Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Safe and Rapid Synthesis and Utilization of 2-Azidopyridine and Related Derivatives via Continuous Flow Diazotization

Author(s): Péter Szemesi, Péter Bana, Zoltán Szakács, István Greiner and János Éles*

Volume 26, Issue 24, 2022

Published on: 13 February, 2023

Page: [2223 - 2229] Pages: 7

DOI: 10.2174/1385272827666230126141058

Price: $65

Abstract

Aril azides are popular reagents in the laboratory, but their explosive properties prevent their larger-scale application. The safety risk is even greater for N-heterocyclic azides, which are rarely studied. Flow chemistry can be an effective tool in the synthesis and utilization of dangerous and explosive chemicals. In small-diameter flow reactors, good heat and mass transfer prevent local hot spots and side reactions, and since only small amounts of hazardous chemicals are present at any time, the potential danger is reduced in the event of an accident. In this work, the safe syntheses of 9 different 2-azidopyridine, 2-azidopyrimidine and 2-azidoquinoxaline derivatives were successfully achieved within the continuous-flow system. In most cases, simple work-up resulted in pure products. In-line extractive work-up was also implemented, which allowed us to transform 2-azidopyridine in a subsequent Staudinger reaction in a connected flow reactor, without manual handling of the hazardous azide.

Graphical Abstract

[1]
Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed., 2005, 44(33), 5188-5240.
[http://dx.doi.org/10.1002/anie.200400657] [PMID: 16100733]
[2]
Chakraborty, R.; Franz, V.; Bez, G.; Vasadia, D.; Popuri, C.; Zhao, C.G. Some new aspects of the Boyer reaction. Org. Lett., 2005, 7(19), 4145-4148.
[http://dx.doi.org/10.1021/ol051442o] [PMID: 16146373]
[3]
Song, D.; Rostami, A.; West, F.G. Domino electrocyclization/azide-capture/schmidt rearrangement of dienones: One-step synthesis of dihydropyridones from simple building blocks. J. Am. Chem. Soc., 2007, 129(39), 12019-12022.
[http://dx.doi.org/10.1021/ja071041z] [PMID: 17824702]
[4]
Hajós, G.; Riedl, Z. Ring closures to heterocycles via nitrenes. Curr. Org. Chem., 2009, 13(8), 791-809.
[http://dx.doi.org/10.2174/138527209788167187]
[5]
Reisinger, A.; Bernhardt, P.V.; Wentrup, C. Synthesis of 1,3-Diazepines and ring contraction to cyanopyrroles. Org. Biomol. Chem., 2004, 2, 246-256.
[http://dx.doi.org/10.1039/b311247k] [PMID: 14737649]
[6]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[7]
Bednarek, C.; Wehl, I.; Jung, N.; Schepers, U.; Bräse, S. The staudinger ligation. Chem. Rev., 2020, 120(10), 4301-4354.
[http://dx.doi.org/10.1021/acs.chemrev.9b00665] [PMID: 32356973]
[8]
Köhn, M.; Breinbauer, R. The Staudinger ligation-a gift to chemical biology. Angew. Chem. Int. Ed., 2004, 43(24), 3106-3116.
[http://dx.doi.org/10.1002/anie.200401744] [PMID: 15199557]
[9]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[10]
The Royal Swedish Academy of Sciences. Scientific Background on the Nobel Prize in Chemistry., 2022. Available from: https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
[11]
Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36(8), 1249-1262.
[http://dx.doi.org/10.1039/B613014N] [PMID: 17619685]
[12]
El-Sagheer, A.H.; Brown, T. Click chemistry with DNA. Chem. Soc. Rev., 2010, 39(4), 1388-1405.
[http://dx.doi.org/10.1039/b901971p] [PMID: 20309492]
[13]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[14]
Keicher, T.; Lbbecke, S. Lab-Scale Synthesis of Azido Compounds: Safety Measures and Analysis. In: Organic Azides: Syntheses and Applications; John Wiley & Sons, Ltd: Chichester, UK, 2010; pp. 1-27.
[http://dx.doi.org/10.1002/9780470682517.ch1]
[15]
Mandler, M.D.; Degnan, A.P.; Zhang, S.; Aulakh, D.; Georges, K.; Sandhu, B.; Sarjeant, A.; Zhu, Y.; Traeger, S.C.; Cheng, P.T.; Ellsworth, B.A.; Regueiro-Ren, A. Structural and thermal characterization of halogenated azidopyridines: Under-reported synthons for medicinal chemistry. Org. Lett., 2022, 24(3), 799-803.
[http://dx.doi.org/10.1021/acs.orglett.1c03201] [PMID: 34714083]
[16]
Chattopadhyay, B.; Vera, C.I.R.; Chuprakov, S.; Gevorgyan, V. Fused tetrazoles as azide surrogates in click reaction: Efficient synthesis of N-heterocycle-substituted 1,2,3-triazoles. Org. Lett., 2010, 12(9), 2166-2169.
[http://dx.doi.org/10.1021/ol100745d] [PMID: 20380424]
[17]
Deev, S.L.; Shenkarev, Z.O.; Shestakova, T.S.; Chupakhin, O.N.; Rusinov, V.L.; Arseniev, A.S. Selective (15)N-labeling and analysis of (13)C-(15)N J couplings as an effective tool for studying the structure and azide-tetrazole equilibrium in a series of tetrazolo[1,5-b][1,2,4]triazines and tetrazolo[1,5-a]pyrimidines. J. Org. Chem., 2010, 75(24), 8487-8497.
[http://dx.doi.org/10.1021/jo1017876] [PMID: 21082839]
[18]
Lowe-Ma, C.K.; Nissan, R.A.; Wilson, W.S. Tetrazolo[1,5-a]pyridines and furazano[4,5-b]pyridine 1-oxides. J. Org. Chem., 1990, 55(12), 3755-3761.
[http://dx.doi.org/10.1021/jo00299a014]
[19]
Sasaki, T.; Kanematsu, K.; Murata, M. Heteroaromaticity. XLIX. Tetrazolo-azido isomerization in heteroaromatics. I. Syntheses and reactivities of some tetrazolopolyazines. J. Org. Chem., 1971, 36(3), 446-449.
[http://dx.doi.org/10.1021/jo00802a017]
[20]
Temple, C., Jr; Montgomery, J.A. Studies on the azidoazomethine-tetrazole equilibrium. i. 2-azidopyrimidines. J. Org. Chem., 1965, 30(3), 826-829.
[http://dx.doi.org/10.1021/jo01014a041] [PMID: 14285676]
[21]
Bolje, A.; Urankar, D.; Košmrlj, J. Synthesis and NMR Analysis of 1,4-Disubstituted 1,2,3-triazoles tethered to pyridine, pyrimidine, and pyrazine rings. Eur. J. Org. Chem., 2014, 2014(36), 8167-8181.
[http://dx.doi.org/10.1002/ejoc.201403100]
[22]
Kandalkar, S.R.; Kaduskar, R.D.; Ramaiah, P.A.; Barawkar, D.A.; Bhuniya, D.; Deshpande, A.M. Highly efficient one-pot amination of carboxylate-substituted nitrogen-containing heteroaryl chlorides via Staudinger reaction. Tetrahedron Lett., 2013, 54(5), 414-418.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.027]
[23]
Mowbray, C.E.; Braillard, S.; Glossop, P.A.; Whitlock, G.A.; Jacobs, R.T.; Speake, J.; Pandi, B.; Nare, B.; Maes, L.; Yardley, V.; Freund, Y.; Wall, R.J.; Carvalho, S.; Bello, D.; Van den Kerkhof, M.; Caljon, G.; Gilbert, I.H.; Corpas-Lopez, V.; Lukac, I.; Patterson, S.; Zuccotto, F.; Wyllie, S. DNDI-6148: A novel benzoxaborole preclinical candidate for the treatment of visceral leishmaniasis. J. Med. Chem., 2021, 64(21), 16159-16176.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01437] [PMID: 34711050]
[24]
Novosjolova, I.; Turks, M.; Jeminejs, A.; Goliškina, S.M.; Stepanovs, D.; Bizdēnana, Ē. Application of azide-tetrazole tautomerism and arylsulfanyl group dance in the synthesis of thiosubstituted tetrazoloquinazolines. Synthesis, 2021, 53(8), 1443-1456.
[http://dx.doi.org/10.1055/s-0040-1706568]
[25]
Tat, J.; Heskett, K.; Satomi, S.; Pilz, R.B.; Golomb, B.A.; Boss, G.R. Sodium azide poisoning: A narrative review. Clin. Toxicol. (Phila.), 2021, 59(8), 683-697.
[http://dx.doi.org/10.1080/15563650.2021.1906888] [PMID: 34128439]
[26]
Archibald, T. Strategies for safely handling industrial azide reactions: The three traps. ACS Symp. Ser. Am. Chem. Soc., 2014, 1181, 87-109.
[http://dx.doi.org/10.1021/bk-2014-1181.ch003]
[27]
Cuny, G.; Laha, J. Synthesis of Tetrazolo[1,5- a]pyridines utilizing trimethylsilyl azide and tetrabutylammonium fluoride hydrate. Synthesis, 2008, 2008(24), 4002-4006.
[http://dx.doi.org/10.1055/s-0028-1083233]
[28]
Roy, S.; Khatua, H.; Das, S.K.; Chattopadhyay, B. Iron(II)‐based metalloradical activation: Switch from traditional click chemistry to denitrogenative annulation. Angew. Chem. Int. Ed., 2019, 58(33), 11439-11443.
[http://dx.doi.org/10.1002/anie.201904702] [PMID: 31187559]
[29]
Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The Hitchhiker’s guide to flow chemistry. Chem. Rev., 2017, 117(18), 11796-11893.
[http://dx.doi.org/10.1021/acs.chemrev.7b00183] [PMID: 28570059]
[30]
Fülöp, Z.; Szemesi, P.; Bana, P.; Éles, J.; Greiner, I. Evolution of flow-oriented design strategies in the continuous preparation of pharmaceuticals. React. Chem. Eng., 2020, 5(9), 1527-1555.
[http://dx.doi.org/10.1039/D0RE00273A]
[31]
Bogdan, A.R.; Dombrowski, A.W. Emerging trends in flow chemistry and applications to the pharmaceutical industry. J. Med. Chem., 2019, 62(14), 6422-6468.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01760] [PMID: 30794752]
[32]
Gérardy, R.; Emmanuel, N.; Toupy, T.; Kassin, V.E.; Tshibalonza, N.N.; Schmitz, M.; Monbaliu, J.C.M. Continuous flow organic chemistry: Successes and pitfalls at the interface with current societal challenges. Eur. J. Org. Chem., 2018, 2018(20-21), 2301-2351.
[http://dx.doi.org/10.1002/ejoc.201800149]
[33]
Movsisyan, M.; Delbeke, E.I.P.; Berton, J.K.E.T.; Battilocchio, C.; Ley, S.V.; Stevens, C.V. Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev., 2016, 45(18), 4892-4928.
[http://dx.doi.org/10.1039/C5CS00902B] [PMID: 27453961]
[34]
Gutmann, B.; Cantillo, D.; Kappe, C.O. Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed., 2015, 54(23), 6688-6728.
[http://dx.doi.org/10.1002/anie.201409318] [PMID: 25989203]
[35]
Karlsson, S.; Cook, C.; Emtenäs, H.; Fan, K.; Gillespie, P.; Mohamed, M. Development of a safe continuous manufacturing Route to 2-(4-Isopropyl-1 H -1,2,3-triazol-1-yl)acetic Acid. Org. Process Res. Dev., 2017, 21(10), 1668-1674.
[http://dx.doi.org/10.1021/acs.oprd.7b00259]
[36]
Baxendale, I.R.; Deeley, J.; Griffiths-Jones, C.M.; Ley, S.V.; Saaby, S.; Tranmer, G.K. A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: A new paradigm for molecular assembly. Chem. Commun. (Camb.), 2006, 24(24), 2566-2568.
[http://dx.doi.org/10.1039/b600382f] [PMID: 16779479]
[37]
Zhang, P.; Russell, M.G.; Jamison, T.F. Continuous flow total synthesis of rufinamide. Org. Process Res. Dev., 2014, 18(11), 1567-1570.
[http://dx.doi.org/10.1021/op500166n]
[38]
Bogdan, A.R.; Sach, N.W. The use of copper flow reactor technology for the continuous synthesis of 1,4-disubstituted 1,2,3-triazoles. Adv. Synth. Catal., 2009, 351(6), 849-854.
[http://dx.doi.org/10.1002/adsc.200800758]
[39]
Teci, M.; Tilley, M.; McGuire, M.A.; Organ, M.G. Handling hazards using continuous flow chemistry: Synthesis of N1 -Aryl-[1,2,3]-triazoles from anilines via telescoped three-step diazotization, Azidodediazotization, and [3 + 2] Dipolar cycloaddition processes. Org. Process Res. Dev., 2016, 20(11), 1967-1973.
[http://dx.doi.org/10.1021/acs.oprd.6b00292]
[40]
Deng, X.; Liang, J.; Allison, B.B.; Dvorak, C.; McAllister, H.; Savall, B.M.; Mani, N.S. Allyl-Assisted, Cu(I)-Catalyzed Azide-Alkyne cycloaddition/allylation reaction: Assembly of the [1,2,3]Triazolo-4,5,6,7-tetrahydropyridine core structure. J. Org. Chem., 2015, 80(21), 11003-11012.
[http://dx.doi.org/10.1021/acs.joc.5b02174] [PMID: 26458051]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy