Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Influence of SLCO1B1 Polymorphisms on the Pharmacokinetics of Mycophenolic Acid in Renal Transplant Recipients

Author(s): Jiawen Liu*, Yongqian Zhu, Jiexiu Zhang, Jintao Wei, Ming Zheng, Zeping Gui, Hao Chen, Li Sun, Zhijian Han, Jun Tao, Xiaobin Ju, Ruoyun Tan*, Min Gu* and Zijie Wang*

Volume 24, Issue 2, 2023

Published on: 31 January, 2023

Page: [114 - 123] Pages: 10

DOI: 10.2174/1389200224666230124121304

Price: $65

Abstract

Objective: This study was designed to analyze the correlation between single nucleotide polymorphisms (SNP) related to drug metabolism and pharmacokinetics of mycophenolic acid (MPA) during long-term follow-up.

Materials and Method: A retrospective cohort study involving 71 renal transplant recipients was designed. Blood samples were collected to extract total DNAs, followed by target sequencing based on next-generation sequencing technology. The MPA area under the curve (AUC) was calculated according to the formula established in our center. The general linear model and linear regression model were used to analyze the association between SNPs and MPA AUC.

Results: A total of 689 SNPs were detected in our study, and 90 tagger SNPs were selected after quality control and linkage disequilibrium analysis. The general linear model analysis showed that 9 SNPs significantly influenced MPA AUC. A forward linear regression was conducted, and the model with the highest identical degree (r2=0.55) included 4 SNPs (SLCO1B1: rs4149036 [P < 0.0001], ABCC2: rs3824610 [P = 0.005], POR: rs4732514 [P = 0.006], ABCC2: rs4148395 [P = 0.007]) and 6 clinical factors (age [P < 0.0001], gender [P < 0.0001], the incident of acute rejection (AR) [P = 0.001], albumin [P < 0.0001], duration after renal transplantation [P = 0.01], lymphocyte numbers [P = 0.026]). The most relevant SNP to MPA AUC in this model was rs4149036. The subgroup analysis showed that rs4149036 had a significant influence on MPA AUC in the older group (P = 0.02), high-albumin group (P = 0.01), male group (P = 0.046), and both within-36-month group (P = 0.029) and after-36-month group (P = 0.041). The systematic review included 4 studies, and 2 of them showed that the mutation in SLCO1B1 resulted in lower MPA AUC, which was contrary to our study.

Conclusion: A total of 4 SNPs (rs4149036, rs3824610, rs4148395, and rs4732514) were identified to be significantly correlated with MPA AUC. Rs4149036, located in SLCO1B1, was suggested to be the most relevant SNP to MPA AUC, which had a stronger influence on recipients who were elder, male, or with high serum albumin. Furthermore, 6 clinical factors, including age, gender, occurrence of acute rejection, serum albumin, time from kidney transplantation, and blood lymphocyte numbers, were found to affect the concentration of MPA.

Graphical Abstract

[1]
Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; Ahmadian, E.; Al-Aly, Z.; Alipour, V.; Almasi-Hashiani, A.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Amini, S.; Andrei, T.; Andrei, C.L.; Andualem, Z.; Anjomshoa, M.; Arabloo, J.; Ashagre, A.F.; Asmelash, D.; Ataro, Z.; Atout, M.M.W.; Ayanore, M.A.; Badawi, A.; Bakhtiari, A.; Ballew, S.H.; Balouchi, A.; Banach, M.; Barquera, S.; Basu, S.; Bayih, M.T.; Bedi, N.; Bello, A.K.; Bensenor, I.M.; Bijani, A.; Boloor, A.; Borzì, A.M.; Cámera, L.A.; Carrero, J.J.; Carvalho, F.; Castro, F.; Catalá-López, F.; Chang, A.R.; Chin, K.L.; Chung, S-C.; Cirillo, M.; Cousin, E.; Dandona, L.; Dandona, R.; Daryani, A.; Das Gupta, R.; Demeke, F.M.; Demoz, G.T.; Desta, D.M.; Do, H.P.; Duncan, B.B.; Eftekhari, A.; Esteghamati, A.; Fatima, S.S.; Fernandes, J.C.; Fernandes, E.; Fischer, F.; Freitas, M.; Gad, M.M.; Gebremeskel, G.G.; Gebresillassie, B.M.; Geta, B.; Ghafourifard, M.; Ghajar, A.; Ghith, N.; Gill, P.S.; Ginawi, I.A.; Gupta, R.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hariyani, N.; Hasan, M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, S.I.; Heidari, B.; Herteliu, C.; Hoang, C.L.; Hosseini, M.; Hostiuc, M.; Irvani, S.S.N.; Islam, S.M.S.; Jafari Balalami, N.; James, S.L.; Jassal, S.K.; Jha, V.; Jonas, J.B.; Joukar, F.; Jozwiak, J.J.; Kabir, A.; Kahsay, A.; Kasaeian, A.; Kassa, T.D.; Kassaye, H.G.; Khader, Y.S.; Khalilov, R.; Khan, E.A.; Khan, M.S.; Khang, Y-H.; Kisa, A.; Kovesdy, C.P.; Kuate, Defo B.; Kumar, G.A.; Larsson, A.O.; Lim, L-L.; Lopez, A.D.; Lotufo, P.A.; Majeed, A.; Malekzadeh, R.; März, W.; Masaka, A.; Meheretu, H.A.A.; Miazgowski, T.; Mirica, A.; Mirrakhimov, E.M.; Mithra, P.; Moazen, B.; Mohammad, D.K.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Morales, L.; Moreno Velasquez, I.; Mousavi, S.M.; Mukhopadhyay, S.; Nachega, J.B.; Nadkarni, G.N.; Nansseu, J.R.; Natarajan, G.; Nazari, J.; Neal, B.; Negoi, R.I.; Nguyen, C.T.; Nikbakhsh, R.; Noubiap, J.J.; Nowak, C.; Olagunju, A.T.; Ortiz, A.; Owolabi, M.O.; Palladino, R.; Pathak, M.; Poustchi, H.; Prakash, S.; Prasad, N.; Rafiei, A.; Raju, S.B.; Ramezanzadeh, K.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C., Jr; Rezapour, A.; Ribeiro, D.C.; Roever, L.; Rothenbacher, D.; Rwegerera, G.M.; Saadatagah, S.; Safari, S.; Sahle, B.W.; Salem, H.; Sanabria, J.; Santos, I.S.; Sarveazad, A.; Sawhney, M.; Schaeffner, E.; Schmidt, M.I.; Schutte, A.E.; Sepanlou, S.G.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Silva, D.A.S.; Singh, J.A.; Singh, N.P.; Sisay, M.M.M.; Soheili, A.; Sutradhar, I.; Teklehaimanot, B.F.; Tesfay, B.; Teshome, G.F.; Thakur, J.S.; Tonelli, M.; Tran, K.B.; Tran, B.X.; Tran Ngoc, C.; Ullah, I.; Valdez, P.R.; Varughese, S.; Vos, T.; Vu, L.G.; Waheed, Y.; Werdecker, A.; Wolde, H.F.; Wondmieneh, A.B.; Wulf Hanson, S.; Yamada, T.; Yeshaw, Y.; Yonemoto, N.; Yusefzadeh, H.; Zaidi, Z.; Zaki, L.; Zaman, S.B.; Zamora, N.; Zarghi, A.; Zewdie, K.A.; Ärnlöv, J.; Coresh, J.; Perico, N.; Remuzzi, G.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2020, 395(10225), 709-733.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[2]
Eknoyan, G. Side effects of hemodialysis. N. Engl. J. Med., 1984, 311(14), 915-917.
[http://dx.doi.org/10.1056/NEJM198410043111411] [PMID: 6472405]
[3]
Augustine, J. Kidney transplant: New opportunities and challenges. Cleve. Clin. J. Med., 2018, 85(2), 138-144.
[http://dx.doi.org/10.3949/ccjm.85gr.18001] [PMID: 29425089]
[4]
Jensen, C.E.; Sørensen, P.; Petersen, K.D. In Denmark kidney transplantation is more cost-effective than dialysis. Dan. Med. J., 2014, 61(3), A4796.
[PMID: 24814915]
[5]
Casati, C.; Menegotto, A.; Querques, M.L.; Ravera, F.; Colussi, G. Immunosuppression in kidney transplantation: a way between efficacy and toxicity. G. Ital. Entomol., 2017, 34(2), 29-39.
[6]
Fishman, J.A. Infection in organ transplantation. Am. J. Transplant., 2017, 17(4), 856-879.
[http://dx.doi.org/10.1111/ajt.14208] [PMID: 28117944]
[7]
Eckardt, K.U.; Kasiske, B.L.; Zeier, M.G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant., 2009, 9(Suppl. 3), S1-S155.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02834.x] [PMID: 19845597]
[8]
Suthanthiran, M.; Morris, R.E.; Strom, T.B. Immunosuppressants: Cellular and molecular mechanisms of action. Am. J. Kidney Dis., 1996, 28(2), 159-172.
[http://dx.doi.org/10.1016/S0272-6386(96)90297-8] [PMID: 8768909]
[9]
Hughes, S.E.; Gruber, S.A. New immunosuppressive drugs in organ transplantation. J. Clin. Pharmacol., 1996, 36(12), 1081-1092.
[http://dx.doi.org/10.1002/j.1552-4604.1996.tb04160.x] [PMID: 9013363]
[10]
Filler, G.; Mai, I. Limited sampling strategy for mycophenolic acid area under the curve. Ther. Drug Monit., 2000, 22(2), 169-173.
[http://dx.doi.org/10.1097/00007691-200004000-00005] [PMID: 10774628]
[11]
Pawinski, T.; Hale, M.; Korecka, M.; Fitzsimmons, W.E.; Shaw, L.M. Limited sampling strategy for the estimation of mycophenolic acid area under the curve in adult renal transplant patients treated with concomitant tacrolimus. Clin. Chem., 2002, 48(9), 1497-1504.
[http://dx.doi.org/10.1093/clinchem/48.9.1497] [PMID: 12194926]
[12]
Barraclough, K.A.; Lee, K.J.; Staatz, C.E. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics, 2010, 11(3), 369-390.
[http://dx.doi.org/10.2217/pgs.10.9] [PMID: 20235793]
[13]
Yap, D.Y.H.; Tam, C.H.; Yung, S.; Wong, S.; Tang, C.S.O.; Mok, T.M.Y.; Yuen, C.K.Y.; Ma, M.K.M.; Lau, C.S.; Chan, T.M. Pharmacokinetics and pharmacogenomics of mycophenolic acid and its clinical correlations in maintenance immunosuppression for lupus nephritis. Nephrol. Dial. Transplant., 2020, 35(5), 810-818.
[http://dx.doi.org/10.1093/ndt/gfy284] [PMID: 30215770]
[14]
Li, L.; Chen, D.; Li, C.; Li, Q.; Chen, Y.; Fang, P.; Zheng, P.; Lu, H.; Ye, D.; Wan, H.; Li, J.; Li, L. Impact of UGT2B7 and ABCC2 genetic polymorphisms on mycophenolic acid metabolism in Chinese renal transplant recipients. Pharmacogenomics, 2018, 19(17), 1323-1334.
[http://dx.doi.org/10.2217/pgs-2018-0114] [PMID: 30345879]
[15]
Juan, W.; Shanbing, W.; Min, G.; Jifu, W. Study on monitoring scheme of mycophenolic acid by limited sampling method in renal transplantation patients. Pharm. Clin. Res., 2019, 27(06), 445-448.
[16]
Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol., 2013, 31(3), 213-219.
[http://dx.doi.org/10.1038/nbt.2514] [PMID: 23396013]
[17]
Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; Liu-Cordero, S.N.; Rotimi, C.; Adeyemo, A.; Cooper, R.; Ward, R.; Lander, E.S.; Daly, M.J.; Altshuler, D. The structure of haplotype blocks in the human genome. Science, 2002, 296(5576), 2225-2229.
[http://dx.doi.org/10.1126/science.1069424] [PMID: 12029063]
[18]
Niemi, M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics, 2007, 8(7), 787-802.
[http://dx.doi.org/10.2217/14622416.8.7.787] [PMID: 18240907]
[19]
Miura, M.; Satoh, S.; Inoue, K.; Kagaya, H.; Saito, M.; Inoue, T.; Suzuki, T.; Habuchi, T. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur. J. Clin. Pharmacol., 2007, 63(12), 1161-1169.
[http://dx.doi.org/10.1007/s00228-007-0380-7] [PMID: 17906856]
[20]
Johnson, L.A.A.; Oetting, W.S.; Basu, S.; Prausa, S.; Matas, A.; Jacobson, P.A. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur. J. Clin. Pharmacol., 2008, 64(11), 1047-1056.
[http://dx.doi.org/10.1007/s00228-008-0501-y] [PMID: 18568343]
[21]
Veroux, M.; Corona, D.; Veroux, P. Kidney transplantation: Future challenges. Minerva Chir., 2009, 64(1), 75-100.
[PMID: 19202537]
[22]
Wojciechowski, D.; Wiseman, A. Long-Term Immunosuppression Management. Clin. J. Am. Soc. Nephrol., 2021, 16(8), 1264-1271.
[http://dx.doi.org/10.2215/CJN.15040920] [PMID: 33853841]
[23]
Picard, N.; Ratanasavanh, D.; Prémaud, A.; Le Meur, Y.; Marquet, P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab. Dispos., 2005, 33(1), 139-146.
[http://dx.doi.org/10.1124/dmd.104.001651] [PMID: 15470161]
[24]
Cilião, H.L.; Camargo-Godoy, R.B.O.; de Souza, M.F.; dos Reis, M.B.; Iastrenski, L.; Alvares Delfino, V.D.; Rogatto, S.R.; de Syllos Cólus, I.M. Association of UGT2B7, UGT1A9, ABCG2, and IL23R polymorphisms with rejection risk in kidney transplant patients. J. Toxicol. Environ. Health A, 2017, 80(13-15), 661-671.
[http://dx.doi.org/10.1080/15287394.2017.1286922] [PMID: 28524801]
[25]
Xie, X.; Li, J.; Wang, H.; Li, H.; Liu, J.; Fu, Q.; Huang, J.; Zhu, C.; Zhong, G.; Wang, X.; Sun, P.; Huang, M.; Wang, C.; Li, J. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol. Sin., 2015, 36(5), 644-650.
[http://dx.doi.org/10.1038/aps.2015.7] [PMID: 25864649]
[26]
Yang, C.; Sheng, C.; Liao, G.; Su, Y.; Feng, L.; Xia, Q.; Jiao, Z.; Xu, D. Genetic polymorphisms in metabolic enzymes and transporters have no impact on mycophenolic acid pharmacokinetics in adult kidney transplant patients co‐treated with tacrolimus: A population analysis. J. Clin. Pharm. Ther., 2021, 46(6), 1564-1575.
[http://dx.doi.org/10.1111/jcpt.13488] [PMID: 34312870]
[27]
König, J.; Seithel, A.; Gradhand, U.; Fromm, M.F. Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch. Pharmacol., 2006, 372(6), 432-443.
[http://dx.doi.org/10.1007/s00210-006-0040-y] [PMID: 16525793]
[28]
Hu, M.; Mak, V.W.L.; Yin, O.Q.P.; Ten Wah Chu, T.; Tomlinson, B. Effects of grapefruit juice and SLCO1B1 388A>G polymorphism on the pharmacokinetics of pitavastatin. Drug Metab. Pharmacokinet., 2013, 28(2), 104-108.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-067] [PMID: 22850760]
[29]
Deng, J.W.; Song, I.S.; Shin, H.J.; Yeo, C.W.; Cho, D.Y.; Shon, J.H.; Shin, J.G. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet. Genomics, 2008, 18(5), 424-433.
[http://dx.doi.org/10.1097/FPC.0b013e3282fb02a3] [PMID: 18408565]
[30]
Choi, C.I.; Lee, Y.J.; Lee, H.I.; Kim, B.H.; Kim, M.J.; Jang, C.G.; Bae, J.W.; Lee, S.Y. Effects of the SLCO1B1*15 allele on the pharmacokinetics of pitavastatin. Xenobiotica, 2012, 42(5), 496-501.
[http://dx.doi.org/10.3109/00498254.2011.632030] [PMID: 22077103]
[31]
Wen, J.; Xiong, Y. OATP1B1 388A>G polymorphism and pharmacokinetics of pitavastatin in Chinese healthy volunteers. J. Clin. Pharm. Ther., 2010, 35(1), 99-104.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01071.x] [PMID: 20175818]
[32]
Han, N.; Yun, H.; Kim, I.W.; Oh, Y.J.; Kim, Y.S.; Oh, J.M. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients. Eur. J. Clin. Pharmacol., 2014, 70(10), 1211-1219.
[http://dx.doi.org/10.1007/s00228-014-1728-4] [PMID: 25163792]
[33]
Shu, Q.; Fan, Q.; Hua, B.; Liu, H.; Wang, S.; Liu, Y.; Yao, Y.; Xie, H.; Ge, W. Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 −106G>A genetic polymorphisms on mycophenolic acid levels and adverse reactions in chinese autoimmune disease patients. Pharm. Genomics Pers. Med., 2021, 14, 713-722.
[http://dx.doi.org/10.2147/PGPM.S295964] [PMID: 34188518]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy