, 260(2), 259-271.
[http://dx.doi.org/10.1016/0005-2760(72)90037-9] [PMID: 4335141]
[69]
Wiedeman, A.; Barr, S.; Green, T.; Xu, Z.; Innis, S.; Kitts, D. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients, 2018, 10(10), 1513.
[http://dx.doi.org/10.3390/nu10101513] [PMID: 30332744]
[70]
Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2012, 1821(5), 754-761.
[http://dx.doi.org/10.1016/j.bbalip.2011.09.009] [PMID: 21979151]
[71]
Vance, D.E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol., 2008, 19(3), 229-234.
[http://dx.doi.org/10.1097/MOL.0b013e3282fee935] [PMID: 18460912]
[72]
Teng, Y.W.; Mehedint, M.G.; Garrow, T.A.; Zeisel, S.H. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J. Biol. Chem., 2011, 286(42), 36258-36267.
[http://dx.doi.org/10.1074/jbc.M111.265348] [PMID: 21878621]
[73]
Ueland, P.M.; Holm, P.I.; Hustad, S. Betaine: A key modulator of one-carbon metabolism and homocysteine status. Clin. Chem. Lab. Med., 2005, 43(10), 1069-1075.
[http://dx.doi.org/10.1515/CCLM.2005.187] [PMID: 16197300]
[74]
Zeisel, S.H.; Mar, M.H.; Howe, J.C.; Holden, J.M. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr., 2003, 133(5), 1302-1307.
[http://dx.doi.org/10.1093/jn/133.5.1302] [PMID: 12730414]
[75]
Lai, Z.; Chen, J.; Ding, C.; Wong, K.; Chen, X.; Pu, L.; Huang, Q.; Chen, X.; Cheng, Z.; Liu, Y.; Tan, X.; Zhu, H.; Wang, L. Association of hepatic global DNA Methylation and serum one‐carbon metabolites with histological severity in patients with NAFLD. Obesity (Silver Spring), 2020, 28(1), 197-205.
[http://dx.doi.org/10.1002/oby.22667] [PMID: 31785086]
[76]
Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J. Nutr. Biochem., 2014, 25(3), 329-336.
[77]
Deminice, R.; da Silva, R.P.; Lamarre, S.G.; Kelly, K.B.; Jacobs, R.L.; Brosnan, M.E.; Brosnan, J.T. Betaine supplementation prevents fatty liver induced by a high-fat diet: Effects on one-carbon metabolism. Amino Acids, 2015, 47(4), 839-846.
[http://dx.doi.org/10.1007/s00726-014-1913-x] [PMID: 25577261]
[78]
Cordero, P.; Gomez-Uriz, A.M.; Campion, J.; Milagro, F.I.; Martinez, J.A. Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr., 2013, 8(1), 105-113.
[http://dx.doi.org/10.1007/s12263-012-0300-z] [PMID: 22648174]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy