Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Quantitative Analysis for Chinese and US-listed Pharmaceutical Companies by the LightGBM Algorithm

Author(s): Wenwen Zheng, Junjun Li, Yu Wang, Zhuyifan Ye, Hao Zhong, Hung Wan Kot, Defang Ouyang* and Ging Chan*

Volume 19, Issue 6, 2023

Published on: 16 February, 2023

Page: [405 - 415] Pages: 11

DOI: 10.2174/1573409919666230126095901

Price: $65

Abstract

Aim: This article aims to quantitatively analyze the growth trend of listed pharmaceutical companies in the US and China by a machine learning algorithm.

Background: In the last two decades, the global pharmaceutical industry has faced the dilemma of low research & development (R&D) success rate. The US is the world's largest pharmaceutical market, while China is the largest emerging market.

Objective: To collect data from the database and apply machine learning to build the model.

Methods: LightGBM algorithm was used to build the model and identify the factor important to the performance of pharmaceutical companies.

Results: The prediction accuracy for US companies was 80.3%, while it was 64.9% for Chinese companies. The feature importance shows that the net profit growth rate and debt liability ratio are significant in financial indicators. The results indicated that the US may continue to dominate the global pharmaceutical industry, while several Chinese pharmaceutical companies rose sharply after 2015 with the narrowing gap between the Chinese and US pharmaceutical industries.

Conclusion: In summary, our research quantitatively analyzed the growth trend of listed pharmaceutical companies in the US and China by a machine learning algorithm, which provide a novel perspective for the global pharmaceutical industry. According to the R&D capability and profitability, 141 US-listed and 129 China-listed pharmaceutical companies were divided into four levels to evaluate the growth trend of pharmaceutical firms.

Next »
Graphical Abstract

[1]
How Increased Competition from Generic Drugs Has Affected Prices and Returns in the Pharmaceutical Industry Congressional Budget Office., 2003.
[2]
DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development costs. J. Health Econ., 2003, 22(2), 151-185.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[3]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[4]
Chesbrough, H.W. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Boston, Massachusetts, 2003.
[5]
Roper, S.; Du, J.; Love, J.H. Modelling the innovation value chain. Res. Policy, 2008, 37(6-7), 961-977.
[http://dx.doi.org/10.1016/j.respol.2008.04.005]
[6]
Larry, H.; Sakkab, N.Y. Connect and develop inside procter & gamble’s new model for innovation. Harv. Bus. Rev., 2006, 84(3), 58-67.
[7]
Koenig, M.E.; Mezick, E.M. Impact of mergers & acquisitions on research productivity within the pharmaceutical industry. Scientometrics, 2004, 59(1), 157-169.
[http://dx.doi.org/10.1023/B:SCIE.0000013304.40957.0d]
[8]
Berndt, E.R. The U.S. pharmaceutical industry: why major growth in times of cost containment? Health Aff. , 2001, 20(2), 100-114.
[http://dx.doi.org/10.1377/hlthaff.20.2.100] [PMID: 11260932]
[9]
World Health OrganizationChina policies to promote local production of pharmaceutical products and protect public health World Health Organization; WHO: Geneva, 2017.
[10]
Qiu, L.; Chen, Z-Y.; Lu, D-Y.; Hu, H.; Wang, Y-T. Public funding and private investment for R&D: A survey in China’s pharmaceutical industry. Health Res. Policy Syst., 2014, 12(1), 27.
[http://dx.doi.org/10.1186/1478-4505-12-27]
[11]
Li, J.H.G.; Zhuyifan, Y.; Jiayin, D.; Defang, O. In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques. Carbohydr. Polym., 2022, 275(1), 118712.
[12]
Han, R.; Xiong, H.; Ye, Z.; Yang, Y.; Huang, T.; Jing, Q.; Lu, J.; Pan, H.; Ren, F.; Ouyang, D. Predicting physical stability of solid dispersions by machine learning techniques. J. Control. Release, 2019, 311-312, 16-25.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.030] [PMID: 31465824]
[13]
Chen, C.L.; Mahjoubfar, A.; Tai, L.C.; Blaby, I.K.; Huang, A.; Niazi, K.R.; Jalali, B. Deep learning in label-free cell classification. Sci. Rep., 2016, 6(1), 21471.
[http://dx.doi.org/10.1038/srep21471] [PMID: 26975219]
[14]
Margolin, A.A.; Bilal, E.; Huang, E.; Norman, T.C.; Ottestad, L.; Mecham, B.H.; Sauerwine, B.; Kellen, M.R.; Mangravite, L.M.; Furia, M.D.; Vollan, H.K.; Rueda, O.M. Guinney. J.; Deflaux, N.A.; Hoff, B.; Schildwachter, X.; Russnes, H.G.; Parkm D.; Vang, V.O.; Pirtle, T.; Youseff, L.; Citro, C.; Curti,s C.; Kristensen, V.N.; Hellerstein, J.; Friend, S.H.; Stolovitzky, G.; Aparicio, S.; Caldas, C.; Børresen-Dale, A.L. Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer. Sci. Transl. Med., 2013, 5(181), 181re1.
[15]
Udelson, J.E. Heart failure with preserved ejection fraction. Circulation, 2011, 124(21), e540-e543.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.071696] [PMID: 22105201]
[16]
Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res., 2018, 270(2), 654-669.
[http://dx.doi.org/10.1016/j.ejor.2017.11.054]
[17]
Ke, G. LightGBM: A highly efficient gradient boosting decision tree. In: Neural Information Processing Systems, Long Beach; CA, USA, 2017; pp. 3146-3154.
[18]
James Bergstra, Y.B. Random search for hyper-parameter optimization. J. Mach. Learn. Res., 2012, 13(1), 281-305.
[19]
Su, C.Y. Guo, Y.N.; Chai, K.C.; Kong, W.W. R&D investments, debt capital, and ownership concentration: A three-way interaction and lag effects on firm performance in China’s pharmaceutical industry. Front. Public Health, 2021, 9, 708832.
[http://dx.doi.org/10.3389/fpubh.2021.708832] [PMID: 34660511]
[20]
Danzon, P.M.; Epstein, A.; Nicholson, S. Mergers and acquisitions in the pharmaceutical and biotech industries. MDE. Manage. Decis. Econ., 2007, 28(4-5), 307-328.
[http://dx.doi.org/10.1002/mde.1343]
[21]
Kaplan, R.S.; Norton, D.P. The balanced scorecard-measures that drive performance. Harv. Bus. Rev., 1992, 70(1), 71-79.
[PMID: 10119714]
[22]
Soliman, M.T. The use of DuPont analysis by market participants. Account. Rev., 2008, 83(3), 823-853.
[http://dx.doi.org/10.2308/accr.2008.83.3.823]
[23]
The Government of the People’s Republic of China http://www.gov.cn/zhengce/2017-10/08/content_5230105.htm
[24]
National Medical Products Administration http://www.gov.cn/xinwen/2017-05/12/content_5193269.htm
[25]
Pont, L.B.; Keirsse, J.; Moss, R.; Poda, P.; Robke, L.; Wurzer, S. Developing blockbuster drugs: both nature and nurture. Nat. Rev. Drug Discov., 2020.
[26]
Yu, W.; Zhong, H.; Jin, C.; Ouyang, D.F. Big data analysis of pharmaceutical research progress 1980-2019. Prog. Pharm. Sci., 2020, 44(1), 10-17.
[27]
Peter, B.S.; Wilkinson, G.F. What makes a drug discovery consortium successful? Nat. Rev. Drug Discov., 2020, 19(11), 737-738.
[28]
Twombly, J.M.; Fälting, J.; Giorgetti, M.; Maroney, A.C.; Osswald, G. How partnership should work to bring innovative medicines to patients. Drug Discov. Today, 2020, 25(6), 965-968.
[http://dx.doi.org/10.1016/j.drudis.2020.03.004] [PMID: 32173523]
[29]
Krueger, N.F., Jr; Reilly, M.D.; Carsrud, A.L.; Carsrud, A. Competing models of entrepreneurial intentions. J. Bus. Venturing, 2000, 15(5-6), 411-432.
[http://dx.doi.org/10.1016/S0883-9026(98)00033-0]
[30]
Ross, M.S. Innovation strategies for generic drug companies: Moving into supergenerics. IDrugs, 2010, 13(4), 243-247.
[PMID: 20373253]
[31]
Raths, S.; Parkel, S.; Bredmose, J.; Daussin, V. Mind the gap! A survey of the challenges of biomarker commercialization. Drug Discov. Today, 2020, 25(1), 22-26.
[http://dx.doi.org/10.1016/j.drudis.2019.09.015] [PMID: 31562983]
[32]
Ye, X.; Wang, Q.; Wang, H. New era of drug innovation in China. Acta Pharm. Sin. B, 2019, 9(5), 1084-1085.
[http://dx.doi.org/10.1016/j.apsb.2019.06.002] [PMID: 31649856]
[33]
Liu, Z.; Lyu, J. Measuring the innovation efficiency of the Chinese pharmaceutical industry based on a dynamic network DEA model. Appl. Econ. Lett., 2020, 27(1), 35-40.
[http://dx.doi.org/10.1080/13504851.2019.1606402]
[34]
Zhou, Y.; Coplin, A.E. Innovation in a science-based sector: The institutional evolution behind China’s emerging biopharmaceutical innovation boom. China Rev., 2022, 22(1), 39-76.
[35]
Li, G.Y.L.; Hongxi, Hu.; Shuona, Yuan.; Liyun , Zhou.; Xiaoyuan , Chen Evolution of innovative drug R&D in China. Nat. Rev. Drug Discov., 2022, 10(5), 333-334.
[PMID: 35149859]
[36]
Insight, D. How much do you know about the time of drug review., http://yao.dxy.cn/article/92630
[37]
Yu, Y.; Ma, Z.; Hu, H.; Wang, Y. Local government policies and pharmaceutical clusters in China. J. Sci. Technol. Policy Manag., 2014, 5(1), 41-58.
[http://dx.doi.org/10.1108/JSTPM-02-2013-0004]
[38]
Li, G.; Qin, Y.; Xie, C.Y-L.W.; Chen, X. Trends in oncology drug innovation in China. Nat. Rev. Drug Discov., 2020.
[39]
Munos, B. Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug Discov., 2009, 8(12), 959-968.
[http://dx.doi.org/10.1038/nrd2961] [PMID: 19949401]
[40]
Christel,, M. Pharm exec’s Top 50 companies 2020 Pharm Exec., 2020, 40(6), 14-17.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy