Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Systematic Analysis of the Mechanism of Polygoni Multiflori Caulis in Improving Depressive Disorder in Mice via Network Pharmacology Combined with Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Exactive Orbitrap Mass Spectrometer

Author(s): Wei Xiong, Qing Xu, Lingmiao Wen, Guihua Wei, Alvin Altamirano, Qiaozhi Yin, Tian-e Zhang* and Zhiyong Yan*

Volume 26, Issue 12, 2023

Published on: 09 March, 2023

Page: [2201 - 2225] Pages: 25

DOI: 10.2174/1386207326666230130091802

Price: $65

Abstract

Background and Objective: Depressive disorder (DD) is a common chronic and highly disabling disease. Polygoni Multiflori Caulis (PMC), a traditional Chinese medicine, has been listed in the 2020 edition of the Chinese Pharmacopoeia. Here, the antidepressant effects and mechanisms of PMC were explored for the first time.

Methods: We observed the safety of PMC at a 10-fold clinically equivalent dose. Depressed mice were induced by chronic unpredictable mild stress (CUMS) and were used to evaluate the antidepressant effects of PMC via the sucrose preference test and the tail suspension test. The composition of PMC was identified by ultra-high performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometer, and the active components, important targets, and potential mechanism of PMC in DD treatment were predicted via network pharmacology. Investigation included active compounds and DD-related targets screening, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, PMC-compound-target-pathway- DD network construction, and Molecular docking.

Results: In the safety evaluation of PMC, no toxic side effects or deaths occurred. There were no significant differences in liver function (ALT, AST, and TP; P > 0.05) and kidney function (BUN, CRE, and UA; P > 0.05) in each group of mice. Compared to the control group, the model group of mice showed significantly decreased sucrose preference and significantly increased immobility time (P < 0.01 or P < 0.05). Compared with the model group, the mice in the PMC low, medium, and high dose groups showed a significant decrease in immobility time and a significant increase in sucrose preference. In the PMC-Compound-Target-Pathway-DD network, 54 active compounds, 83 common targets, and 13 major signaling pathways were identified for the treatment of DD. Molecular docking verified that the active compounds could effectively bind with the hub targets.

Conclusion: PMC is a relatively safe antidepressant herbal medicine with its potential mechanism involving multiple compounds, targets, and pathways.

[1]
Schramm, E.; Klein, D.N.; Elsaesser, M.; Furukawa, T.A.; Domschke, K. Review of dysthymia and persistent depressive disorder: History, correlates, and clinical implications. Lancet Psychiatry, 2020, 7(9), 801-812.
[http://dx.doi.org/10.1016/S2215-0366(20)30099-7] [PMID: 32828168]
[2]
Pandya, M.; Altinay, M.; Malone, D.A., Jr; Anand, A. Where in the brain is depression? Curr. Psychiatry Rep., 2012, 14(6), 634-642.
[http://dx.doi.org/10.1007/s11920-012-0322-7] [PMID: 23055003]
[3]
Lin, H.Y.; Tsai, J.C.; Wu, L.Y.; Peng, W.H. Reveals of new candidate active components in hemerocallis radix and its anti-depression action of mechanism based on network pharmacology approach. Int. J. Mol. Sci., 2020, 21(5), 1868.
[http://dx.doi.org/10.3390/ijms21051868] [PMID: 32182911]
[4]
Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; Egger, M.; Takeshima, N.; Hayasaka, Y.; Imai, H.; Shinohara, K.; Tajika, A.; Ioannidis, J.P.A.; Geddes, J.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet, 2018, 391(10128), 1357-1366.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[5]
Pizzagalli, D.A.; Webb, C.A.; Dillon, D.G.; Tenke, C.E.; Kayser, J.; Goer, F.; Fava, M.; McGrath, P.; Weissman, M.; Parsey, R.; Adams, P.; Trombello, J.; Cooper, C.; Deldin, P.; Oquendo, M.A.; McInnis, M.G.; Carmody, T.; Bruder, G.; Trivedi, M.H. Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression a randomized clinical trial. JAMA Psychiatry, 2018, 75(6), 547-554.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.0252] [PMID: 29641834]
[6]
Prévot, T.; Sibille, E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol. Psychiatry, 2021, 26(1), 151-167.
[http://dx.doi.org/10.1038/s41380-020-0727-3] [PMID: 32346158]
[7]
Zheng, W.; Xu, K.; Wang, D.; Zheng, Y. Depression alleviation effect of psychological intervention based on traditional Chinese medicine. Rev. Argent. Clin. Psicol., 2020, XXIX(1), 776-781.
[http://dx.doi.org/10.24205/03276716.2020.105]
[8]
Farahani, M.S.; Bahramsoltani, R.; Farzaei, M.H.; Abdollahi, M.; Rahimi, R. Plant-derived natural medicines for the management of depression: An overview of mechanisms of action. Rev. Neurosci., 2015, 26(3), 305-321.
[http://dx.doi.org/10.1515/revneuro-2014-0058] [PMID: 25719303]
[9]
Chen, Y.L.; Lee, C.Y.; Huang, K.H.; Kuan, Y.H.; Chen, M. Prescription patterns of chinese herbal products for patients with sleep disorder and major depressive disorder in Taiwan. J. Ethnopharmacol., 2015, 171, 307-316.
[http://dx.doi.org/10.1016/j.jep.2015.05.045] [PMID: 26068429]
[10]
Jiang, C.; Qin, X.; Yuan, M.; Lu, G.; Cheng, Y. 2,3,5,4 '-Tetrahydroxystilbene-2-O-beta-D-glucoside reverses stress-induced depression via inflammatory an oxidative stress pathways. Oxid. Med. Cell. Longev., 2018, 2018, 9501427.
[http://dx.doi.org/10.1155/2018/9501427] [PMID: 30327715]
[11]
Park, G.J.H.; Mann, S.P.; Ngu, M.C. Acute hepatitis induced by Shou-Wu-Pian, a herbal product derived from Polygonum multiflorum. J. Gastroenterol. Hepatol., 2001, 16(1), 115-117.
[http://dx.doi.org/10.1046/j.1440-1746.2001.02309.x] [PMID: 11206309]
[12]
Wu, X.; Chen, X.; Huang, Q.; Fang, D.; Li, G.; Zhang, G. Toxicity of raw and processed roots of Polygonum multiflorum. Fitoterapia, 2012, 83(3), 469-475.
[http://dx.doi.org/10.1016/j.fitote.2011.12.012] [PMID: 22210538]
[13]
Chang, M.H.; Huang, F.J.; Chan, W.H. Emodin induces embryonic toxicity in mouse blastocysts through apoptosis. Toxicology, 2012, 299(1), 25-32.
[http://dx.doi.org/10.1016/j.tox.2012.05.006] [PMID: 22609528]
[14]
Liu, A.L.; Du, G.H. Network pharmacology: new guidelines for drug discovery. Yao Xue Xue Bao, 2010, 45(12), 1472-1477.
[PMID: 21351485]
[15]
Liu, Z.H.; Sun, X.B. Network pharmacology: new opportunity for the modernization of traditional Chinese medicine. Yao Xue Xue Bao, 2012, 47(6), 696-703.
[PMID: 22919715]
[16]
Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. TCMID: Traditional chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 2012, 41(D1), D1089-D1095.
[http://dx.doi.org/10.1093/nar/gks1100] [PMID: 23203875]
[17]
Chen, G.; Seukep, A.J.; Guo, M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs, 2020, 18(11), 545.
[http://dx.doi.org/10.3390/md18110545] [PMID: 33143025]
[18]
Zhao, Y.; Wang, Q.; Liu, S.; Wang, Y.; Shu, B.; Zhao, D. Preparation of Gushukang (GSK) granules for in vivo and in vitro experiments. J. Vis. Exp., 2019, 2019(147), e59171.
[http://dx.doi.org/10.3791/59171] [PMID: 31132042]
[19]
Medicine, N.U.O.C. Dictionary of traditional Chinese medicine, 2nd ed; Shanghai Scientific & Technical Publishers: Shanghai, 2006.
[20]
Su, W.J.; Zhang, Y.; Chen, Y.; Gong, H.; Lian, Y.J.; Peng, W.; Liu, Y.Z.; Wang, Y.X.; You, Z.L.; Feng, S.J.; Zong, Y.; Lu, G.C.; Jiang, C.L. NLRP3 gene knockout blocks NF-κB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav. Brain Res., 2017, 322(Pt A), 1-8.
[http://dx.doi.org/10.1016/j.bbr.2017.01.018] [PMID: 28093255]
[21]
Fang, S.; Dong, L.; Liu, L.; Guo, J.; Zhao, L.; Zhang, J.; Bu, D.; Liu, X.; Huo, P.; Cao, W.; Dong, Q.; Wu, J.; Zeng, X.; Wu, Y.; Zhao, Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res., 2021, 49(D1), D1197-D1206.
[http://dx.doi.org/10.1093/nar/gkaa1063] [PMID: 33264402]
[22]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[23]
Kim, S.; Thiessen, P.A.; Cheng, T.; Yu, B.; Shoemaker, B.A.; Wang, J.; Bolton, E.E.; Wang, Y.; Bryant, S.H. Literature information in PubChem: Associations between PubChem records and scientific articles. J. Cheminform., 2016, 8(1), 32.
[http://dx.doi.org/10.1186/s13321-016-0142-6] [PMID: 27293485]
[24]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[25]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[26]
Nickel, J.; Gohlke, B.O.; Erehman, J.; Banerjee, P.; Rong, W.W.; Goede, A.; Dunkel, M.; Preissner, R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res., 2014, 42(W1), W26-31.
[http://dx.doi.org/10.1093/nar/gku477] [PMID: 24878925]
[27]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W3564.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[28]
Piñero, J.; Bravo, À.; Queralt, R.N.; Gutiérrez, S.A.; Deu, P.J.; Centeno, E.; García, G.J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[29]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T. I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan, G.Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protocols Bioinform., 2016, 54, 1.30.1-33.
[http://dx.doi.org/10.1002/cpbi.5]
[30]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[31]
Bateman, A.; Martin, M.J.; O’Donovan, C.; Magrane, M.; Apweiler, R.; Alpi, E.; Antunes, R.; Arganiska, J.; Bely, B.; Bingley, M.; Bonilla, C.; Britto, R.; Bursteinas, B.; Chavali, G.; Cibrian-Uhalte, E.; Da Silva, A.; De Giorgi, M.; Dogan, T.; Fazzini, F.; Gane, P.; Cas-Tro, L.G.; Garmiri, P.; Hatton-Ellis, E.; Hieta, R.; Huntley, R.; Legge, D.; Liu, W.; Luo, J.; Macdougall, A.; Mutowo, P.; Nightin-Gale, A.; Orchard, S.; Pichler, K.; Poggioli, D.; Pundir, S.; Pureza, L.; Qi, G.; Rosanoff, S.; Saidi, R.; Sawford, T.; Shypitsyna, A.; Turner, E.; Volynkin, V.; Wardell, T.; Watkins, X.; Zellner, H.; Cowley, A.; Figueira, L.; Li, W.; Mcwilliam, H.; Lopez, R.; Xenarios, I.; Bougueleret, L.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M.; Boeckmann, B.; Bolleman, J.; Boutet, E.; Breuza, L.; Casal-Casas, C.; De Castro, E.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Duvaud, S.; Estreicher, A.; Famiglietti, L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Jungo, F.; Keller, G.; Lara, V.; Lemercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.; Nouspikel, N.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pozzato, M.; Pruess, M.; Rivoire, C.; Roechert, B.; Schneider, M.; Sigrist, C.; Sonesson, K.; Staehli, S.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Veuthey, A.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; Mcgarvey, P.; Natale, D.A.; Suzek, B.E.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L.; Yerramalla, M.S.; Zhang, J. UniProt: A hub for protein information. Nucleic Acids Res., 2015, 43(D1), D204-D212.
[http://dx.doi.org/10.1093/nar/gku989] [PMID: 25348405]
[32]
Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol., 2003, 4(5), 3.
[http://dx.doi.org/10.1186/gb-2003-4-5-p3] [PMID: 12734009]
[33]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[34]
Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol., 2011, 696, 291-303.
[http://dx.doi.org/10.1007/978-1-60761-987-1_18] [PMID: 21063955]
[35]
Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol., 2017, 1607, 627-641.
[http://dx.doi.org/10.1007/978-1-4939-7000-1_26] [PMID: 28573592]
[36]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[37]
Williams, J.C.; Kalyaanamoorthy, S. PoseFilter: A PyMOL plugin for filtering and analyzing small molecule docking in symmetric binding sites. Bioinformatics, 2021, 37(19), 3367-3368.
[http://dx.doi.org/10.1093/bioinformatics/btab188] [PMID: 33742661]
[38]
Barauna, S.C.; Delwing-Dal Magro, D.; Brueckheimer, M.B.; Maia, T.P.; Sala, G.A.B.N.; Döhler, A.W.; Harger, M.C.; de Melo, D.F.M.; de Gasper, A.L.; Alberton, M.D.; Siebert, D.A.; Micke, G.A.; de Albuquerque, C.A.C.; Delwing-De Lima, D. Antioxidant and antidepressant-like effects of Eugenia catharinensis D. Legrand in an animal model of depression induced by corticosterone. Metab. Brain Dis., 2018, 33(6), 1985-1994.
[http://dx.doi.org/10.1007/s11011-018-0306-3] [PMID: 30136092]
[39]
Jalali, A.; Firouzabadi, N.; Zarshenas, M.M. Pharmacogenetic-based management of depression: Role of traditional Persian medicine. Phytother. Res., 2021, 35(9), 5031-5052.
[http://dx.doi.org/10.1002/ptr.7134] [PMID: 34041799]
[40]
Samad, N.; Jabeen, S.; Imran, I.; Zulfiqar, I.; Bilal, K. Protective effect of gallic acid against arsenic-induced anxiety, depression- like behaviors and memory impairment in male rats. Metab. Brain Dis., 2019, 34(4), 1091-1102.
[http://dx.doi.org/10.1007/s11011-019-00432-1] [PMID: 31119507]
[41]
Lee, K.S.; Lim, Y.H.; Kim, K.N.; Choi, Y.H.; Hong, Y.C.; Lee, N. Urinary phthalate metabolites concentrations and symptoms of depression in an elderly population. Sci. Total Environ., 2018, 625, 1191-1197.
[http://dx.doi.org/10.1016/j.scitotenv.2017.12.219] [PMID: 29996415]
[42]
Zhang, T.; Yang, C.; Chu, J.; Ning, L.N.; Zeng, P.; Wang, X.M.; Shi, Y.; Qin, B.J.; Qu, N.; Zhang, Q.; Tian, Q. Emodin prevented depression in chronic unpredicted mild stress-exposed rats by targeting miR-139-5p/5-Lipoxygenase. Front. Cell Dev. Biol., 2021, 9, 696619.
[http://dx.doi.org/10.3389/fcell.2021.696619] [PMID: 34381778]
[43]
Li, X.; Chu, S.; Liu, Y.; Chen, N. Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/3790728] [PMID: 31223328]
[44]
Wang, Y.S.; Shen, C.Y.; Jiang, J.G. Antidepressant active ingredients from herbs and nutraceuticals used in TCM: Pharmacological mechanisms and prospects for drug discovery. Pharmacol. Res., 2019, 150, 104520.
[http://dx.doi.org/10.1016/j.phrs.2019.104520] [PMID: 31706012]
[45]
Lee, J.K. Anti-depressant like effect of methyl gallate isolated from acer barbinerve in mice. Korean J. Physiol. Pharmacol., 2013, 17(5), 441-446.
[http://dx.doi.org/10.4196/kjpp.2013.17.5.441] [PMID: 24227946]
[46]
Paudel, P.; Seong, S.H.; Shrestha, S.; Jung, H.A.; Choi, J.S. In vitro and in silico human monoamine oxidase inhibitory potential of anthraquinones, naphthopyrones, and naphthalenic lactones from cassia obtusifolia linn seeds. ACS Omega, 2019, 4(14), 16139-16152.
[http://dx.doi.org/10.1021/acsomega.9b02328] [PMID: 31592482]
[47]
Dalmagro, A.P.; Camargo, A.; Zeni, A.L.B. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metab. Brain Dis., 2017, 32(6), 1963-1973.
[http://dx.doi.org/10.1007/s11011-017-0089-y] [PMID: 28822021]
[48]
Martínez-Damas, M.G.; Genis-Mendoza, A.D.; Cruz, V.P.; Canela-Tellez, G.D.; Jiménez-Estrada, I.; Sanchez, J.H.N.; Ramos-Chávez, L.A.; García, S.; Ramírez-Ramírez, M.; Coral-Vázquez, R.M. Epicatechin treatment generates resilience to chronic mild stress-induced depression in a murine model through a modulatory effect on KAT. Physiol. Behav., 2021, 238, 113466.
[http://dx.doi.org/10.1016/j.physbeh.2021.113466] [PMID: 34033845]
[49]
Moore, A.; Beidler, J.; Hong, M. Resveratrol and depression in animal models: A systematic review of the biological mechanisms. Molecules, 2018, 23(9), 2197.
[http://dx.doi.org/10.3390/molecules23092197] [PMID: 30200269]
[50]
Basu Mallik, S.; Mudgal, J.; Nampoothiri, M.; Hall, S.; Dukie, S.A.; Grant, G.; Rao, C.M.; Arora, D. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neurosci. Lett., 2016, 632, 218-223.
[http://dx.doi.org/10.1016/j.neulet.2016.08.044] [PMID: 27597761]
[51]
Fang, K.; Li, H.R.; Chen, X.X.; Gao, X.R.; Huang, L.L.; Du, A.Q.; Jiang, C.; Li, H.; Ge, J.F. Quercetin alleviates LPS-Induced Depression-Like behavior in rats via regulating BDNF-Related imbalance of copine 6 and TREM1/2 in the hippocampus and PFC. Front. Pharmacol., 2020, 10, 1544.
[http://dx.doi.org/10.3389/fphar.2019.01544] [PMID: 32009956]
[52]
Weng, L.; Guo, X.; Li, Y.; Yang, X.; Han, Y. Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur. J. Pharmacol., 2016, 774, 50-54.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.015] [PMID: 26826594]
[53]
Achour, M.; Ferdousi, F.; Sasaki, K.; Isoda, H. Luteolin modulates neural stem cells fate determination: in vitro study on human neural stem cells, and in vivo study on LPS-induced depression mice model. Front. Cell Dev. Biol., 2021, 9, 753279.
[http://dx.doi.org/10.3389/fcell.2021.753279] [PMID: 34790666]
[54]
Xu, L.Q.; Xie, Y.L.; Gui, S.H.; Zhang, X.; Mo, Z.Z.; Sun, C.Y.; Li, C.L.; Luo, D.D.; Zhang, Z.B.; Su, Z.R.; Xie, J.H. Polydatin attenuates D -galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice. Food Funct., 2016, 7(11), 4545-4555.
[http://dx.doi.org/10.1039/C6FO01057A] [PMID: 27714005]
[55]
Wang, H.; Zhao, Y.; Wang, Y.J.; Song, L.; Wang, J.L.; Huang, C.; Zhang, W.; Jiang, B. Antidepressant-like effects of tetrahydroxystilbene glucoside in mice: Involvement of BDNF signaling cascade in the hippocampus. CNS Neurosci. Ther., 2017, 23(7), 627-6236.
[http://dx.doi.org/10.1111/cns.12708] [PMID: 28547794]
[56]
Zhao, Y.; Kao, C.P.; Chang, Y.S.; Ho, Y.L. Quality assessment on polygoni multiflori caulis using HPLC/UV/MS combined with principle component analysis. Chem. Cent. J., 2013, 7(1), 106.
[http://dx.doi.org/10.1186/1752-153X-7-106] [PMID: 23800018]
[57]
Yang, Y.; Huang, H.; Cui, Z.; Chu, J.; Du, G. UPLC-MS/MS and network pharmacology-based analysis of bioactive anti-depression compounds in betel nut. Drug Des. Devel. Ther., 2021, 15, 4827-36.
[http://dx.doi.org/10.2147/DDDT.S335312] [PMID: 34880597]
[58]
Gupta, S.; Sharma, B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington’s disease. Pharmacol. Biochem. Behav., 2014, 122, 122-135.
[http://dx.doi.org/10.1016/j.pbb.2014.03.022] [PMID: 24704436]
[59]
Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J., 2020, 28(4), 445-451.
[http://dx.doi.org/10.1016/j.jsps.2020.02.005] [PMID: 32273803]
[60]
Mehta, R.; Bhandari, R.; Kuhad, A. Effects of catechin on a rodent model of autism spectrum disorder: Implications for the role of nitric oxide in neuroinflammatory pathway. Psychopharmacology (Berl.), 2021, 238(11), 3249-3271.
[http://dx.doi.org/10.1007/s00213-021-05941-5] [PMID: 34448020]
[61]
Ayaz, M.; Wadood, A.; Sadiq, A.; Ullah, F.; Anichkina, O.; Ghufran, M. In-silico evaluations of the isolated phytosterols from polygonum hydropiper L against BACE1 and MAO drug targets. J. Biomol. Struct. Dyn., 2021, 2021, 1940286.
[http://dx.doi.org/10.1080/07391102.2021.1940286] [PMID: 34157942]
[62]
Oladapo, O.M.; Ben-Azu, B.; Ajayi, A.M.; Emokpae, O.; Eneni, A.E.O.; Omogbiya, I.A.; Iwalewa, E.O. Naringin confers protection against psychosocial defeat stress-induced neurobehavioral deficits in mice: Involvement of glutamic acid decarboxylase isoform-67, oxido-nitrergic stress, and neuroinflammatory mechanisms. J. Mol. Neurosci., 2021, 71(3), 431-445.
[http://dx.doi.org/10.1007/s12031-020-01664-y] [PMID: 32767187]
[63]
Singh, T.; Kaur, T.; Goel, R.K. Ferulic acid supplementation for management of depression in epilepsy. Neurochem. Res., 2017, 42(10), 2940-2948.
[http://dx.doi.org/10.1007/s11064-017-2325-6] [PMID: 28608235]
[64]
Fernandes, M.Y.D.; Dobrachinski, F.; Silva, H.B.; Lopes, J.P.; Gonçalves, F.Q.; Soares, F.A.A.; Porciúncula, L.O.; Andrade, G.M.; Cunha, R.A.; Tomé, A.R. Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices. Sci. Rep., 2021, 11(1), 10488.
[http://dx.doi.org/10.1038/s41598-021-89964-0] [PMID: 34006978]
[65]
Chen, X.D.; Tang, J.J.; Feng, S.; Huang, H.; Lu, F.N.; Lu, X.M.; Wang, Y.T. Chlorogenic acid improves PTSD-like symptoms and associated mechanisms. Curr. Neuropharmacol., 2021, 19(12), 2180-2187.
[http://dx.doi.org/10.2174/1570159X19666210111155110] [PMID: 33430733]
[66]
Zhang, C.; Zhu, L.; Lu, S.; Li, M.; Bai, M.; Li, Y.; Xu, E. The antidepressant-like effect of formononetin on chronic corticosterone-treated mice. Brain Res., 2022, 1783, 147844.
[http://dx.doi.org/10.1016/j.brainres.2022.147844] [PMID: 35218705]
[67]
Alves, J.S.F.; Silva, A.M.S.; da Silva, R.M.; Tiago, P.R.F.; de Carvalho, T.G.; de Araújo Júnior, R.F.; de Azevedo, E.P.; Lopes, N.P.; Ferreira, L.D.S.; Gavioli, E.C.; da Silva-Júnior, A.A.; Zucolotto, S.M. In vivo antidepressant effect of Passiflora edulis f. flavicarpa into cationic nanoparticles: Improving bioactivity and safety. Pharmaceutics, 2020, 12(4), 383.
[http://dx.doi.org/10.3390/pharmaceutics12040383] [PMID: 32326277]
[68]
Sun, Y.; Zhang, H.; Wu, Z.; Yu, X.; Yin, Y.; Qian, S.; Wang, Z.; Huang, J.; Wang, W.; Liu, T.; Xue, W.; Chen, G. Quercitrin rapidly alleviated depression-like behaviors in lipopolysaccharide-treated mice: The involvement of PI3K/AKT/NF-κB signaling suppression and CREB/BDNF signaling restoration in the hippocampus. ACS Chem. Neurosci., 2021, 12(18), 3387-3396.
[http://dx.doi.org/10.1021/acschemneuro.1c00371] [PMID: 34469122]
[69]
Kim, J.H.; Son, Y.K.; Kim, G.H.; Hwang, K.H. Xanthoangelol and 4-Hydroxyderricin are the major active principles of the inhibitory activities against monoamine oxidases on Angelica keiskei K. Biomol. Ther. (Seoul), 2013, 21(3), 234-240.
[http://dx.doi.org/10.4062/biomolther.2012.100] [PMID: 24265870]
[70]
Nieoczym, D.; Socała, K.; Raszewski, G.; Wlaź, P. Effect of quercetin and rutin in some acute seizure models in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 54, 50-58.
[http://dx.doi.org/10.1016/j.pnpbp.2014.05.007] [PMID: 24857758]
[71]
Hasumuma, R.; Kawaguchi, K.; Kikuchi, S.; Sugiyama, T.; Kumazawa, Y. Effects of isoflavones and soybeans fermented with bacillus subtilis on lipopolysaccharide-induced production of tumor necrosis factor-alpha and fibrinolysis in vivo. Immunopharmacol. Immunotoxicol., 2007, 29(2), 323-333.
[http://dx.doi.org/10.1080/08923970701513526] [PMID: 17849275]
[72]
Fan, H.; Li, Y.; Sun, M.; Xiao, W.; Song, L.; Wang, Q.; Zhang, B.; Yu, J.; Jin, X.; Ma, C.; Chai, Z. Hyperoside reduces rotenone-induced neuronal injury by suppressing autophagy. Neurochem. Res., 2021, 46(12), 3149-3158.
[http://dx.doi.org/10.1007/s11064-021-03404-z] [PMID: 34415495]
[73]
Chen, L.; Wang, X.; Zhang, Y.; Zhong, H.; Wang, C.; Gao, P.; Li, B. Daidzein alleviates Hypothalamic-Pituitary-Adrenal axis hyperactivity, ameliorates depression-like behavior, and partly rectifies circulating cytokine imbalance in two rodent models of depression. Front. Behav. Neurosci., 2021, 15, 671864.
[http://dx.doi.org/10.3389/fnbeh.2021.671864] [PMID: 34733143]
[74]
Tong, Y.; Fu, H.; Xia, C.; Song, W.; Li, Y.; Zhao, J.; Zhang, X.; Gao, X.; Yong, J.; Liu, Q.; Yang, C.; Wang, H. Astragalin exerted antidepressant-like action through SIRT1 signaling modulated NLRP3 inflammasome deactivation. ACS Chem. Neurosci., 2020, 11(10), 1495-1503.
[http://dx.doi.org/10.1021/acschemneuro.0c00156] [PMID: 32364698]
[75]
Shen, Z.; Xu, Y.; Jiang, X.; Wang, Z.; Guo, Y.; Pan, W.; Hou, J. Avicularin relieves depressive-like behaviors induced by chronic unpredictable mild stress in mice. Med. Sci. Monit., 2019, 25, 2777-2784.
[http://dx.doi.org/10.12659/MSM.912401] [PMID: 30986204]
[76]
Rauwald, H.; Savtschenko, A.; Merten, A.; Rusch, C.; Appel, K.; Kuchta, K. GABAA receptor binding assays of standardized Leonurus cardiaca and Leonurus japonicus extracts as well as their isolated constituents. Planta Med., 2015, 81(12/13), 1103-1110.
[http://dx.doi.org/10.1055/s-0035-1546234] [PMID: 26218338]
[77]
Agudelo, L.Z.; Femenía, T.; Orhan, F.; Porsmyr-Palmertz, M.; Goiny, M.; Martinez-Redondo, V.; Correia, J.C.; Izadi, M.; Bhat, M.; Schuppe-Koistinen, I.; Pettersson, A.T.; Ferreira, D.M.S.; Krook, A.; Barres, R.; Zierath, J.R.; Erhardt, S.; Lindskog, M.; Ruas, J.L. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell, 2014, 159(1), 33-45.
[http://dx.doi.org/10.1016/j.cell.2014.07.051] [PMID: 25259918]
[78]
Prajapati, R.; Seong, S.H.; Park, S.E.; Paudel, P.; Jung, H.A.; Choi, J.S. Isoliquiritigenin, a potent human monoamine oxidase inhibitor, modulates dopamine D1, D3, and vasopressin V1A receptors. Sci. Rep., 2021, 11(1), 23528.
[http://dx.doi.org/10.1038/s41598-021-02843-6] [PMID: 34876600]
[79]
Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol., 2018, 9(1), 345-381.
[http://dx.doi.org/10.1146/annurev-food-111317-095850] [PMID: 29350557]
[80]
Olugbemide, A.S.; Ben-Azu, B.; Bakre, A.G.; Ajayi, A.M.; Femi-Akinlosotu, O.; Umukoro, S. Naringenin improves depressive- and anxiety-like behaviors in mice exposed to repeated hypoxic stress through modulation of oxido-inflammatory mediators and NF-kB/BDNF expressions. Brain Res. Bull., 2021, 169, 214-227.
[http://dx.doi.org/10.1016/j.brainresbull.2020.12.003] [PMID: 33370589]
[81]
Hwang, E.; Song, S. Possible adverse effects of high-dose nicotinamide: Mechanisms and safety assessment. Biomolecules, 2020, 10(5), 687.
[http://dx.doi.org/10.3390/biom10050687] [PMID: 32365524]
[82]
Lee, B.; Sur, B.; Kwon, S.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.H. Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections. Biomol. Ther. (Seoul), 2013, 21(4), 313-322.
[http://dx.doi.org/10.4062/biomolther.2013.004] [PMID: 24244817]
[83]
Capra, J.C.; Cunha, M.P.; Machado, D.G.; Zomkowski, A.D.E.; Mendes, B.G.; Santos, A.R.S.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like effect of scopoletin, a coumarin isolated from polygala sabulosa (Polygalaceae) in mice: Evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol., 2010, 643(2-3), 232-238.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.043] [PMID: 20599906]
[84]
Liu, Y.; Fan, P.; Zhang, S.; Wang, Y.; Liu, D. Prioritization and comprehensive analysis of genes related to major depressive disorder. Mol. Genet. Genomic Med., 2019, 7(6), e659.
[http://dx.doi.org/10.1002/mgg3.659] [PMID: 30968596]
[85]
Kuan, P-F.; Waszczuk, M.A.; Kotov, R.; Marsit, C.J.; Guffanti, G.; Gonzalez, A.; Yang, X.; Koenen, K.; Bromet, E.; Luft, B.J. An epigenome-wide DNA methylation study of PTSD and depression in World Trade Center responders. Transl. Psychiatry, 2017, 7(6), e1158.
[http://dx.doi.org/10.1038/tp.2017.130] [PMID: 28654093]
[86]
Qinlin, F.; Qi, X.; Qiong, C.; Lexing, X.; Peixia, S.; Linlin, H.; Yupu, D.; Lijun, Y.; Qingwu, Y. Differential expression analysis of microRNAs and mRNAs in the mouse hippocampus of post-stroke depression (PSD) based on transcriptome sequencing. Bioengineered, 2022, 13(2), 3582-3596.
[http://dx.doi.org/10.1080/21655979.2022.2027061] [PMID: 35100085]
[87]
Bortolato, B.; Hyphantis, T.N.; Valpione, S.; Perini, G.; Maes, M.; Morris, G.; Kubera, M.; Köhler, C.A.; Fernandes, B.S.; Stubbs, B.; Pavlidis, N.; Carvalho, A.F. Depression in cancer: The many biobehavioral pathways driving tumor progression. Cancer Treat. Rev., 2017, 52, 58-70.
[http://dx.doi.org/10.1016/j.ctrv.2016.11.004] [PMID: 27894012]
[88]
Fervaha, G.; Izard, J.P.; Tripp, D.A.; Rajan, S.; Leong, D.P.; Siemens, D.R. Depression and prostate cancer: A focused review for the clinician. Urol. Oncol., 2019, 37(4), 282-288.
[http://dx.doi.org/10.1016/j.urolonc.2018.12.020] [PMID: 30630735]
[89]
Wu, R.; Wang, H.; Lv, X.; Shen, X.; Ye, G. Rapid action of mechanism investigation of Yixin Ningshen tablet in treating depression by combinatorial use of systems biology and bioinformatics tools. J. Ethnopharmacol., 2020, 257, 112827.
[http://dx.doi.org/10.1016/j.jep.2020.112827] [PMID: 32276008]
[90]
Qu, S.Y.; Li, X.Y.; Heng, X.; Qi, Y.Y.; Ge, P.Y.; Ni, S.; Yao, Z.Y.; Guo, R.; Yang, N.Y.; Cao, Y.; Zhang, Q.C.; Zhu, H.X. Analysis of antidepressant activity of Huang-Lian Jie-Du decoction through network pharmacology and metabolomics. Front. Pharmacol., 2021, 12, 619288.
[http://dx.doi.org/10.3389/fphar.2021.619288] [PMID: 33746756]
[91]
Ong, K.L.; Morris, M.J.; McClelland, R.L.; Maniam, J.; Allison, M.A.; Rye, K-A. Lipids, lipoprotein distribution and depressive symptoms: The Multi-Ethnic Study of Atherosclerosis. Transl. Psychiatry, 2016, 6(11), e962.
[http://dx.doi.org/10.1038/tp.2016.232] [PMID: 27898070]
[92]
Zhou, F.; Du, G.; Xie, J.; Gu, J.; Jia, Q.; Fan, Y.; Yu, H.; Zha, Z.; Wang, K.; Ouyang, L.; Shao, L.; Feng, C.; Fan, G. RyRs mediate lead-induced neurodegenerative disorders through calcium signaling pathways. Sci. Total Environ., 2020, 701, 134901.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134901] [PMID: 31710906]
[93]
Zhao, Y.; Wang, L.; Wu, Y.; Lu, Z.; Zhang, S. Genome-wide study of key genes and scoring system as potential noninvasive biomarkers for detection of suicide behavior in major depression disorder. Bioengineered, 2020, 11(1), 1189-1196.
[http://dx.doi.org/10.1080/21655979.2020.1831349] [PMID: 33103556]
[94]
Wang, J.; Yang, Z.; Chen, C.; Xu, Y.; Wang, H.; Liu, B.; Zhang, W.; Jiang, Y. Comprehensive circRNA expression profile and construction of circRNAs-Related ceRNA network in a mouse model of autism. Front. Genet., 2021, 11, 623584.
[http://dx.doi.org/10.3389/fgene.2020.623584] [PMID: 33679870]
[95]
Semenkovich, K.; Brown, M.E.; Svrakic, D.M.; Lustman, P.J. Depression in type 2 diabetes mellitus: prevalence, impact, and treatment. Drugs, 2015, 75(6), 577-587.
[http://dx.doi.org/10.1007/s40265-015-0347-4] [PMID: 25851098]
[96]
Peng, Z.; Zhang, C.; Yan, L.; Zhang, Y.; Yang, Z.; Wang, J.; Song, C. EPA is more effective than DHA to improve depression-like behavior, glia cell dysfunction and hippcampal apoptosis signaling in a chronic stress-induced rat model of depression. Int. J. Mol. Sci., 2020, 21(5), 1769.
[http://dx.doi.org/10.3390/ijms21051769] [PMID: 32150824]
[97]
Qin, H.; Zhang, H.; Zhang, X.; Zhang, S.; Zhu, S.; Wang, H. Resveratrol attenuates radiation enteritis through the SIRT1/FOXO3a and PI3K/AKT signaling pathways. Biochem. Biophys. Res. Commun., 2021, 554, 199-205.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.122] [PMID: 33812084]
[98]
Jin, X.; Zimmers, T.A.; Zhang, Z.; Koniaris, L.G. Resveratrol improves recovery and survival of diet-induced obese mice undergoing extended major (80%) hepatectomy. Dig. Dis. Sci., 2019, 64(1), 93-101.
[http://dx.doi.org/10.1007/s10620-018-5312-0] [PMID: 30284135]
[99]
Vargas, J.E.; Puga, R.; Lenz, G.; Trindade, C.; Filippi-Chiela, E. Cellular mechanisms triggered by the cotreatment of resveratrol and doxorubicin in breast cancer: A translational in vitro-in silico model. Oxid. Med. Cell. Longev., 2020, 2020, 1-23.
[http://dx.doi.org/10.1155/2020/5432651] [PMID: 33204396]
[100]
He, T.; Xiong, J.; Nie, L.; Yu, Y.; Guan, X.; Xu, X.; Xiao, T.; Yang, K.; Liu, L.; Zhang, D.; Huang, Y.; Zhang, J.; Wang, J.; Sharma, K.; Zhao, J. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J. Mol. Med. (Berl.), 2016, 94(12), 1359-1371.
[http://dx.doi.org/10.1007/s00109-016-1451-y] [PMID: 27488452]
[101]
Nallasamy, P.; Kang, Z.Y.; Sun, X.; Anandh Babu, P.V.; Liu, D.; Jia, Z. Natural compound resveratrol attenuates TNF-alpha-induced vascular dysfunction in mice and human endothelial cells: The involvement of the NF-κB signaling pathway. Int. J. Mol. Sci., 2021, 22(22), 12486.
[http://dx.doi.org/10.3390/ijms222212486] [PMID: 34830366]
[102]
Li, Y.; Guo, Y.; Feng, Z.; Bergan, R.; Li, B.; Qin, Y.; Zhao, L.; Zhang, Z.; Shi, M. Involvement of the PI3K/Akt/Nrf2 signaling pathway in resveratrol-mediated reversal of drug resistance in HL-60/ADR cells. Nutr. Cancer, 2019, 71(6), 1007-1018.
[http://dx.doi.org/10.1080/01635581.2019.1578387] [PMID: 31032633]
[103]
Hu, Y.; Pan, H.; Peng, J.; He, J.; Tang, M.; Yan, S.; Rong, J.; Li, J.; Zheng, Z.; Wang, H.; Liu, Y.; Zhong, X. Resveratrol inhibits necroptosis by mediating the TNF-α/RIP1/RIP3/MLKL pathway in myocardial hypoxia/reoxygenation injury. Acta Biochim. Biophys. Sin. (Shanghai), 2021, 53(4), 430-437.
[http://dx.doi.org/10.1093/abbs/gmab012] [PMID: 33686403]
[104]
Berner, C.; Aumüller, E.; Gnauck, A.; Nestelberger, M.; Just, A.; Haslberger, A.G. Epigenetic control of estrogen receptor expression and tumor suppressor genes is modulated by bioactive food compounds. Ann. Nutr. Metab., 2010, 57(3-4), 183-189.
[http://dx.doi.org/10.1159/000321514] [PMID: 21088384]
[105]
Böhl, M.; Czupalla, C.; Tokalov, S.V.; Hoflack, B.; Gutzeit, H.O. Identification of actin as quercetin-binding protein: An approach to identify target molecules for specific ligands. Anal. Biochem., 2005, 346(2), 295-329.
[http://dx.doi.org/10.1016/j.ab.2005.08.037] [PMID: 16213457]
[106]
Wang, G.; Li, Y.; Lei, C.; Lei, X.; Zhu, X.; Yang, L.; Zhang, R. Quercetin exerts antidepressant and cardioprotective effects in estrogen receptor α-deficient female mice via BDNF-AKT/ERK1/2 signaling. J. Steroid Biochem. Mol. Biol., 2021, 206, 105795.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105795] [PMID: 33246157]
[107]
Jung, J.H.; Lee, J.O.; Kim, J.H.; Lee, S.K.; You, G.Y.; Park, S.H.; Park, J.M.; Kim, E.K.; Suh, P.G.; An, J.K.; Kim, H.S. Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. J. Cell. Physiol., 2010, 223(2), 408-414.
[http://dx.doi.org/10.1002/jcp.22049] [PMID: 20082303]
[108]
Qi, P.; Li, J.; Gao, S.; Yuan, Y.; Sun, Y.; Liu, N.; Li, Y.; Wang, G.; Chen, L.; Shi, J. Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimer’s disease. Front. Aging Neurosci., 2020, 12, 589588.
[http://dx.doi.org/10.3389/fnagi.2020.589588] [PMID: 33192484]
[109]
Chen, Y.L.; Li, W.X.; Zhang, H.; Wang, X.Y.; Zhang, S.Q.; Zhang, M.L.; Han, J.; Li, K.; Feng, K.R.; Chen, X.F.; Tang, J.F. Study on the mechanism of ErtongKe granules in the treatment of cough using network pharmacology and molecular docking technology. Ann. Palliat. Med., 2021, 10(11), 11415-11429.
[http://dx.doi.org/10.21037/apm-21-2807] [PMID: 34872267]
[110]
Haas, M.J.; Onstead-Haas, L.M.; Szafran-Swietlik, A.; Kojanian, H.; Davis, T.; Armstrong, P.; Wong, N.C.W.; Mooradian, A.D. Induction of hepatic apolipoprotein A-I gene expression by the isoflavones quercetin and isoquercetrin. Life Sci., 2014, 110(1), 8-14.
[http://dx.doi.org/10.1016/j.lfs.2014.06.014] [PMID: 24963805]
[111]
Zeng, J.; Xie, H.; Zhang, Z.L.; Li, Z.X.; Shi, L.; Wu, K.Y.; Zhou, Y.; Tian, Z.; Zhang, Y.; Zhou, W.; Shen, W.G. Apigenin regulates the migration, invasion, and autophagy of hepatocellular carcinoma cells by downregulating YAP. Neoplasma, 2022, 69(2), 292-302.
[http://dx.doi.org/10.4149/neo_2021_210615N798] [PMID: 35014535]
[112]
Zeng, P.; Liu, B.; Wang, Q.; Fan, Q.; Diao, J.X.; Tang, J.; Fu, X.Q.; Sun, X.G. Apigenin attenuates atherogenesis through inducing macrophage apoptosis via inhibition of AKT ser473 phosphorylation and downregulation of plasminogen activator inhibitor-2. Oxid. Med. Cell. Longev., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/379538] [PMID: 25960827]
[113]
Chen, Z.; Tian, D.; Liao, X.; Zhang, Y.; Xiao, J.; Chen, W.; Liu, Q.; Chen, Y.; Li, D.; Zhu, L.; Cai, S. Apigenin combined with gefitinib blocks autophagy flux and induces apoptotic cell death through inhibition of HIF-1α c-Myc, p-EGFR, and glucose metabolism in EGFR L858R+T790M-Mutated h1975 cells. Front. Pharmacol., 2019, 10, 260.
[http://dx.doi.org/10.3389/fphar.2019.00260] [PMID: 30967777]
[114]
Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol., 2017, 313(2), F414-22.
[http://dx.doi.org/10.1152/ajprenal.00393.2016] [PMID: 28566504]
[115]
Tazzeo, T.; Bates, G.; Roman, H.N.; Lauzon, A.M.; Khasnis, M.D.; Eto, M.; Janssen, L.J. Caffeine relaxes smooth muscle through actin depolymerization. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 303(4), L334-42.
[http://dx.doi.org/10.1152/ajplung.00103.2012] [PMID: 22683573]
[116]
Funakoshi-Tago, M.; Tago, K.; Li, C.; Hokimoto, S.; Tamura, H. Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci. Rep., 2020, 10(1), 19588.
[http://dx.doi.org/10.1038/s41598-020-76445-z] [PMID: 33177647]
[117]
Okano, J.; Nagahara, T.; Matsumoto, K.; Murawaki, Y. Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin. Pharmacol. Toxicol., 2008, 102(6), 543-551.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00231.x] [PMID: 18346049]
[118]
Zhao, W.; Ma, L.; Cai, C.; Gong, X. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-Induced THP-1 macrophages. Int. J. Biol. Sci., 2019, 15(8), 1571-1581.
[http://dx.doi.org/10.7150/ijbs.34211] [PMID: 31360100]
[119]
Iris, M.; Tsou, P.S.; Sawalha, A.H. Caffeine inhibits STAT1 signaling and downregulates inflammatory pathways involved in autoimmunity. Clin. Immunol., 2018, 192, 68-77.
[http://dx.doi.org/10.1016/j.clim.2018.04.008] [PMID: 29678503]
[120]
Devaraj, E.; Roy, A.; Royapuram Veeraragavan, G.; Magesh, A.; Varikalam Sleeba, A.; Arivarasu, L.; Marimuthu Parasuraman, B. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(6), 1067-1075.
[http://dx.doi.org/10.1007/s00210-020-01810-8] [PMID: 31930431]
[121]
Moon, D.O.; Lee, K.J.; Choi, Y.H.; Kim, G.Y. β-Sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells. Int. Immunopharmacol., 2007, 7(8), 1044-1053.
[http://dx.doi.org/10.1016/j.intimp.2007.03.010] [PMID: 17570321]
[122]
Sharmila, R.; Sindhu, G. Evaluate the antigenotoxicity and anticancer role of β-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, c-fos, c-jun, and endothelial growth factor receptor. Pharmacogn. Mag., 2017, 13(49), 95-101.
[http://dx.doi.org/10.4103/0973-1296.197634] [PMID: 28216890]
[123]
Chen, Q.; Wang, Y.; Ma, F.; Han, M.; Wang, Z.; Xue, P.; Lu, J. Systematic profiling of the effective ingredients and mechanism of Scabiosa comosa and S. tschilliensis against hepatic fibrosis combined with network pharmacology. Sci. Rep., 2021, 11(1), 2600.
[http://dx.doi.org/10.1038/s41598-021-81399-x] [PMID: 33510287]
[124]
Yang, Q.; Yu, D.; Zhang, Y. B-sitosterol attenuates the intracranial aneurysm growth by suppressing TNF-α-mediated mechanism. Pharmacology, 2019, 104(5-6), 303-311.
[http://dx.doi.org/10.1159/000502221] [PMID: 31473743]
[125]
Yang, F.; Luo, L.; Zhu, Z.D.; Zhou, X.; Wang, Y.; Xue, J.; Zhang, J.; Cai, X.; Chen, Z.L.; Ma, Q.; Chen, Y.F.; Wang, Y.J.; Luo, Y.Y.; Liu, P.; Zhao, L. Chlorogenic acid inhibits liver fibrosis by blocking the miR-21-regulated TGF-β1/Smad7 signaling pathway in vitro and in vivo. Front. Pharmacol., 2017, 8, 929.
[http://dx.doi.org/10.3389/fphar.2017.00929] [PMID: 29311932]
[126]
Chen, J.; Luo, Y.; Li, Y.; Chen, D.; Yu, B.; He, J. Chlorogenic acid attenuates oxidative stress-induced intestinal epithelium injury by co-regulating the PI3K/Akt and IκBα/NF-κB signaling. Antioxidants, 2021, 10(12), 1915.
[http://dx.doi.org/10.3390/antiox10121915] [PMID: 34943017]
[127]
Lee, Y.J.; Hsu, J.D.; Lin, W.L.; Kao, S.H.; Wang, C.J. Upregulation of caveolin-1 by mulberry leaf extract and its major components, chlorogenic acid derivatives, attenuates alcoholic steatohepatitis via inhibition of oxidative stress. Food Funct., 2017, 8(1), 397-405.
[http://dx.doi.org/10.1039/C6FO01539E] [PMID: 28074952]
[128]
Lee, S.A.; Park, B.R.; Moon, S.M.; Shin, S.H.; Kim, J.S.; Kim, D.K.; Kim, C.S. Cynaroside protects human periodontal ligament cells from lipopolysaccharide-induced damage and inflammation through suppression of NF-κB activation. Arch. Oral Biol., 2020, 120, 104944.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104944] [PMID: 33099251]
[129]
Huang, T.T.; Lai, H.C.; Chen, Y.B.; Chen, L.G.; Wu, Y.H.; Ko, Y.F.; Lu, C.C.; Chang, C.J.; Wu, C.Y.; Martel, J.; Ojcius, D.M.; Chong, K.Y.; Young, J.D. cis resveratrol produces anti-inflammatory effects by inhibiting canonical and non-canonical inflammasomes in macrophages. Innate Immun., 2014, 20(7), 735-750.
[http://dx.doi.org/10.1177/1753425913507096] [PMID: 24149798]
[130]
Leiro, J.; Arranz, J.A.; Fraiz, N.; Sanmartín, M.L.; Quezada, E.; Orallo, F. Effect of cis-resveratrol on genes involved in nuclear factor kappa B signaling. Int. Immunopharmacol., 2005, 5(2), 393-406.
[http://dx.doi.org/10.1016/j.intimp.2004.10.006] [PMID: 15652768]
[131]
Tanjak, P.; Thiantanawat, A.; Watcharasit, P.; Satayavivad, J. Genistein reduces the activation of AKT and EGFR, and the production of IL6 in cholangiocarcinoma cells involving estrogen and estrogen receptors. Int. J. Oncol., 2018, 53(1), 177-188.
[http://dx.doi.org/10.3892/ijo.2018.4375] [PMID: 29693152]
[132]
Basak, S.; Pookot, D.; Noonan, E.J.; Dahiya, R. Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol. Cancer Ther., 2008, 7(10), 3195-3202.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0617] [PMID: 18852123]
[133]
Bocheńska, K.; Moskot, M.; Smolińska-Fijołek, E.; Jakóbkiewicz-Banecka, J.; Szczerkowska-Dobosz, A.; Słomiński, B.; Gabig-Cimińska, M. Impact of isoflavone genistein on psoriasis in in vivo and in vitro investigations. Sci. Rep., 2021, 11(1), 18297.
[http://dx.doi.org/10.1038/s41598-021-97793-4] [PMID: 34521933]
[134]
Liu, X.J.; Bao, H.R.; Zeng, X.L.; Wei, J.M. Effects of resveratrol and genistein on nuclear factor-κB, tumor necrosis factor-α and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease. Mol. Med. Rep., 2016, 13(5), 4266-4272.
[http://dx.doi.org/10.3892/mmr.2016.5057] [PMID: 27035424]
[135]
Yang, D.; Zhong, G.; Li, C.; Lv, Y.; Zhang, M.; Wang, D.; Wang, H.; Li, Q.; Hao, X.; Guo, Z. Studying molecular mechanisms of depression by a rat model based on gene expression profiles and gene functional modules. Chin High Technol. Lett., 2007, 17, 529-534.
[136]
Wang, H.; Yi, Z.; Shi, T. Novel loci and potential mechanisms of major depressive disorder, bipolar disorder, and schizophrenia. Sci. China Life Sci., 2022, 65(1), 167-183.
[http://dx.doi.org/10.1007/s11427-020-1934-x] [PMID: 34159505]
[137]
Sun, Y.; Wang, Z.; Wang, C.; Tang, Z.; Zhao, H. Psycho-cardiology therapeutic effects of Shuangxinfang in rats with depression-behavior post acute myocardial infarction: Focus on protein S100A9 from proteomics. Biomed. Pharmacother., 2021, 144, 112303.
[http://dx.doi.org/10.1016/j.biopha.2021.112303] [PMID: 34673424]
[138]
Fujita, M.; Richards, E.M.; Niciu, M.J.; Ionescu, D.F.; Zoghbi, S.S.; Hong, J.; Telu, S.; Hines, C.S.; Pike, V.W.; Zarate, C.A.; Innis, R.B. cAMP signaling in brain is decreased in unmedicated depressed patients and increased by treatment with a selective serotonin reuptake inhibitor. Mol. Psychiatry, 2017, 22(5), 754-759.
[http://dx.doi.org/10.1038/mp.2016.171] [PMID: 27725657]
[139]
Li, G.; Zhao, M.; Cheng, X.; Zhao, T.; Feng, Z.; Zhao, Y.; Fan, M.; Zhu, L. FG-4592 improves depressive-like behaviors through HIF-1-mediated neurogenesis and synapse plasticity in rats. Neurotherapeutics, 2020, 17(2), 664-675.
[http://dx.doi.org/10.1007/s13311-019-00807-3] [PMID: 31820273]
[140]
Pereira, P.A.; Bicalho, M.A.C.; de Moraes, E.N.; Malloy-Diniz, L.; Bozzi, I.C.R.S.; Nicolato, R.; Valadão, D.R.; Miranda, D.M.; Romano-Silva, M.A. Genetic variant of AKT1 and AKTIP associated with late-onset depression in a Brazilian population. Int. J. Geriatr. Psychiatry, 2014, 29(4), 399-405.
[http://dx.doi.org/10.1002/gps.4018] [PMID: 24022875]
[141]
Zhang, L.; Previn, R.; Lu, L.; Liao, R.F.; Jin, Y.; Wang, R.K. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Res. Bull., 2018, 142, 352-359.
[http://dx.doi.org/10.1016/j.brainresbull.2018.08.021] [PMID: 30179677]
[142]
Tian, L.; Su, C.P.; Wang, Q.; Wu, F.J.; Bai, R.; Zhang, H.M.; Liu, J.Y.; Lu, W.J.; Wang, W.; Lan, F.; Guo, S.Z. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J. Cell. Mol. Med., 2019, 23(7), 4666-4678.
[http://dx.doi.org/10.1111/jcmm.14351] [PMID: 31033175]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy